{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 01: Building a pandas Cheat Sheet, Part 1: Animals\n", "\n", "* Use the csv I've attached to answer the following questions\n", "* Import pandas with the right name\n", "* Set all graphics from matplotlib to display inline\n", "* Read the csv in (it should be UTF-8 already so you don't have to worry about encoding), save it with the proper boring name\n", "* Display the names of the columns in the csv\n", "* Display the first 3 animals.\n", "* Sort the animals to see the 3 longest animals.\n", "* What are the counts of the different values of the \"animal\" column? a.k.a. how many cats and how many dogs.\n", "* Only select the dogs.\n", "* Display all of the animals that are greater than 40 cm.\n", "'length' is the animal's length in cm. Create a new column called inches that is the length in inches.\n", "* Save the cats to a separate variable called \"cats.\" Save the dogs to a separate variable called \"dogs.\"\n", "* Display all of the animals that are cats and above 12 inches long. First do it using the \"cats\" variable, then do it using your normal dataframe.\n", "* What's the mean length of a cat?\n", "* What's the mean length of a dog?\n", "* Use groupby to accomplish both of the above tasks at once.\n", "* Make a histogram of the length of dogs. I apologize that it is so boring.\n", "* Change your graphing style to be something else (anything else!)\n", "* Make a horizontal bar graph of the length of the animals, with their name as the label (look at the billionaires notebook I put on Slack!)\n", "* Make a sorted horizontal bar graph of the cats, with the larger cats on top.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Import pandas with the right name\n", "# Set all graphics from matplotlib to display inline\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "# don't do this, but it means the thing above\n", "#from matplotlib import pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Read the csv in (it should be UTF-8 already so you don't have to worry about encoding), save it with the proper boring name\n", "* Display the names of the columns in the csv\n", "* Display the first 3 animals." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df = pd.read_csv(\"07-hw-animals.csv\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['animal', 'name', 'length'], dtype='object')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
0catAnne35
1catBob45
2dogEgglesburg65
\n", "
" ], "text/plain": [ " animal name length\n", "0 cat Anne 35\n", "1 cat Bob 45\n", "2 dog Egglesburg 65" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# * Sort the animals to see the 3 longest animals." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
2dogEgglesburg65
3dogDevon50
1catBob45
\n", "
" ], "text/plain": [ " animal name length\n", "2 dog Egglesburg 65\n", "3 dog Devon 50\n", "1 cat Bob 45" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_values(by='length', ascending=False).head(3)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "cat 3\n", "dog 3\n", "Name: animal, dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# * What are the counts of the different values of the \"animal\" column? a.k.a. how many cats and how many dogs.\n", "df['animal'].value_counts()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 True\n", "3 True\n", "4 False\n", "5 True\n", "Name: animal, dtype: bool" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# * Only select the dogs.\n", "df['animal'] == 'dog'" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
2dogEgglesburg65
3dogDevon50
5dogFontaine35
\n", "
" ], "text/plain": [ " animal name length\n", "2 dog Egglesburg 65\n", "3 dog Devon 50\n", "5 dog Fontaine 35" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# If you want the rows back, you have to put a df[ ] on the outside\n", "df[df['animal'] == 'dog']" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 True\n", "3 True\n", "4 False\n", "5 True\n", "Name: animal, dtype: bool" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_dog = df['animal'] == 'dog'\n", "is_dog" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
2dogEgglesburg65
3dogDevon50
5dogFontaine35
\n", "
" ], "text/plain": [ " animal name length\n", "2 dog Egglesburg 65\n", "3 dog Devon 50\n", "5 dog Fontaine 35" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dogs = df[is_dog]\n", "dogs" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/soma/.virtualenvs/data-analysis/lib/python3.4/site-packages/ipykernel/__main__.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " if __name__ == '__main__':\n" ] }, { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
2dogEgglesburg65
3dogDevon50
\n", "
" ], "text/plain": [ " animal name length\n", "2 dog Egglesburg 65\n", "3 dog Devon 50" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dogs[df['length'] > 40]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 True\n", "3 True\n", "4 False\n", "5 True\n", "Name: animal, dtype: bool" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['animal'] == 'dog'" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
2dogEgglesburg65
3dogDevon50
5dogFontaine35
\n", "
" ], "text/plain": [ " animal name length\n", "2 dog Egglesburg 65\n", "3 dog Devon 50\n", "5 dog Fontaine 35" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['animal'] == 'dog']" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#* Display all of the animals that are greater than 40 cm.\n", "# 'length' is the animal's length in cm. Create a new column called inches that is the length in inches.\n", "#* Save the cats to a separate variable called \"cats.\" Save the dogs to a separate variable called \"dogs.\"\n", "#* Display all of the animals that are cats and above 12 inches long. First do it using the \"cats\" variable, then do it using your normal dataframe." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelength
