{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What bad columns looks like\n",
"\n",
"Sometimes columns have extra spaces or are just plain odd, even if they look normal."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" DPT | \n",
" NAME | \n",
" ADDRESS | \n",
" TTL # | \n",
" PC | \n",
" SAL-RATE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 69 | \n",
" A E A-AWOSOGBA | \n",
" HRA/DEPARTMENT OF SOCIAL S | \n",
" 52311 | \n",
" A | \n",
" $51955.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DPT NAME ADDRESS TTL # PC \\\n",
"0 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"1 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 69 A E A-AWOSOGBA HRA/DEPARTMENT OF SOCIAL S 52311 A \n",
"\n",
" SAL-RATE \n",
"0 $5.00 \n",
"1 $5.00 \n",
"2 $51955.00 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"Civil_List_2014.csv\").head(3)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DPT ', 'NAME ', 'ADDRESS ', 'TTL # ', 'PC ', 'SAL-RATE'], dtype='object')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overwriting columns\n",
"\n",
"In order to fix them, you have a few options. Once thing you can do is just *overwrite them* with new ones."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" DPT | \n",
" NAME | \n",
" ADDRESS | \n",
" TTL # | \n",
" PC | \n",
" SAL-RATE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 69 | \n",
" A E A-AWOSOGBA | \n",
" HRA/DEPARTMENT OF SOCIAL S | \n",
" 52311 | \n",
" A | \n",
" $51955.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DPT NAME ADDRESS TTL # PC \\\n",
"0 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"1 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 69 A E A-AWOSOGBA HRA/DEPARTMENT OF SOCIAL S 52311 A \n",
"\n",
" SAL-RATE \n",
"0 $5.00 \n",
"1 $5.00 \n",
"2 $51955.00 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"Civil_List_2014.csv\").head(3)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DPT ', 'NAME ', 'ADDRESS ', 'TTL # ', 'PC ', 'SAL-RATE'], dtype='object')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case it might make sense to use a list comprehension to strip all of the extra spaces."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df.columns = [col.strip() for col in df.columns]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DPT', 'NAME', 'ADDRESS', 'TTL #', 'PC', 'SAL-RATE'], dtype='object')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mass renaming\n",
"\n",
"You can also just pass in a new list of columns if you don't like what they come in as."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" DPT | \n",
" NAME | \n",
" ADDRESS | \n",
" TTL # | \n",
" PC | \n",
" SAL-RATE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 69 | \n",
" A E A-AWOSOGBA | \n",
" HRA/DEPARTMENT OF SOCIAL S | \n",
" 52311 | \n",
" A | \n",
" $51955.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DPT NAME ADDRESS TTL # PC \\\n",
"0 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"1 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 69 A E A-AWOSOGBA HRA/DEPARTMENT OF SOCIAL S 52311 A \n",
"\n",
" SAL-RATE \n",
"0 $5.00 \n",
"1 $5.00 \n",
"2 $51955.00 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"Civil_List_2014.csv\").head(3)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Rename all of the columns, keeping them in order\n",
"df.columns = ['Department', 'Name', 'Address', 'Title', 'Pay Class', 'Salary Rate']"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Department | \n",
" Name | \n",
" Address | \n",
" Title | \n",
" Pay Class | \n",
" Salary Rate | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 69 | \n",
" A E A-AWOSOGBA | \n",
" HRA/DEPARTMENT OF SOCIAL S | \n",
" 52311 | \n",
" A | \n",
" $51955.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Department Name Address Title Pay Class \\\n",
"0 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"1 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 69 A E A-AWOSOGBA HRA/DEPARTMENT OF SOCIAL S 52311 A \n",
"\n",
" Salary Rate \n",
"0 $5.00 \n",
"1 $5.00 \n",
"2 $51955.00 "
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rename on import\n",
"\n",
"You also set their names when you're reading in the csv."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/IPython/core/interactiveshell.py:2723: DtypeWarning: Columns (0) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" interactivity=interactivity, compiler=compiler, result=result)\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Department | \n",
" Name | \n",
" Address | \n",
" Title | \n",
" Pay Class | \n",
" Salary Rate | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" DPT | \n",
" NAME | \n",
" ADDRESS | \n",
" TTL # | \n",
" PC | \n",
" SAL-RATE | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Department Name Address Title Pay Class \\\n",
"0 DPT NAME ADDRESS TTL # PC \n",
"1 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"\n",
" Salary Rate \n",
"0 SAL-RATE \n",
"1 $5.00 \n",
"2 $5.00 "
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Read in the csv, passing names= to set the column names\n",
"df = pd.read_csv(\"Civil_List_2014.csv\", names=[\"Department\", \"Name\", \"Address\", \"Title\", \"Pay Class\", \"Salary Rate\"]).head(3)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Unfortunately this leaves you with the first row of *actual* headers inside of your data. When usings `names=` in `read_csv`, add `skiprows=1` to skip the first row (the header row)."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Department | \n",
" Name | \n",
" Address | \n",
" Title | \n",
" Pay Class | \n",
" Salary Rate | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 868 | \n",
" B J SANDIFORD | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 868 | \n",
" C A WIGFALL | \n",
" DEPARTMENT OF CITYWIDE ADM | \n",
" 12702 | \n",
" X | \n",
" $5.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 69 | \n",
" A E A-AWOSOGBA | \n",
" HRA/DEPARTMENT OF SOCIAL S | \n",
" 52311 | \n",
" A | \n",
" $51955.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Department Name Address Title Pay Class \\\n",
"0 868 B J SANDIFORD DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"1 868 C A WIGFALL DEPARTMENT OF CITYWIDE ADM 12702 X \n",
"2 69 A E A-AWOSOGBA HRA/DEPARTMENT OF SOCIAL S 52311 A \n",
"\n",
" Salary Rate \n",
"0 $5.00 \n",
"1 $5.00 \n",
"2 $51955.00 "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Pass in names=, but also skiprows=1\n",
"df = pd.read_csv(\"Civil_List_2014.csv\", skiprows=1, names=[\"Department\", \"Name\", \"Address\", \"Title\", \"Pay Class\", \"Salary Rate\"]).head(3)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}