1catBob45
2dogEgglesburg65
3dogDevon50
\n", "
" ], "text/plain": [ " animal name length\n", "1 cat Bob 45\n", "2 dog Egglesburg 65\n", "3 dog Devon 50" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['length'] > 40]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# save a new column using a calculation on an existing column\n", "df['inches'] = df['length'] / 2.54" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelengthinches
0catAnne3513.779528
1catBob4517.716535
2dogEgglesburg6525.590551
3dogDevon5019.685039
4catCharlie3212.598425
5dogFontaine3513.779528
\n", "
" ], "text/plain": [ " animal name length inches\n", "0 cat Anne 35 13.779528\n", "1 cat Bob 45 17.716535\n", "2 dog Egglesburg 65 25.590551\n", "3 dog Devon 50 19.685039\n", "4 cat Charlie 32 12.598425\n", "5 dog Fontaine 35 13.779528" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelengthinches
0catAnne3513.779528
1catBob4517.716535
4catCharlie3212.598425
\n", "
" ], "text/plain": [ " animal name length inches\n", "0 cat Anne 35 13.779528\n", "1 cat Bob 45 17.716535\n", "4 cat Charlie 32 12.598425" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#* Display all of the animals that are cats and above 12 inches long.\n", "# First do it using the \"cats\" variable, then do it using your normal dataframe.\n", "cats = df[df['animal'] == 'cat']\n", "cats" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelengthinches
0catAnne3513.779528
1catBob4517.716535
4catCharlie3212.598425
\n", "
" ], "text/plain": [ " animal name length inches\n", "0 cat Anne 35 13.779528\n", "1 cat Bob 45 17.716535\n", "4 cat Charlie 32 12.598425" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cats[cats['inches'] > 12]" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelengthinches
0catAnne3513.779528
1catBob4517.716535
4catCharlie3212.598425
\n", "
" ], "text/plain": [ " animal name length inches\n", "0 cat Anne 35 13.779528\n", "1 cat Bob 45 17.716535\n", "4 cat Charlie 32 12.598425" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#df[df['animal'] == 'cat' & df['inches'] > 12]\n", "big_cats = df[(df['animal'] == 'cat') & (df['inches'] > 12)]\n", "big_cats" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
animalnamelengthinches
0catAnne3513.779528
1catBob4517.716535
4catCharlie3212.598425
\n", "
" ], "text/plain": [ " animal name length inches\n", "0 cat Anne 35 13.779528\n", "1 cat Bob 45 17.716535\n", "4 cat Charlie 32 12.598425" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_cat = df['animal'] == 'cat'\n", "is_over_twelve_inches = df['inches'] > 12\n", "df[is_cat & is_over_twelve_inches]\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#* What's the mean length of a cat?\n", "#* What's the mean length of a dog?\n", "#* Use groupby to accomplish both of the above tasks at once.\n", "#* Make a histogram of the length of dogs. I apologize that it is so boring.\n", "#* Change your graphing style to be something else (anything else!)\n", "#* Make a horizontal bar graph of the length of the animals, with their name as the label (look at the billionaires notebook I put on Slack!)\n", "#* Make a sorted horizontal bar graph of the cats, with the larger cats on top." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "37.333333333333336" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cats['length'].mean()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 3.000000\n", "mean 37.333333\n", "std 6.806859\n", "min 32.000000\n", "25% 33.500000\n", "50% 35.000000\n", "75% 40.000000\n", "max 45.000000\n", "Name: length, dtype: float64" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cats['length'].describe()" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "50.0" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dogs = df[df['animal'] == 'dog']\n", "dogs['length'].mean()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 3.0\n", "mean 50.0\n", "std 15.0\n", "min 35.0\n", "25% 42.5\n", "50% 50.0\n", "75% 57.5\n", "max 65.0\n", "Name: length, dtype: float64" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dogs['length'].describe()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
incheslength
animal
catcount3.0000003.000000
mean14.69816337.333333
std2.6798666.806859
min12.59842532.000000
25%13.18897633.500000
50%13.77952835.000000
75%15.74803140.000000
max17.71653545.000000
dogcount3.0000003.000000
mean19.68503950.000000
std5.90551215.000000
min13.77952835.000000
25%16.73228342.500000
50%19.68503950.000000
75%22.63779557.500000
max25.59055165.000000
\n", "
" ], "text/plain": [ " inches length\n", "animal \n", "cat count 3.000000 3.000000\n", " mean 14.698163 37.333333\n", " std 2.679866 6.806859\n", " min 12.598425 32.000000\n", " 25% 13.188976 33.500000\n", " 50% 13.779528 35.000000\n", " 75% 15.748031 40.000000\n", " max 17.716535 45.000000\n", "dog count 3.000000 3.000000\n", " mean 19.685039 50.000000\n", " std 5.905512 15.000000\n", " min 13.779528 35.000000\n", " 25% 16.732283 42.500000\n", " 50% 19.685039 50.000000\n", " 75% 22.637795 57.500000\n", " max 25.590551 65.000000" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#* Use groupby to accomplish both of the above tasks at once.\n", "df.groupby('animal').describe()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "animal\n", "cat 112\n", "dog 150\n", "Name: length, dtype: int64" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby('animal')['length'].sum()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE+pJREFUeJzt3W2MpXV5x/HvxZOpDwtVU2pBoT5iCbgQpSQ+DdoK2rQY\nX7Riol2NhhfS+qoFmzT4og/SRN1atIolIGqLrcZKU6tY3E21sYqpuz6BYuxSFgW1lTb40LB49cW5\nx70dZnZmbu4z93+u8/0kJzv/Mzdnrmv//71m5jdnDpGZSJJqOWrqAiRJ43O4S1JBDndJKsjhLkkF\nOdwlqSCHuyQVtO5wj4irI+LuiPjCEa55a0TcFhH7ImLnuCVKkjZrI1+5XwOcv9Y7I+KFwBMy80nA\nxcA7RqpNkjTQusM9Mz8FfO8Il1wIXNdd+xng+Ig4cZzyJElDjJG5nwTc0Vvf2d0nSZqIP1CVpIKO\nGeEx7gQe21uf3N33ABHhC9lI0gCZGZu5fqNfuUd3W80NwCsAIuJc4J7MvHvth8pJbzt2nMH+/fvJ\nzNFvl19++Vwet5Vb9f5aOJ+Ae9dYf62ci81a9yv3iPhrYAl4VET8J3A5cNzsDOZVmfmRiHhRRHwd\n+D7wykGVFHDgwIGpS5ir6v1VVn3vqvc3xLrDPTNftoFrLhmnHEnSGPyB6oh27do1dQlzVb2/yqrv\nXfX+hojDmdIWfLCIHJofjWXHjjP55Cffy5lnnjlpHWpPRDD1+YRgK/9Nan0NnYu5/EBVG7B3796p\nS5ir6v1VVn3vqvc3hMNdkgoylpE6DX37PXEN6mvoXBjLSNKic7iPqHruV72/yqrvXfX+hnC4S1JB\nZu5Sp6FsdeIa1NfQuTBzl6RF53AfUfXcr3p/lVXfu+r9DeFwl6SCzNylTkPZ6sQ1qK+hc2HmLkmL\nzuE+ouq5X/X+Kqu+d9X7G8LhLkkFmblLnYay1YlrUF9D58LMXZIWncN9RNVzv+r9VVZ976r3N4TD\nXZIKMnOXOg1lqxPXoL6GzoWZuyQtOof7iKrnftX7q6z63lXvbwiHuyQVZOYudRrKVieuQX0NnQsz\nd0ladA73EVXP/ar3V1n1vave3xAOd0kqyMxd6jSUrU5cg/oaOhdm7pK06BzuI6qe+1Xvr7Lqe1e9\nvyEc7pJUkJm71GkoW524BvU1dC7M3CVp0TncR1Q996veX2XV9656f0M43CWpoA1l7hFxAbCb2SeD\nqzPzihXvfxTwXuAxwNHAmzLz2lUex8xdzWooW524BvU1dC7Gzdwj4ijgSuB84HTgoog4bcVllwD7\nMnMncB7wpog4ZjOFSJLGs5FY5hzgtsy8PTPvA64HLlxxzV3AI7q3HwH8V2YeGq/M7aF67le9v8qq\n7131/obYyFfXJwF39NYHmQ38vncBN0XEN4GHA781TnmSpCHGik5eD+zPzPMi4gnAxyPizMy894GX\n7gJO7d4+AdgJLHXrvd2f81sfOnS4pOXP9ktLS6Osl+8b6/FaWy9Cf7Mzs9R7mwnWbKjezayXlpYm\n//ud53qe/R22vF7agvVe4NpufSpDrPsD1Yg4F3hDZl7QrS8Dsv9D1Yj4CPDHmfmv3fom4NLM/NyK\nx/IHqmpWQz84m7gG9TV0Lkb/JaabgSdGxCkRcRzwUuCGFdfcAvwKQEScCDwZ+MZmCqmgeu5Xvb/K\nqu9d9f6GWDeWycz7I+IS4EYOPxXyloi4ePbuvAr4U+CaiNgPBPD7mfnf8yxckrQ2X1tG6jT07ffE\nNaivoXPha8tI0qJzuI+oeu5Xvb/Kqu9d9f6GcLhLUkFm7lKnoWx14hrU19C5MHOXpEXncB9R9dyv\nen+VVd+76v0N4XCXpILM3KVOQ9nqxDWor6FzYeYuSYvO4T6i6rlf9f4qq7531fsbwuEuSQWZuUud\nhrLViWtQX0Pnwsxdkhadw31E1XO/6v1VVn3vqvc3hMNdkgoyc5c6DWWrE9egvobOhZm7JC06h/uI\nqud+1furrPreVe9vCIe7JBVk5i51GspWJ65BfQ2dCzN3SVp0DvcRVc/9qvdXWfW9q97fEA53SSrI\nzF3qNJStTlyD+ho6F2bukrToHO4jqp77Ve+vsup7V72/IRzuklSQmbvUaShbnbgG9TV0LszcJWnR\nOdxHVD33q95fZdX3rnp/QzjcJakgM3ep01C2OnEN6mvoXJi5S9Kic7iPqHruV72/yqrvXfX+hnC4\nS1JBG8rcI+ICYDezTwZXZ+YVq1yzBLwFOBb4Tmaet8o1Zu5qVkPZ6sQ1qK+hc7GpzP2YdR8y4ijg\nSuD5wDeBmyPiw5l5a++a44G3AS/IzDsj4tGbK1ySNKaNxDLnALdl5u2ZeR9wPXDhimteBnwwM+8E\nyMzvjlvm9lA996veX2XV9656f0NsZLifBNzRWx/s7ut7MvDIiNgTETdHxMvHKlCStHnrxjKbeJyz\ngecBDwM+HRGfzsyvj/T428LS0tLUJcxV9f4qq7531fsbYiPD/U7gcb31yd19fQeB72bmj4AfRcS/\nAE8DVhnuu4BTu7dPAHYCS916b/fn/NaHDt37k0qWv5VbPhiuF3s9s5etPI+rr9lQva63Zn3Y8npp\nC9Z7gWu79akMkplHvAFHMxvSpwDHAfuAp6645jTg4921DwW+CPzSKo+VkJPeduw4I/fv35/zsGfP\nnrk8biuq99fC+Zz9kxxf9b2bZ38NnYt153X/tu5X7pl5f0RcAtzI4adC3hIRF3cf8KrMvDUiPgZ8\nAbgfuCozvzLs040k6cHytWWkTkPPZ564BvU1dC58bRlJWnQO9xFVf65t9f4qq7531fsbwuEuSQWZ\nuUudhrLViWtQX0Pnwsxdkhadw31E1XO/6v1VVn3vqvc3hMNdkgoyc5c6DWWrE9egvobOhZm7JC06\nh/uIqud+1furrPreVe9vCIe7JBVk5i51GspWJ65BfQ2dCzN3SVp0DvcRVc/9qvdXWfW9q97fEA53\nSSrIzF3qNJStTlyD+ho6F2bukrToHO4jqp77Ve+vsup7V72/IRzuklSQmbvUaShbnbgG9TV0Lszc\nJWnROdxHVD33q95fZdX3rnp/QzjcJakgM3ep01C2OnEN6mvoXJi5S9Kic7iPqHruV72/yqrvXfX+\nhnC4S1JBZu5Sp6FsdeIa1NfQuTBzl6RF53AfUfXcr3p/lVXfu+r9DeFwl6SCzNylTkPZ6sQ1qK+h\nc2HmLkmLzuE+ouq5X/X+Kqu+d9X7G8LhLkkFmblLnYay1YlrUF9D52L8zD0iLoiIWyPiaxFx6RGu\ne0ZE3BcRL9lMEZKkca073CPiKOBK4HzgdOCiiDhtjeveCHxs7CK3i+q5X/X+Kqu+d9X7G2IjX7mf\nA9yWmbdn5n3A9cCFq1z3O8AHgG+PWJ8kaYCNDPeTgDt664PdfT8REb8AvDgz/xLYVC5UydLS0tQl\nzFX1/iqrvnfV+xtirGfL7Ab6WfzCDnhJasExG7jmTuBxvfXJ3X19Tweuj9mPlR8NvDAi7svMGx74\ncLuAU7u3TwB2Akvdem/35/zWhw7d+5NKlnO65c/6D3a9e/dudu7cOdrjtbau3t/MXrbyPK6+ZkP1\nbmbdz6Rb+fveLv0dtrxe2oL1XuDabn0qg2TmEW/A0cDXgVOA44B9wFOPcP01wEvWeF9CTnrbseOM\n3L9/f87Dnj175vK4rajeXwvnc/ZPcnzV926e/TV0Ltad1/3bul+5Z+b9EXEJcCOzGOfqzLwlIi7u\nPuBVK/+TYZ9mtr/quV/1/iqrvnfV+xtiI7EMmflR4Ckr7nvnGte+aoS6JEkPgi8/MKLqz7Wt3l9l\n1feuen9DONwlqSBfW0bqNPQaIhPXoL6GzoWv5y5Ji87hPqLquV/1/iqrvnfV+xvC4S5JBZm5S52G\nstWJa1BfQ+fCzF2SFp3DfUTVc7/q/VVWfe+q9zeEw12SCjJzlzoNZasT16C+hs6FmbskLTqH+4iq\n537V+6us+t5V728Ih7skFWTmLnUaylYnrkF9DZ0LM3dJWnQO9xFVz/2q91dZ9b2r3t8QDndJKsjM\nXeo0lK1OXIP6GjoXZu6StOgc7iOqnvtV76+y6ntXvb8hHO6SVJCZu9RpKFuduAb1NXQuzNwladE5\n3EdUPfer3l9l1feuen9DONwlqSAzd6nTULY6cQ3qa+hcmLlL0qJzuI+oeu5Xvb/Kqu9d9f6GcLhL\nUkFm7lKnoWx14hrU19C5MHOXpEXncB9R9dyven+VVd+76v0N4XCXpILM3KVOQ9nqxDWor6FzYeYu\nSYtuQ8M9Ii6IiFsj4msRcekq739ZROzvbp+KiDPGL7V91XO/6v1VVn3vqvc3xLrDPSKOAq4EzgdO\nBy6KiNNWXPYN4DmZ+TTgj4B3jV2oJGnj1s3cI+Jc4PLMfGG3vgzIzLxijetPAL6YmY9d5X1m7mpW\nQ9nqxDWor6FzMXrmfhJwR299sLtvLa8G/mkzRUiSxnXMmA8WEecBrwSetfZVu4BTu7dPAHYCS916\nb/fn/NaHDt37k0qWc7qlpaVR1rt372bnzp2jPV5r6+r9zexlK8/j6ms2VO9m1v1MupW/7+3S32HL\n66UtWO8Fru3WpzJIZh7xBpwLfLS3vgy4dJXrzgRuA55whMdKyElvO3ackfv378952LNnz1wetxXV\n+2vhfM7+SY6v+t7Ns7+GzsW687p/20jmfjTwVeD5wLeAzwIXZeYtvWseB9wEvDwz/+0Ij2XmrmY1\nlK1OXIP6GjoXm8rc141lMvP+iLgEuJFZRn91Zt4SERfP3p1XAX8IPBJ4e8z+Ju7LzHM234AkaQwb\nep57Zn40M5+SmU/KzDd2972zG+xk5msy81GZeXZmnrWog736c22r91dZ9b2r3t8Q/oaqJBXka8tI\nnYay1YlrUF9D58LXlpGkRedwH1H13K96f5VV37vq/Q3hcJekgszcpU5D2erENaivoXNh5i5Ji87h\nPqLquV/1/iqrvnfV+xvC4S5JBZm5S52GstWJa1BfQ+fCzF2SFp3DfUTVc7/q/VVWfe+q9zeEw12S\nCjJzlzoNZasT16C+hs6FmbskLTqH+4iq537V+6us+t5V728Ih7skFWTmLnUaylYnrkF9DZ0LM3dJ\nWnQO9xFVz/2q91dZ9b2r3t8QDndJKsjMXeo0lK1OXIP6GjoXZu6StOgc7iOqnvtV76+y6ntXvb8h\nHO6SVJCZu9RpKFuduAb1NXQuzNwladE53EdUPfer3l9l1feuen9DONwlqSAzd6nTULY6cQ3qa+hc\nmLlL0qJzuI+oeu5Xvb/Kqu9d9f6GcLhLUkFm7lKnoWx14hrU19C5MHOXpEW3oeEeERdExK0R8bWI\nuHSNa94aEbdFxL6I2DlumdtD9dyven+VVd+76v0Nse5wj4ijgCuB84HTgYsi4rQV17wQeEJmPgm4\nGHjHHGpt3r59+6YuYa6q91dZ9b2r3t8QG/nK/Rzgtsy8PTPvA64HLlxxzYXAdQCZ+Rng+Ig4cdRK\nt4F77rln6hLmqnp/lVXfu+r9DbGR4X4ScEdvfbC770jX3LnKNZKkLXLMVn/AHTt+fas/5E/54Q//\ng2OPPXYuj33gwIG5PG4rqvdXWfW9q97fEOs+FTIizgXekJkXdOvLgMzMK3rXvAPYk5nv79a3As/N\nzLtXPNbUzyeSpG1ps0+F3MhX7jcDT4yIU4BvAS8FLlpxzQ3Aa4H3d58M7lk52IcUJ0kaZt3hnpn3\nR8QlwI3MMvqrM/OWiLh49u68KjM/EhEvioivA98HXjnfsiVJR7Klv6EqSdoac/sN1Yh4SER8JiI+\nHxFfjog/6e6/PCIORsS/d7cL5lXDvEXEUV0PN3Trn42IGyPiqxHxsYg4fuoaH4yuv8/3+qu0dwci\nYn/X32e7+8rs3xr9Vdq/4yPi7yLilm6+/HKV/Vujt03v3dyGe2b+H3BeZp4FnAk8LyKe2b37zZl5\ndnf76Lxq2AKvA77SW18G/HNmPgX4BPD6Saoaz+uAL6+4r8re/RhYysyzMvOc7r5K+7daf1Bn//4c\n+EhmPhV4GnArdfZvtd5gk3s319eWycwfdG8+pPtY3+vW2/4HqxFxMvAi4K96d18IvLt7+93Ai7e6\nrrGs0R8U2LtO8MDzX2b/WL2/5fu3tYjYATw7M68ByMxDmfk/FNi/I/QGm9y7uQ735W/rgbuAvZm5\n/FXuJd1r0PzVdv3WCXgL8Hv89MvFnbj8LKHMvAv4uSkKG8lq/UGNvYNZXx+PiJsj4tXdfZX2r9/f\na3r3V9i/XwS+GxHXdBHFVRHxUGrs31q9wSb3bt5fuf+4i2VOBp4TEc8F3g48PjN3Mhv6b55nDfMQ\nEb8G3J2Z+zjyZ9Nt+dPqI/S37feu55mZeTaz705eGxHP5oH7tS33r7Oyv2dRZ/+OAc4G3tb1+H1m\nkUyF/VvZ2w+Y9bbpvduSl/zNzP8F/hF4emZ+Jw8/ReddwDO2ooaRPRP4jYj4BvA3zH6e8B7gruXX\n1ImInwe+PWGND8Zq/V1XZO8AyMxvdX9+B/h7Zq+hdHeR/VvZ34eAcwrt30Hgjsz8XLf+ILOBWGH/\nVvb2AeCsIXs3z2fLPHr5W4eI+BngV4F93V/6spcAX5pXDfOSmX+QmY/LzMcz+6WuT2Tmy4F/AHZ1\nl/028OGJSnxQ1ujvFRX2DiAiHhoRD+/efhjwAuCLzH4Zb1d32bbdvzX6+1KV/euilzsi4sndXc9n\n9oP/bb9/a/T2lSF7N8/XlnkM8O6IWP7Bznsy86aIuC5mr/f+Y+AAs5cIruKNwN9GxKuA24HfnLie\nsf1Zkb07EfhQzF4O4xjgfZl5Y0R8jhr7t1Z/lf7t/S7wvog4FvgGs1+cPJoa+7dab3+x2b3zl5gk\nqSD/N3uSVJDDXZIKcrhLUkEOd0kqyOEuSQU53CWpIIe7JBXkcJekgv4fs4p6ikFcwW8AAAAASUVO\nRK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dogs['length'].hist()" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.style.use(\"ggplot\")" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEECAYAAADJSpQfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE5pJREFUeJzt3X9sW/W5x/GPf9y0S+s0OVZK07gQLSka86YGSDfuog6S\nOJvQgGXaFIlWTEwRhf5Si+5QW8paMYLgDqoRWso2lCqV0DQFNHXSkDpFaN1E/kCpSLRiLgOXFrGy\ndEm8tGFpQ+1z7h8TFl7S2kl8kuZ83y8Jycf58vXz5HE/HB/Xxuc4jiMAgKf557sAAID7CHsAMABh\nDwAGIOwBwACEPQAYgLAHAAMEcy148cUX9dZbb2nZsmV69tlnp1xz+PBhDQwMaNGiRdqyZYuqqqoK\nXScAYBZyntk3NDRoz549V/x5f3+/zp07p+eff14bN27USy+9lPeDx+PxvNcuRPS3sHm5Py/3JtHf\nVHKG/Ze+9CUtWbLkij/v6+vT7bffLklavXq1xsfHNTo6mteDM5CFjf4WLi/3JtHfVGZ9zT6ZTCoc\nDmeOLctSMpmc7bYAgALiDVoAMEDON2hzsSxLIyMjmeORkRFZljXl2ng8nvXyo7W1dbYPf02jv4XN\ny/15uTfJjP66u7szx9FoVNFo9Kr/Tl5h7ziOrvR9aXV1dfrDH/6gb3zjG3rvvfe0ZMkSlZaWTrl2\nqoI++k5dPiW4pmjzbqVv/m9X9g6FQhobG3Nl72uB1/srOvO+Lj75P/Nbw67/Vbr6poLv6/XZudlf\n4NT/6dOnd7qyd75WvXZi2v9Byxn2HR0deueddzQ2NqZNmzaptbVVqVRKPp9PsVhMt9xyi/r7+7Vt\n2zYtXrxYmzZtmnEDAAB35Az77du359ykra2tIMUAANzBG7QAYADCHgAMQNgDgAEIewAwAGEPAAYg\n7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIe\nAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHA\nAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMEAwn0UDAwPq6uqS4zhqaGhQS0tL1s/HxsZ04MAB\n/fOf/5Rt27r77rt1xx13uFEvAGAGcoa9bdvq7OzU3r17VVZWpt27d2vt2rWqrKzMrDl27Jiqqqr0\n6KOP6sKFC9qxY4fWrVunQCDgavEAgPzkvIyTSCRUUVGh8vJyBYNB1dfXq6+vL2tNaWmpLl68KEm6\ndOmSQqEQQQ8A15CcYZ9MJhUOhzPHlmUpmUxmrWlqatLf/vY3Pfjgg3rkkUd0//33F7xQAMDM5XXN\nPpejR4/qhhtu0L59+zQ4OKj29nY9++yzWrx4cda6eDyueDyeOW5tbS3Ew8+K3x9QcSjkyt5FRUUK\nubT3tcDr/V32++a7BAUCQVeen16fnZv9TQQKEpuz1t3dnbkdjUYVjUavuj5n1ZZlaXh4OHOcTCZl\nWVbWmr/+9a/63ve+J0lasWKFli9frrNnz6q6ujprXT4FzTXbTmtsbMyVvUOhkGt7Xwu83l+R7cx3\nCUqnU678jr0+Ozf7C6RTruw7XdM9Wc55GaempkaDg4MaGhpSKpVSb2+v6urqstZUVlbq5MmTkqTR\n0VH9/e9/13XXXTetQgAA7sl5Zu/3+9XW1qb29nY5jqPGxkZFIhH19PTI5/MpFouppaVFhw4d0iOP\nPCLHcbRhwwYtXbp0LuoHAOQhr4tPtbW16ujoyLqvubk5c7ukpES7du0qbGUAgILhE7QAYADCHgAM\nQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACE\nPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgD\ngAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABgvksGhgYUFdXlxzHUUNDg1pa\nWiaticfjOnLkiNLptEpKSrRv376CFwsAmJmcYW/btjo7O7V3716VlZVp9+7dWrt2rSorKzNrxsfH\n1dnZqccee0yWZenChQuuFg0AmJ6cl3ESiYQqKipUXl6uYDCo+vp69fX1Za1544039PWvf12WZUmS\nSkpK3KkWADAjOc/sk8mkwuFw5tiyLCUSiaw1H3/8sdLptB5//HFdunRJd955p775zW8WvloAwIzk\ndc0+F9u2dfr0ae3du1cTExN67LHHdOONN2rFihWF2B4AMEs5w96yLA0PD2eOk8lk5nLN59eEQiEV\nFRWpqKhIN910k86cOTMp7OPxuOLxeOa4tbV1tvXPmt8fUHEo5MreRUVFCrm097XA6/1d9vvmuwQF\nAkFXnp9en52b/U0ECnKOPGvd3d2Z29FoVNFo9Krrc1ZdU1OjwcFBDQ0NqaysTL29vdq+fXvWmrVr\n1+rw4cOybVuXL1/W+++/r7vuumvSXvkUNNdsO62xsTFX9g6FQq7tfS3wen9FtjPfJSidTrnyO/b6\n7NzsL5BOubLvdE33ZDln2Pv9frW1tam9vV2O46ixsVGRSEQ9PT3y+XyKxWKqrKzUmjVr9OMf/1h+\nv1+xWEyRSGTGTQAACiuv1yO1tbXq6OjIuq+5uTnr+J577tE999xTuMoAAAXDJ2gBwACEPQAYgLAH\nAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAw\nAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ\n9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYIC8wn5gYEA7duzQ9u3bdfTo\n0SuuSyQSuvfee/Xmm28WrEAAwOzlDHvbttXZ2ak9e/Zo//796u3t1dmzZ6dc9+tf/1pr1qxxpVAA\nwMzlDPtEIqGKigqVl5crGAyqvr5efX19k9YdO3ZMt912m0pKSlwpFAAwcznDPplMKhwOZ44ty1Iy\nmZy0pq+vT9/61rcKXyEAYNYK8gZtV1eXNmzYkDl2HKcQ2wIACiSYa4FlWRoeHs4cJ5NJWZaVteaD\nDz7Qc889J8dxNDY2pv7+fgWDQdXV1WWti8fjisfjmePW1tbZ1j9rfn9AxaGQK3sXFRUp5NLe1wKv\n93fZ75vvEhQIBF15fnp9dm72NxHIGZtzoru7O3M7Go0qGo1edX3OqmtqajQ4OKihoSGVlZWpt7dX\n27dvz1pz8ODBzO1Dhw7p1ltvnRT0+RY012w7rbGxMVf2DoVCru19LfB6f0X2/L9CTadTrvyOvT47\nN/sLpFOu7Dtd0z1Zzhn2fr9fbW1tam9vl+M4amxsVCQSUU9Pj3w+n2Kx2IyLBQDMjbxej9TW1qqj\noyPrvubm5inXbt68efZVAQAKik/QAoABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA\n2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9\nABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOA\nAQh7ADAAYQ8ABiDsAcAAwXwWDQwMqKurS47jqKGhQS0tLVk/f+ONN/S73/1OkrR48WI98MADuv76\n6wtfLQBgRnKe2du2rc7OTu3Zs0f79+9Xb2+vzp49m7Vm+fLlevzxx/XMM8/o+9//vn75y1+6VjAA\nYPpyhn0ikVBFRYXKy8sVDAZVX1+vvr6+rDU33nijiouLJUmrV69WMpl0p1oAwIzkDPtkMqlwOJw5\ntizrqmH++uuvq7a2tjDVAQAKIq9r9vl6++23dfz4cf30pz+d8ufxeFzxeDxz3NraWsiHnxG/P6Di\nUMiVvYuKihRyae9rgdf7u+z3zXcJCgSCrjw/vT47N/ubCBQ0Nmesu7s7czsajSoajV51fc6qLcvS\n8PBw5jiZTMqyrEnrPvzwQ/3qV7/So48+qqVLl065Vz4FzTXbTmtsbMyVvUOhkGt7Xwu83l+R7cx3\nCUqnU678jr0+Ozf7C6RTruw7XdM9Wc55GaempkaDg4MaGhpSKpVSb2+v6urqstYMDw9r//792rp1\nq1asWDG9igEArst5Zu/3+9XW1qb29nY5jqPGxkZFIhH19PTI5/MpFovp1Vdf1SeffKLOzk45jqNA\nIKCnnnpqLuoHAOQhr4tPtbW16ujoyLqvubk5c/uhhx7SQw89VNjKAAAFwydoAcAAhD0AGICwBwAD\nEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABh\nDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYA\nYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAwTzWTQwMKCuri45jqOGhga1tLRMWnP4\n8GENDAxo0aJF2rJli6qqqgpdKwBghnKe2du2rc7OTu3Zs0f79+9Xb2+vzp49m7Wmv79f586d0/PP\nP6+NGzfqpZdecq1gAMD05Qz7RCKhiooKlZeXKxgMqr6+Xn19fVlr+vr6dPvtt0uSVq9erfHxcY2O\njrpTMQBg2nKGfTKZVDgczhxblqVkMjntNQCA+ZPXNXs3/df6B+f18f2VNyg9rxUAgPtyhr1lWRoe\nHs4cJ5NJWZY1ac3IyEjmeGRkZNIaSYrH44rH45nj1tZWrdjwwIwKXyhCodB8l+AqT/e3cqX02on5\nrsI1np6dXOxv5Upp3fw/L7q7uzO3o9GootHoVdfnvIxTU1OjwcFBDQ0NKZVKqbe3V3V1dVlr6urq\n9Kc//UmS9N5772nJkiUqLS2dtFc0GlVra2vmn88X60X0t7B5uT8v9yaZ0d/nszRX0Et5nNn7/X61\ntbWpvb1djuOosbFRkUhEPT098vl8isViuuWWW9Tf369t27Zp8eLF2rRpU0EaAgAURl7X7Gtra9XR\n0ZF1X3Nzc9ZxW1tb4aoCABTUvH6CNp+XHgsZ/S1sXu7Py71J9DcVn+M4jgu1AACuIXw3DgAYgLAH\nAAPM2YeqLl++rH379imVSimVSqmurk7r16/XK6+8otdff13Lli2TJN17772qra2dq7IKyrZt7d69\nW5ZlaefOnfrkk0/03HPPaWhoSMuXL9fDDz+s4uLi+S5zxmzb1q5duxQOh7Vz505PzW7Lli0qLi6W\nz+dTIBDQU0895an5TdWfl+Y3Pj6uX/ziF/roo4/k8/m0adMmVVRUeGJ+U/U2MDAw7dnN6TX7iYkJ\nLVq0SLZt6yc/+Ynuu+8+nTx5Ul/4whd01113zVUZrvn973+vDz74QBcvXtTOnTv18ssvKxQK6bvf\n/a6OHj2qf/3rX9qwYcN8lzlj/9nfK6+84pnZbd26VU8//bSWLl2auc9L85uqPy/N74UXXtCXv/xl\nNTQ0KJ1Oa2JiQr/97W89Mb+penvttdemPbs5vYyzaNEiSf8+y7dtO/PE88J7xCMjI+rv71dTU1Pm\nvhMnTmS+IO6OO+6Y9AVyC8lU/UnemJ307z7+sxcvzW+q/j67f6EbHx/Xu+++q4aGBklSIBBQcXGx\nJ+Z3pd6k6c9uTr8b57PLAOfOnVNzc7MikYgk6dixY/rzn/+s6upq/fCHP1yQL7WOHDmi++67T+Pj\n45n7zp8/n/kkcWlpqc6fPz9f5c3aVP1J3pidJPl8PrW3t8vv9ysWi6mpqclT8/t8f01NTYrFYpK8\nMb9//OMfCoVCOnTokD788EN98Ytf1P333++J+V2pN2n6s5vTsPf7/frZz36m8fFxPfnkk3rnnXf0\n7W9/Wz/4wQ/k8/n0m9/8RkeOHFlwn8B96623tGzZMlVVVWV9989/8vl8c1hV4VypPy/M7jNPPPGE\nysrKdOHCBbW3t2vlypWT1izU+UnZ/T3xxBOKRCKemZ9t2zp9+rTa2tpUXV2trq4uHT16dNK6hTi/\nK/V25513Tnt28/K3cYqLi3XzzTfr1KlTKikpyQyhqalJp06dmo+SZuXdd9/ViRMntHXrVnV0dOjt\nt9/WgQMHVFpamvle/9HR0cybKQvNVP0dPHjQE7P7TFlZmSSppKREa9euVSKR8Mz8pOz+vva1rymR\nSHhmfpZlKRwOq7q6WpJ022236fTp056Y35V6m8ns5izsL1y4kLkE8Omnn+rkyZOqqqrK+p+cvPnm\nm1q1atVclVQw69ev14svvqiDBw9qx44d+spXvqJt27bp1ltv1fHjxyVJx48fn/QFcgvFVP1t3brV\nE7OT/v0XBy5duiRJunTpkv7yl7/o+uuv98z8pupv1apVnplfaWmpwuGwPv74Y0nSyZMnFYlEPDG/\nK/U2k9nN2WWc0dFRvfDCC5k3itatW6evfvWrOnjwoM6cOSOfz6fy8nJt3LhxrkpyXUtLi37+85/r\nj3/8o8rLy/Xwww/Pd0kF9fLLL3tidufPn9czzzwjn8+ndDqtdevWac2aNaqurvbE/K7Un5f+7P3o\nRz/SgQMHlEqldN1112nz5s2ybdsT85uqt8OHD097dnxdAgAYgE/QAoABCHsAMABhDwAGIOwBwACE\nPQAYgLAHAAMQ9gBgAMIeAAzw/22Ag7FyQfe3AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dogs['length'].hist()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#* Make a horizontal bar graph of the length of the animals, with their name as the label (look at the billionaires notebook I put on Slack!)\n", "#* Make a sorted horizontal bar graph of the cats, with the larger cats on top." ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAFECAYAAADRMA66AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UFPX+B/D3sAi4srKirIlmpB41V9SCyDSD1OpmD9Lx\ntp30lj2dumXpxR6wlJ910ouaJviQD2lq12uJJqTVOWZdt1LSwDJ1lUxSS1EBiQUkHnZ3fn94mQuC\nssDuzn7H9+scD7uzOzufLw9vv/Odme9IsizLICIiIQWoXQAREbUeQ5yISGAMcSIigTHEiYgExhAn\nIhIYQ5yISGCBzb2hoKAAaWlpkCQJsizj3LlzePjhh3H77bcjLS0NRUVFMJlMSEpKgl6v90XNLWKz\n2WA2m9Uuw2u03D4ttw1g+0TnL+1rticeGRmJefPmYe7cuZgzZw5CQkIQFxeHrKwsREdHIz09HWaz\nGZmZmb6ot8VsNpvaJXiVltun5bYBbJ/o/KV9LRpOOXjwILp27YouXbogNzcX8fHxAICEhATk5OR4\npUAiIrq8FoV4dnY2brvtNgCA3W6H0WgEABiNRtjtds9XR0REVyS5e9m9w+HAs88+i4ULF6Jjx454\n4oknsGbNGuX1J598Eu+//36j9Ww2W4PdDovF4oGyiYiuPhkZGcpjs9kMs9nc/IHNOvv370evXr3Q\nsWNHABd736WlpcrXsLCwJter21B9BQUFram/VQwGA8rLy322PV/Tcvu03DaA7ROdr9sXGRnZZCfY\n7eGUXbt2Yfjw4crzmJgYWK1WAIDVakVsbGzbqyQiohZxK8Srq6tx8OBB3HLLLcqyxMREHDx4EFOm\nTMGhQ4eQmJjotSKJiKhpbo+JexKHUzxHy+3TctsAtk90agynNIVXbBIRCcztA5tERFcSGhoKSZKU\n5zqdDgaDQcWKvMtb7ZNlGRUVFW6/nyFORB4hSZKmh098paX/MXA4hYhIYAxxIiKBMcSJiATGECci\nEhhDnIiuCkOHDsWuXbt8us1Tp06hR48ecLlcXtsGz04hIq/R/VEMlBR5bwPhEXB26uK9z2+hoUOH\nYv78+cpsrwAanHbpDQxxIvKekiLUzEn22scHTZsL+FGIq4HDKUR0VZFlGUuWLMHw4cMRHR2N5557\nTrkfQt3wx6ZNmxAXF4dBgwZh0aJFyrpVVVWYMmUKzGYz7rjjDixbtkyZ/G/y5Mk4ffo0Hn/8cfTr\n1w/Lly9Xtvfxxx83+XmewJ44+URrdqurdYHQOR0t35if7WKTf1m9ejW++OILbNmyBeHh4UhJScHr\nr7+OpUuXKu/JycnBrl27cOzYMdx3330YM2YM+vTpg3feeQenT5/Gnj17cOHCBfztb39ThksWLVqE\n77//HgsWLFBmfD116tQVP88TGOLkG17era6Pu9h0JevXr8fs2bPRtWtXAEBSUhJuueUWLF68GMDF\nMeyXXnoJQUFBGDBgAAYMGIDDhw+jT58++PTTTzFnzhwYDAYYDAY89dRTeOeddxp8/qVzCl7p8zyB\nIU5EV5VTp07h6aefRkDAxdFkWZYRGBiIoqL/7SlGREQoj0NCQlBZWQkAOHfuXIPZBC83s+ClLvd5\nnsAQJ6KrQt2wR/fu3bFgwYImb2RTN/xxOSaTCQUFBUov+vTp001uw5d4YJOIrgp1wxyPPvoo5syZ\nowTw+fPn8cUXXzR6X1Puv/9+LFmyBHa7HWfOnMHatWsbvB4REYHffvutye16C3viROQ94REXj1F4\n8fPdVddLfvrpp+FyufDII4+gsLAQnTt3xgMPPIC77rqrwfsuXQ+4OH6enJyMW2+9FV27dsWDDz6I\njRs3Kq+/8MILmDFjBmbPno3Jkyfj3nvvveLneQLv7CM4Udqnyz/i0wObzt43+GRbbSHKz85dWmuP\nOz744ANs3boVmzdv9thnXu77yDv7EBG1UWFhIXJyciDLMo4dO4YVK1ZgzJgxqtbE4RQiIjfV1tZi\n2rRp+P3339GxY0ckJibiscceU7UmhjgRkZu6d++Or776Su0yGuBwChGRwBjiREQCc2s4pbKyEsuX\nL8fvv/8OSZLw3HPPoVu3bkhLS0NRURFMJhOSkpKg1+u9XS8REdXjVoivWbMGN954I6ZOnQqn04nq\n6mps2bIF0dHRGDt2LLKyspCZmYkJEyZ4u14i8lOyLDe4U7tOp4PT6VSxIu/yVvtaetZ3syFeWVmJ\nvLw8TJo0CcDFwvV6PXJzc/HGG28AABISEvDGG28wxImuYhUVFQ2ea/28cX9pX7MhXlhYCIPBgHff\nfRcnT55Er1698Pjjj8Nut8NoNAIAjEajMh8vERH5TrMh7nK5cPz4cTz11FPo3bs31q5di6ysrEbv\nu9ylpDabDTabTXlusVga7HJ5W1BQkE+352uitK9a57uzWXW6QOgF+J6I8rNrLbbP8zIyMpTHZrMZ\nZrO5+RAPDw9H586d0bt3bwAX7yGXlZUFo9GI0tJS5WtYWFiT69dtqD5f7oL4yy6Pt4jSvlbd3KGV\nnE6HEN8TUX52rcX2eX57Foul0fJmTzE0Go3o3LmzMt/JwYMH0aNHD8TExMBqtQIArFZrk9M6EhGR\nd7m1j/vEE09g8eLFcDgc6Nq1K55//nm4XC4sXLgQO3fuREREBJKSkrxdKxERXcKtEI+KikJqamqj\n5SkpKR4viIiI3McrNomIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImI\nBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEi\nIoExxImIBMYQJyISGEOciEhgge68adKkSdDr9ZAkCTqdDqmpqaioqEBaWhqKiopgMpmQlJQEvV7v\n7XqJiKget0JckiTMnDkToaGhyrKsrCxER0dj7NixyMrKQmZmJiZMmOC1QomIqDG3hlNkWYYsyw2W\n5ebmIj4+HgCQkJCAnJwcz1dHRERX5HZPfNasWQgICMDo0aMxatQo2O12GI1GAIDRaITdbvdqoURE\n1JhbIf7WW2+hU6dOKCsrw6xZsxAZGdnoPZIkNbmuzWaDzWZTnlssFhgMhlaW23JBQUE+3Z6vidK+\nap1bv2oeodMFQu/D70ntmVNwFRe2fL0ACUEuufk3XiKgiwntuvVo8Xq+JsrvZmup0b6MjAzlsdls\nhtlsdi/EO3XqBADo2LEjbr75Zhw7dgxGoxGlpaXK17CwsCbXrdtQfeXl5a1tQ4sZDAafbs/XRGmf\nzunw2bacTodPvye6cwWomZPss+0FTZuLqtCm/978iSi/m63l6/YZDAZYLJZGy5sdE6+urkZVVRUA\noKqqCgcOHEDPnj0RExMDq9UKALBarYiNjfVsxURE1Kxme+J2ux1vv/02JEmC0+nEiBEjMHjwYPTu\n3RsLFy7Ezp07ERERgaSkJF/US0RE9TQb4iaTCW+//Xaj5aGhoUhJSfFKUURE5B5esUlEJDCGOBGR\nwBjiREQCY4gTEQmMIU5EJDCGOBGRwBjiREQCY4gTEQmMIU5EJDCGOBGRwBjiREQC890kz3RFuj+K\ngZKiFq9XrQts3TSv4RFwdurS8vWIyK8wxP1FSZHP56QGQ5xIeBxOISISGEOciEhgDHEiIoExxImI\nBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgbl9273K58NprryE8PBzJycmoqKhAWloa\nioqKYDKZkJSUBL1e781aiYjoEm73xD///HN0795deZ6VlYXo6Gikp6fDbDYjMzPTKwUSEdHluRXi\n58+fx48//ohRo0Ypy3JzcxEfHw8ASEhIQE5OjncqJCKiy3IrxNetW4dHH30UkiQpy+x2O4xGIwDA\naDTCbrd7p0IiIrqsZsfEf/jhB4SFhSEqKgo2m+2y76sf8PXZbLYG61ksFhgMhlaU2jpBQUE+3V5r\nVet8OyuwThcIvQ+/L75sn5bbBvi+fa0lyt9ea6nRvoyMDOWx2WyG2WxuPsTz8vKQm5uLH3/8ETU1\nNfjzzz+xePFiGI1GlJaWKl/DwsKaXL9uQ/WVl5e3sSnuMxgMPt1ea7Xqxg5t4HQ6fPp98WX7tNw2\nwPftay1R/vZay9ftMxgMsFgsjZY3G+Ljx4/H+PHjAQCHDx/Gtm3b8OKLL2L9+vWwWq1ITEyE1WpF\nbGys56smIqIravV54omJiTh48CCmTJmCQ4cOITEx0ZN1ERGRG1o0mDdgwAAMGDAAABAaGoqUlBSv\nFEVERO7hFZtERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMR\nCYwhTkQkMN9OhNwGuj+KgZKiFq9XrQts3VSh4RFwdurS8vWISCiiZ4swIY6SItTMSfbZ5oKmzQUY\n4kTaJ3i2cDiFiEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBCbOeeJEpArRL4bROoY4\nEV2Z4BfDaB2HU4iIBNZsT7y2thYzZ86Ew+GAw+FAbGwsxo8fj4qKCqSlpaGoqAgmkwlJSUnQ6/W+\nqJmIiP6r2RBv164dZs6cieDgYLhcLqSkpCAvLw+5ubmIjo7G2LFjkZWVhczMTEyYMMEXNRMR0X+5\nNZwSHBwM4GKv3OVyITQ0FLm5uYiPjwcAJCQkICcnx3tVEhFRk9w6sOlyuTBt2jScO3cOd955J3r0\n6AG73Q6j0QgAMBqNsNvtXi2UiIgacyvEAwICMG/ePFRWVmL27Nmw2WyN3iNJUpPr2my2Bu+3WCww\nGAwtLrRa59sTaXS6QOhbUWdrsX2eo+W2AWyfp4nUvoyMDOWx2WyG2Wxu2SmGer0eN954I/Lz82E0\nGlFaWqp8DQsLa3Kdug3VV15e3uLiW3W+aRs4nY5W1dlabJ/naLltANvnaaK0z2AwwGKxNFre7Jh4\nWVkZKisrAQA1NTU4ePAgrr/+esTExMBqtQIArFYrYmNjW1wUERG1TbM98dLSUixduhSyLEOWZYwY\nMQLR0dG4/vrrsXDhQuzcuRMRERFISkryRb1ERFRPsyHes2dPzJ07t9Hy0NBQpKSkeKUoIiJyD6/Y\nJCISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoEx\nxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhg\nDHEiIoEFNveG8+fPY8mSJbDb7ZAkCaNGjcKYMWNQUVGBtLQ0FBUVwWQyISkpCXq93hc1ExHRfzUb\n4jqdDhMnTkRUVBSqqqqQnJyMwYMHY+fOnYiOjsbYsWORlZWFzMxMTJgwwRc1ExHRfzU7nGI0GhEV\nFQUACAkJQffu3XH+/Hnk5uYiPj4eAJCQkICcnByvFkpERI21aEy8sLAQJ0+eRN++fWG322E0GgFc\nDHq73e6VAomI6PKaHU6pU1VVhXfeeQePP/44QkJCGr0uSVKT69lsNthsNuW5xWKBwWBocaHVOrdL\n9QidLhD6VtTZWmyf52i5bQDb52kitS8jI0N5bDabYTab3Qtxp9OJBQsW4Pbbb8fNN98M4GLvu7S0\nVPkaFhbW5Lp1G6qvvLy8xcXrnI4Wr9MWTqejVXW2FtvnOVpuG8D2eZoo7TMYDLBYLI2WuzWcsmzZ\nMvTo0QNjxoxRlsXExMBqtQIArFYrYmNjW1wUERG1TbM98by8PHz77bfo2bMnXn31VUiShEceeQSJ\niYlYuHAhdu7ciYiICCQlJfmiXiIiqqfZEO/fvz82btzY5GspKSkeL4iIiNzHKzaJiATGECciEhhD\nnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATG\nECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYIHNvWHZ\nsmX44YcfEBYWhvnz5wMAKioqkJaWhqKiIphMJiQlJUGv13u9WCIiaqjZnvgdd9yB6dOnN1iWlZWF\n6OhopKenw2w2IzMz02sFEhHR5TUb4v3790eHDh0aLMvNzUV8fDwAICEhATk5Od6pjoiIrqhVY+J2\nux1GoxEAYDQaYbfbPVoUERG5p9kxcXdIknTZ12w2G2w2m/LcYrHAYDC0eBvVOo+U6jadLhD6VtTZ\nWmyf52i5bQDb52kitS8jI0N5bDabYTabWxfiRqMRpaWlytewsLDLvrduQ/WVl5e3eJs6p6PF67SF\n0+loVZ2txfZ5jpbbBrB9niZK+wwGAywWS6Plbg2nyLIMWZaV5zExMbBarQAAq9WK2NjYFhdERERt\n12xPPD09HYcPH0Z5eTmee+45WCwWJCYmYuHChdi5cyciIiKQlJTki1qJiOgSzYb4lClTmlyekpLi\n8WKIiKhleMUmEZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJE\nRAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4\nEZHAGOJERAILbMvK+/fvx9q1ayHLMu644w4kJiZ6qi4iInJDq3viLpcLq1evxvTp07FgwQLs3r0b\np0+f9mRtRETUjFaH+LFjx9CtWzdEREQgMDAQw4cPR05OjidrIyKiZrQ6xEtKStC5c2fleXh4OEpK\nSjxSFBERuadNY+LusNlssNlsynOLxYLIyMiWf1BkJDAi14OV+Rm2T1xabhvA9vmRjIwM5bHZbIbZ\nbG59Tzw8PBzFxcXK85KSEoSHhzd6n9lshsViUf75Wv1Ga5GW26fltgFsn+jUaF/9LDWbzQDaMJzS\np08fnD17FkVFRXA4HNi9ezdiY2M9ViwRETWv1cMpAQEBeOqppzBr1izIsoyRI0eiR48enqyNiIia\n0aYx8SFDhiA9Pd1TtXhF3S6HVmm5fVpuG8D2ic5f2ifJsiyrXQQREbUOL7snIhIYQ5yISGAMcSIi\ngTHEiYgExhAnIhKYJkO8pqYGBQUFapdBROR1Xp87xddyc3Pxr3/9Cw6HA0uXLsWJEyewceNGJCcn\nq12aR+3duxd5eXmQJAn9+/dHXFyc2iV5xKefftpomV6vR69evRAVFeX7grygpKQERUVFcDqdyrIB\nAwaoWJHnlJaW4sMPP8Qff/yB119/HadOncLRo0cxcuRItUvziIKCAqxatQp2ux0LFizAyZMnkZub\ni3HjxqlWk+Z64ps2bUJqaio6dOgAAIiKikJhYaHKVXnWqlWrsGPHDvTs2RPXXnstduzYgVWrVqld\nlkfk5+djx44dKCkpQUlJCXbs2IH9+/djxYoV+OSTT9Qur83Wr1+PlJQUbNmyBVu3bsXWrVuxbds2\ntcvymHfffReDBw/GH3/8AQDo1q0bPvvsM5Wr8pwVK1Zg/Pjx0Ol0AIDrrrsO2dnZqtakuZ54YGAg\n9Hp9g2WSJKlUjXccOnQICxcuVNoVHx+Pl156SeWqPKOkpARz585FSEgIgIsT/qSmpuLNN99EcnIy\nxo4dq3KFbZOTk4O0tDS0a9dO7VK8ory8HMOGDUNWVhYAQKfTISBAO33Fmpoa9OnTp8Eytdunne/u\nf/Xo0QO7du2Cy+XCmTNn8P7776Nv375ql+VR11xzTYMZJM+fP4+uXbuqWJHn2O12BAb+r2+h0+lg\nt9sRFBSkieDr2rVrg2EUrQkODkZ5ebnSwTh69GijTpXIDAYDzp49q7Rvz5496NSpk6o1ae6y++rq\namzZsgUHDhyALMsYPHgwxo0bh6CgILVLa7M5c+ZAkiRUVlYiPz9f6REcO3YMffr0wRtvvKFugR6w\nefNm5OTkKDNi7tu3D7GxsbjvvvuwcuVKTJ48WeUK22b+/Pk4efIkoqOjG/xn9eSTT6pYlef8+uuv\nWLNmDX777Tf07NkTZWVlmDp1Kq677jq1S/OIc+fOYeXKlfj555/RoUMHmEwmvPjiizCZTKrVpLkQ\n17LDhw9f8XWtHBzLz8/Hzz//DADo168fevfurXJFnmO1WptcnpCQ4NM6vMnpdKKgoACyLCMyMrLB\nf1ZaUVVVBVmW0b59e7VL0V6IFxQUYNu2bY2O/s+cOVPFqjyvtLQU+fn5AC7O7R4WFqZyRW3ncrkw\ndepUpKWlqV2KVzkcDuUUWK2E3KFDhzBw4EDs3bu3yddvueUWH1fkHbW1tdi7dy8KCwvhcrmU5X/9\n619Vq0n8355LLFy4EHfeeSdGjRql+gEHb8nOzsb69euVnvf777+PRx99FEOHDlW5srYJCAhAZGQk\niouL0aVLF7XL8QqbzYalS5ciIiICAFBcXIxJkyYJvxd1+PBhDBw4EPv27Wvyda2E+Lx585RTXv3l\nGI3mQjwgIAB33XWX2mV4VWZmJlJTU5Xed1lZGd566y3hQxwALly4gKlTp6JPnz4IDg5WlmvlPP8P\nPvgAM2bMUO4zW1BQgPT0dMydO1flytqm7taLzz//vMqVeFdJSQmmT5+udhkNaC7EY2JisH37dsTF\nxTX4nzI0NFTFqjzL5XI1GD4JDQ1tsGsnsocffljtErzK6XQ2uFF4ZGSkJs5Waeoirfruu+8+H1Xi\nXX379lUO2voLzYX4119/DQDYunWrskySJCxZskStkjxuyJAhmD17NoYPHw7g4vDKjTfeqHJVniH6\nsEJzevXqheXLl2PEiBEAgG+//Ra9evVSuaq2+/PPP9UuwSfy8vJgtVphMpnQrl07yLIMSZIwf/58\n1WrS3IHNq0XdZfcAcMMNN2jmsvvHHntMOQfX4XDA4XAgJCQE69atU7kyz6itrcX27duVn13//v1x\n9913+834alu4XC58/vnnmul1N6WoqKjJ5XXHONSgyRD/+eefG52dEh8fr2JF3lNWVgaDwaC5q1IB\nQJZl5OTk4JdffsGECRPULscj9u7di5tuukkTod2U1157DampqWqX4XGVlZXQ6/WoqKho8nU1h2s1\nN5yyePFinDt3DlFRUQ3OTtFCiB89ehQbNmxAaGgoxo0bhyVLlqCsrAyyLOOFF17AkCFD1C7RoyRJ\nQlxcHDZv3qyZEN+3bx/WrVuHG264AcOGDcOQIUOUeTi0oF+/fli9ejWGDRvW4MC06ENGixYtwrRp\n05CcnAxJklC/76v2cK3meuJJSUl45513NNkznTZtGh555BFUVlZi5cqVeO2119C3b1+cPn0a6enp\nmDdvntoltln984xlWUZ+fj4OHz6M2bNnq1iVZzkcDuzfvx/Z2dnIy8vDoEGD8Pe//13tsjzizTff\nbHK51q7T8Cea64lfe+21KC0tVX0+A29wOp0YPHgwACAjI0OZE6Z79+5qluVR9c8zDggIgMlkwquv\nvqpiRZ4XGBio7DXV1NQgJydHMyF+NYR1RUUFzp49i5qaGmWZmgfkNRfi5eXlynnGdVfCSZKkiSCo\nPzx06VwwWtnz0Pp5xj/++COys7Nx+PBhDBgwACNHjkRSUpLaZXnUDz/8gN9//x21tbXKMjWvaPSk\nr776Cp9//jlKSkoQFRWFo0ePom/fvqr+56W5EH/ooYeUx7Is48iRI6rP9+spJ06cwMSJEyHLMmpq\najBx4kQAF9tZ/w9GZOfOncOaNWvwyy+/QJIk9O3bFxMnTtTMLI1ff/01hg0bhmeeeUaTBzdXrlyJ\nmpoa2Gw2jBw5Env27Gk0davIPv/8c6SmpmL69OmYOXMmTp8+jQ8//FDVmjQX4gMGDMDx48exa9cu\n7NmzByaTCXfeeafaZXnExo0b1S7B6xYtWoS7774br7zyCgBg9+7dSE9Pxz//+U+VK/OMf/zjHygq\nKsKRI0cwaNAg1NTUwOl0+sVESp5w9OhRzJ8/Hy+//DIeeugh3H///Zr52QEX94Dr9oJra2vRvXt3\n1W8FqZkQLygowO7du5GdnY2OHTvi1ltvhSzLV8UYnZZUV1fj9ttvV57ffvvtmrrzzZdffomvvvoK\nFRUVWLx4Mc6fP4/33nsP//d//6d2aR5RF3DBwcEoKSmBwWBQ7vKjBeHh4bhw4QJuvvlmzJo1Cx06\ndFD1HHFAQyGelJSEm266CdOnT1cmT2ruUmDyH3Xn3w4ZMgRZWVkYNmwYJEnS1NWoALB9+3akpqbi\n9ddfB3Dx9mV2u13lqjznpptuwoULF3D//fcrp+Np5f6aAJQ9RIvFgsOHD6OyslL1U3s1E+IvvfQS\nsrOzMXPmTAwePBjDhg2Dxs6e1LRLz7/dsWOH8pokSRg/frxapXlUu3btGkw963Q6NXNQGvjfAcyh\nQ4ciJiYGtbW1mrqzz+LFi/Hiiy8C+N8ZKfWXqUEzIR4XF4e4uDhUVVUhNzcXn376KcrKyvDee+8h\nLi5OOTWP/NPSpUvVLsEnBgwYgC1btqCmpgYHDhzA9u3bERMTo3ZZHqXlK6ZPnTrV4LnL5cKvv/6q\nUjUXae5in/oqKiqwZ88eZGdna2bMUeu+++47DBkyBO3bt8fHH3+M48ePY9y4cbj++uvVLs0jXC4X\n/vOf/zS4feCoUaM00xu/3BXTot9+LjMzE5mZmaipqVGuRJVlGYGBgRg9erSqe4qaDnESz8svv4z5\n8+cjLy8PH330ER544AFs3rxZU2c4lJWVAQA6duyociWep+UrpgFgw4YNfje0p5nhFNKGut7bDz/8\ngNGjR+Omm27CRx99pHJVbSfLMjZt2oTt27crc78HBATgnnvu0cyFMIC2r5gGgPHjx6OkpKTRcBGv\n2CT6r/DwcKxcuRIHDhzA2LFjUVtbq4kD1J999hl+/vlnpKamKndGP3fuHFatWoVPP/1U+Olb58yZ\nA0mSUFVV1eiKaUA7d2b697//jezsbPTo0UPZ25AkSdUQ53AK+ZXq6mrs378fPXv2RLdu3fDHH3/g\nt99+E/7A9KuvvooZM2Y0GkIpKyvDrFmzhJ+87Msvv4TdbscNN9zQYPmRI0fQqVMnzZxmOGXKFMyf\nP9+vrrY6LNdqAAAGtElEQVRlT5z8SnBwMMLCwpCXl4du3bpBp9OhW7duapfVZk6ns8kx8I4dO2ri\n9my5ubkYP358o9uWhYaGYsOGDZoJ8a5du8LpdDLEiS5n06ZNyM/Px5kzZ3DHHXfA4XBg8eLFeOut\nt9QurU3qDy205DVR2O32Ju872bNnz8veDUdEQUFBeOWVVxAdHd3g56bm2Tfi//aQpnz//feYN2+e\nMoYaHh6uifs31k1edimtTF524cKFy75Wf8pW0cXGxiI2NlbtMhpgiJNfCQwMhCRJykGjqqoqlSvy\nDK1PXtarVy98+eWXGD16dIPlX331lfB39akvISEBDodDmfQqMjJS9T0pHtgkv7J161acPXsWBw4c\nQGJiInbu3InbbrsN99xzj9ql0RWUlpZi/vz5CAwMVEI7Pz8fDocDr7zyCoxGo8oVeobNZsPSpUuV\nSa+Ki4sxadIknp1CVN+BAwfw008/QZZlDBkyBIMGDVK7JHLToUOH8PvvvwO4eM74wIEDVa7Is5KT\nkzFlyhRERkYCuDh7anp6OubOnataTRxOIb8zaNAgBregBg4cqLngrs/pdCoBDlwcTlH77CKGOPmF\nxx57rMlLtWVZhiRJWLdunQpVETXUq1cvLF++HCNGjAAAfPvtt6qP+XM4hYjITbW1tdi+fTvy8vIA\nAP3798fdd9+t6nnjDHHyK3U3h6gvJCRE9TMA6OpWXFys3GzG3zDEya9MmjQJxcXFCA0NhSzLuHDh\nAoxGI4xGI5599lnVd13p6pScnKwcvKy7h6i/YPeG/Ep0dDSGDh2q3PLqp59+wt69e5GQkIBVq1Zp\nakpaEkf9vm5hYaGKlTQW0PxbiHznl19+aXDPwsGDB+Po0aPo27evJq5sJDHVP+jub3OlsydOfqVT\np07IysrC8OHDAQDZ2dkICwuDy+VqcKcYIl+qmzZBlmXU1NQoUyj4w9lTHBMnv1JWVobNmzcrR//7\n9euHhx56CHq9HsXFxbjmmmtUrpDIvzDEiYgExuEU8it1d4ipT6/Xo3fv3hg9ejSCgoJUqozIP3GQ\nkfxK165dERISglGjRmHUqFFo37492rdvj4KCAqxYsULt8oj8DkOc/MrRo0cxZcoUZd7myZMnIz8/\nH08//TSOHz+udnlEfochTn6lqqoKxcXFyvPi4mJlTnFetUnUGP8qyK88+uijSElJwTXXXANZllFY\nWIinn34aVVVViI+PV7s8Ir/Ds1PI79TW1uL06dMALk71yYOZRJfH4RTyC5988onyODc3F1FRUYiK\nikJQUBA2bNigYmVE/o0hTn4hOztbeZyVldXgtZ9++snX5RAJgyFOfqH+qN6lI3wc8SO6PIY4+YUr\nTTDkbxMOEfkTHtgkv/Dwww8jJCREmWAoODgYwMVeeG1tLT788EOVKyTyTwxxIiKBcTiFiEhgDHEi\nIoExxImIBMYQJyISGEOciEhgDHEiIoFxFkPSjEmTJuEvf/kLvvnmGxQXF2Pw4MF44YUXUF1djcWL\nF+PYsWNwuVzo27cvnnnmGYSHhwMA3nzzTfTr1w82mw0nT57EwIED8dxzz2HNmjXYt28funfvjqlT\np6JLly4AgNOnT2PNmjX49ddfERYWBovFgltvvVXNptNVjD1x0pQ9e/Zg+vTpWLJkCU6ePAmr1QpZ\nljFy5EgsW7YM7777LoKDg7F69eoG63333Xd48cUXsWLFCpw9exYzZszAyJEjsWbNGkRGRmLTpk0A\ngOrqasyaNQsjRozA6tWrMWXKFKxevVqZdZHI1xjipCn33HMPjEYjOnTogJiYGJw4cQKhoaGIi4tD\nu3btEBISggcffBBHjhxpsF5CQgJMJhPat2+PIUOG4JprrsHAgQMREBCAW2+9FSdOnAAA7Nu3DyaT\nCfHx8ZAkCVFRUYiLi8N3332nQmuJOJxCGmM0GpXHwcHBKC0tRU1NDdauXYuffvoJFy5cgCzLqKqq\ngizLyrwsYWFhynpBQUGNntfdXai4uBi//PILnnjiCeV1l8uFESNGeLtpRE1iiJPmbdu2DWfOnEFq\naio6duyIEydOIDk5uUGIu6tz584wm82YPn26l6olahkOp5Cm1fW6g4KC0L59e1RUVCjj260RExOD\ngoICfPPNN3A6nXA4HMjPz+eYOKmGIU6a0VSvWpIk3HvvvaipqcFTTz2FGTNm4MYbb2z1NkJCQjBj\nxgxkZ2fj2WefxbPPPosNGzbA4XC0pXSiVuMshkREAmNPnIhIYAxxIiKBMcSJiATGECciEhhDnIhI\nYAxxIiKBMcSJiATGECciEtj/A4l1OBZRiXcrAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot(kind='bar', x='name', y='length')" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD/CAYAAAB2HkhjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH/VJREFUeJzt3X1UVHXCB/DvnTsMb47ACJgTKQGL6GiWIBaYWtrp+HI2\nOx3xrG2daiuPEpUvBO7jyaeTb5Mo2qJuqVnZsRXbzZO7Z9ezR9dNRUtUfBlAEsUXUIRIQRGGmbnP\nHz5MGqQzo5c79/L9/LPMzL2/+d457vn2+907cwVJkiQQERFpgE7pAERERPcKS42IiDSDpdZFbDab\n0hF8pubsAPMrjfmVpeb8vmRnqXWR7vYPy58wv7KYX1lqzs9SIyKibo2lRkREmiHwkn4iItIKvdIB\nupOamhqlI/jEaDSiqalJ6Rg+Y35lMb+y1JzfbDZ7vQ+XH4mISDNYakREpBksNSIi0gyWGhERaQZL\njYiINIOlRkREmsFSIyIizeD31LqQWFmmdASftIp6iE6H0jF8xvx3YIqCMyJSvvGJuhBLrQvZl+Qo\nHYGoA0OuFWCpkUZw+ZGIiDSDpUZERJrBUiMiIs3w63NqU6ZMQWxsLCRJgiAIyM7ORmSk92v/X3/9\nNZ599tk7brdkyRK8+eabCAkJ8SUuEREpzK9LLSgoCFar9a7H8bTUcnNz7/q9iIhIOX5dap3d6q2t\nrQ1r167FqVOnIIoiXnzxRVgsFuzatQvFxcWw2+2ora1Famoqnn/+eWzatAl2ux05OTmIiYlBVlYW\nli5dioaGBtjtdowfPx5jxowBAGRmZsJqteL69etYtGgRkpKSUFFRAZPJhHfeeQcBAQGora3F+vXr\n0dTUBIPBgGnTpvl0ewQiIrr3/LrU2stIkiRER0djzpw52L59O3Q6HfLy8lBTU4MFCxbgww8/BACc\nOXMGS5cuhSiKePvttzFu3DhMnToV27dvv2XGN2PGDISGhsJut2Pu3LkYPnw4evToAUEQ3NtcvHgR\nM2fOxLRp05Cfn4/vvvsOI0aMwMcff4zXXnsN9913H06ePIl169bh3Xff7fLPhoiIOvLrUgsMDOyw\n/FheXo5x48YBuHEDuaioKPfNNwcPHoygoCAAQExMDOrq6mAymTqM+49//AMHDhwAADQ0NODixYtI\nSEi4ZWYYHR2Nvn37AgDi4uJw6dIltLS04MSJE8jPz3dv63Q6O81us9lgs9ncjzMyMnz6DIjkJop6\nhBiNso1vMBhglHF8uTG/sgoLC91/WywWWCyW227v16XmLb3+58MRBMFdODeXVWlpKWw2GxYtWoSA\ngAC89957sNvtHcYKCAhw/63T6dDW1gZJkhAaGurReT5PPnwif+B0OmS9M7Ka77wMML+SjEaj1xMC\nv76kv7NzaklJSdi9ezcAoKamBvX19Xc8p6XX6+FyuQAAzc3NCA0NRUBAAKqrq1FRUeHxewcHByM6\nOhr79+93P3fmzBmPj4eIiOTl1zO1m89xtXv66aexdu1azJkzB6IoIjMz85YZWmf7jh07FrNnz0Zc\nXBymT5+Of//735g1axbMZjMSExM73aez9waArKwsrFu3Dn/961/hcrmQlpaGfv363c1hEhHRPSJI\nnU1JSBbnJqQoHYGoA0OuFc74AbKNr+blL4D5leTLleV+vfxIRETkDZYaERFpBkuNiIg0g6VGRESa\nwVIjIiLN8OtL+rXGkHv3P86sBFHUw+l0KB3DZ8x/B6Yo+cYm6mIstS4k52XTcgpR8SXBAPMTdSdc\nfiQiIs1gqRERkWaw1IiISDNYakREpBksNSIi0gyWGhERaQZLjYiINIOlRkREmsFSIyIizWCpERGR\nZrDUiIhIM1hqRESkGSw1IiLSDJYaERFpBkuNiIg0g6VGRESawZuEdiGxskzpCD5pFfUQVXzn6G6T\n3xQFZ0Sk/IGI/BhLrQvZl+QoHYE0zJBrBVhq1M1x+ZGIiDSDpUZERJrBUiMiIs1Q/Tm1y5cv49NP\nP8WpU6cQGhqKsLAwpKSkoLi4GLm5uT6Pu2XLFgQHB2PixIkoLCzEwIEDMWjQoHuYnIiI7jXVl1pe\nXh5Gjx6Nt99+GwBw9uxZHDhwAIIg+Dymy+W65XFGRsZdZSQioq6h6lI7fvw49Ho9xo4d636ub9++\nuHr1Ko4fP47ly5fj3LlziIuLQ1ZWFgDgq6++wqFDh2C325GYmIjXX38dAPDee++hX79+OHHiBNLT\n0295n9WrVyM5ORnDhw/HqVOn8Pnnn6O1tRVGoxEzZsxAeHh41x00ERH9KlWfU2svrM5UVVXh5Zdf\nxvLly1FbW4sTJ04AAMaNG4dFixYhLy8Pdrsdhw4dcu/jdDqxePFiTJw4sdMxnU4nNmzYgNmzZ2Px\n4sUYPXo0vvzyy3t/YERE5BNVz9RuJyEhAREREQCA2NhY1NXVoX///jh27Bi2bduG1tZWXLt2DQ88\n8ACGDh0KAEhLS7vtmDU1NTh79iwWLFgASZIgSZL7PX7JZrPBZrO5H3MJk+QminqEGI1Kx+jAYDDA\n6Ie5PMX8yiosLHT/bbFYYLFYbru9qkvtgQcewP79+zt9Ta//+dB0Oh2cTifa2tqwfv16WK1WmEwm\nbNmyBW1tbe7tAgMDb/t+kiShb9++eP/99++YzZMPn+hecjodaGpqUjpGB0aj0S9zeYr5lWM0Gr2e\nEKh6+XHQoEFwOBzYsWOH+7mzZ8+irKzzn6Nqa2uDIAgwGo1oaWn51UL8NWazGY2NjaioqABwYzny\n/Pnzvh8AERHdU6qeqQFAdnY2NmzYgK1bt8JgMCAqKgqpqamdbhsSEoInn3wSs2bNQkREBBISErx6\nL71ej1mzZuGTTz5Bc3MzXC4XJkyYgJiYmHtxKEREdJcESZIkpUN0F+cmpCgdgTTMkGuFM36A0jE6\nUPPyF8D8SjKbzV7vo+rlRyIiopux1IiISDNYakREpBksNSIi0gyWGhERaYbqL+lXE0OuVekIPhFF\nPZxOh9IxfNZt8pui5A9D5OdYal3IHy+39kSIii8JBpifqDvh8iMREWkGS42IiDSDpUZERJrBUiMi\nIs1gqRERkWaw1IiISDNYakREpBksNSIi0gyWGhERaQZLjYiINIOlRkREmsFSIyIizWCpERGRZrDU\niIhIM1hqRESkGSw1IiLSDN4ktAuJlWVKR/BJq6iHqOI7RzO/stSev623GegRpnQM8hBLrQvZl+Qo\nHYGIvCT+zzKWmopw+ZGIiDSDpUZERJrBUiMiIs3QzDm1KVOmIDY2Fg6HA6IoYuTIkZgwYQIEQVA6\nGhERdRHNlFpQUBCsVisAoLGxEStXrkRzczMyMjIUTkZERF1FM6V2s549e2LatGmYO3cuMjIy4HK5\nsGnTJpSWlqKtrQ1PP/00xo4dixUrVmDUqFF45JFHAACrV69GcnIyhg4dirVr1+LUqVMQRREvvvgi\nLBYLdu3aheLiYtjtdtTW1mLYsGH4/e9/r/DREhFRO82eU4uOjobL5UJjYyN27tyJkJAQLFq0CIsX\nL8aOHTtQV1eHtLQ0FBUVAQAcDgeOHz+OoUOHYvv27dDpdMjLy8Nbb72FVatWweG48T2bM2fOYNas\nWcjLy8O+ffvQ0NCg5GESEdFNNDlT+6WjR4/i7Nmz2L9/PwDg+vXruHDhAh555BF89tlncDgcKCkp\nwYABAxAQEIDy8nKMGzcOAGA2mxEVFYWamhoAwODBgxEUFAQAiImJQV1dHUwmkzIHRkREt9BsqdXW\n1kKn06Fnz56QJAmvvPIKHnrooQ7bDRw4ECUlJSgqKkJ6evodx9Xrf/7IBEGA0+nsdDubzQabzeZ+\nzHN7ROqk0wkwGo1Kx/CZwWBQdf7CwkL33xaLBRaL5bbba6bUJEly/93Y2Ih169a5Z1tDhgzB9u3b\nYbFYIIoiLly4gF69esFgMOCxxx7Dzp07cerUKWRmZgIAkpKSsHv3blgsFtTU1KC+vh5msxmnTp3y\nOI8nHz4R+T+XS0JTU5PSMXxmNBpVm99oNHo9IdBMqbW1tSEnJ+eWS/onTpwIABgzZgzq6uqQk5MD\nSZIQFhaG7OxsADcKb9WqVRg2bBhEUQQAPP3001i7di3mzJkDURSRmZl5ywytHb8uQETkXwTp5ikO\nyerchBSlIxCRl4L/Zxnssb9ROobP1DxTM5vNXu+j2asfiYio+/Fq+bG6uhr79u3D5cuX8eqrr6K6\nuhoOhwP9+vWTKx8REZHHPJ6p7du3D/Pnz0dDQwN2794NAGhpacHnn38uWzgiIiJveDxTKywsxLx5\n8xAbG4t9+/YBAPr164eqqiq5shEREXnF45nalStXOiwzCoLAKwCJiMhveDxTi4uLw7fffotRo0a5\nn9u7dy8SEhJkCaZFhlyr0hF8Iop6OJ0OpWP4jPmVpfb8ushopSOQFzy+pL+6uhoLFixAdHQ0fvjh\nB/cXk+fNm4c+ffrInVMT2n9qS23UfEkwwPxKY35lqTm/L5f0ezxTu//++7FixQocPHgQycnJ6NWr\nF5KTk92/g0hERKQ0ry7pDwwMRFpamlxZiIiI7orHpVZfX48tW7agqqoKLS0tt7y2cuXKex6MiIjI\nWx6X2vLly2E2m5GRkQGDwSBnJiIiIp94XGrtF4rodPxlLSIi8k8eN1RycjJKS0vlzEJERHRXPJ6p\nvfzyy5g3bx7uu+8+hIWF3fLajBkz7nkwIiIib3lcamvWrIEoirj//vt5To2IiPySx6V2/PhxfPTR\nRwgODpYzDxERkc88PqfWr18/1X4rnYiIugePZ2oWiwULFy7E6NGjO5xTe/LJJ+95MCIiIm95XGon\nTpyAyWTC0aNHO7zGUiMiIn/gcanNnz9fzhxERER3zavffmwnSRJu/nF/fiGbiIj8gcel1tDQgPXr\n16OsrAzXrl275bXNmzff82BERETe8niK9fHHH0Ov1+Pdd99FUFAQrFYrUlJS8Nprr8mZj4iIyGMe\nl1pFRQWmT5+O2NhYCIKA2NhYTJ8+HX//+9/lzEdEROQxj5cfdTodRFEEAISGhqKxsRHBwcFoaGiQ\nLZzWiJVlSkfwSauoh+h0KB3DZ8yvLOZXlqz5TVFwRkTKM7aPPC61hIQEHD58GKmpqRgyZAjy8/Nh\nMBgQHx8vZz5NsS/JUToCEdE9Y8i1AmottaysLPcVjy+99BK2bduGlpYWTJgwQbZwRERE3vC41AID\nA7Fr165b7nwtSRK++OILvPHGG7IFJCIi8pTHpVZQUIAzZ84gOTm5w89keWLKlCmIjY2FJEkQBAFp\naWl45plnvB4HAF588UV8/vnnXu+XmZkJq9WKHj16+PS+RETk3zwutSNHjqCgoAChoaE+vVH71wDu\nBUEQunQ/AHC5XPySORGRn/O41CIjI9HW1ubzG938CyQ3O3ToEDZu3IigoCAkJiaitrYWubm5aGxs\nxIcffoiffvoJv/nNb3Ds2LFOZ1nffPMN9u3bB4fDgdTUVEyePBmtra3Iz89HQ0MDXC4XnnvuOTz2\n2GOQJAlbt25FSUkJAgMD8eabb6J3795YvXo1kpOTMXz4cAA/zwRLS0uxefNmhIaGoqamBitWrMBX\nX32FPXv2ICwsDCaTCfHx8Zg4caLPnwsREd07HpfayJEjsXTpUowbNw7h4eG3vDZo0KA77m+325GT\nk+Nefpw0aRJSUlKwdu1avP/++4iMjMTKlSvds6mvvvoKgwYNwqRJk1BSUoL//Oc/HcY8evQoLl68\niMWLF0OSJFitVpSXl+PKlSswmUzIzc0FAFy/ft29T48ePZCXl4dvv/0WGzZscG9zs5tndKdPn8by\n5csRGRmJyspKHDhwAHl5eXA4HMjJyeHVn0REfsTjUvvXv/4FAPjyyy9veV4QBBQUFNxx/8DAwA7L\nj1VVVbjvvvsQGXnjktD09HTs2LEDAFBeXo7s7GwAwMMPP9zpebAjR47g6NGj7rJsbW3FhQsXkJSU\nhI0bN2LTpk0YOnQokpKS3PukpaW53+uzzz67Y+6EhAR3vhMnTiAlJQV6vR56vR7Jycl33J+IiLqO\nx6W2atUqWQL82rKkJ9tJkoRJkyZh7NixHV6zWq04fPgw/vKXv2Dw4MF47rnnANw6C2v/W6fTuceX\nJAkOx89fVAwMDPT8YG5is9lgs9ncjzMyMnwah4jIX4miHiFGo6zvUVhY6P7bYrHAYrHcdnuffqXf\nF52VktlsxqVLl1BfX4/IyEgUFRW5X+vfvz+KiorwzDPP4MiRI7f8iHL7WA8//DA2b96MESNGICgo\nCA0NDdDr9XA6nejRowdGjBiBkJAQ7Ny5071v+5h79+5FYmIiACA6OhqVlZV49NFHceDAgVtK7Wb9\n+/fH2rVrMWnSJDidThw8eBBPPfVUp9t68uETEamZ0+lAU1OTbOMbjUavJwRdVmptbW23nFMbMmQI\npk6dildffRULFy5EUFAQ4uPj3bOnyZMnY+XKldi9ezcSExMRHh6OoKAgAD/PsB566CFUV1dj3rx5\nAIDg4GBkZWXhwoUL+OKLLyAIAvR6vftHlwVBwLVr15CdnY2AgAC89dZbAIAxY8bggw8+wDvvvIMh\nQ4a43+eX4uPjkZKSguzsbISFhaFfv34ICQmR9XMjIiLPCZKn638yaWlpcZfIunXrYDabMX78eDgc\nDuh0Ouh0OlRUVGD9+vX37CsBd6M9r91ux/z58zFt2jTExsZ6tO+5CSnyhiMi6kKGXCuc8QNkG99s\nNnu9T5fN1H7Njh078N///hcOhwMPPvig+/xYfX098vPz4XK5EBAQgGnTpimc9IaPP/4Y58+fR1tb\nG0aPHu1xoRERkfwUn6l1J5ypEZGW+ONMjT+RQUREmsFSIyIizWCpERGRZih+oUh3YshV/upNX4ii\nHk4V3/mX+ZXF/MqSNb8pSp5x7wJLrQvJeUJVTiFGo6xfsJQb8yuL+ZWl9vze4vIjERFpBkuNiIg0\ng6VGRESawVIjIiLNYKkREZFmsNSIiEgzWGpERKQZLDUiItIMlhoREWkGS42IiDSDpUZERJrBUiMi\nIs1gqRERkWaw1IiISDNYakREpBksNSIi0gyWGhERaQbvfN2FxMoypSP4pFXUQ1Tx7eyZX1my5zdF\nwRkRKd/4pCostS5kX5KjdAQizTHkWgGWGv0/Lj8SEZFmsNSIiEgzWGpERKQZ3fqc2pQpUxAbGwuX\nywVRFPHKK68gMTHxV7cvLS3FN998g9zc3C5MSUREnurWpRYUFASr1QoAOHLkCDZt2oT//d//ve0+\ngiB0QTIiIvJFty41SZLcfzc3N6NHjx7uxxs3bkRJSQl0Oh2effZZpKWlubdbsmQJLl68iEGDBuHV\nV1/t8txERNS5bl1qdrsdOTk5sNvtuHz5Mt59910AwHfffYezZ89i2bJluHLlCubOnYuBAwcCACor\nK5Gfn4/IyEgsXLgQ3333HYYPH67kYRAR0f/r1qUWGBjoXn6sqKhAQUEBli1bhvLycqSnpwMAwsLC\nMHDgQFRWViI4OBgJCQmIiooCAKSnp6O8vLzTUrPZbLDZbO7HGRkZXXBERN2PKOoRYjTKNr7BYIBR\nxvHlpvb8hYWF7r8tFgssFsttt+/WpXazxMRENDY2orGx0av9fu0cmycfPhHdPafTgaamJtnGNxqN\nso4vNzXnNxqNXk8IuvUl/TefU6uuroYkSTAajRgwYACKiorgcrnQ2NiIsrIyJCQkAABOnjyJuro6\nuFwuFBUVISkpSan4RET0C916ptbW1oacnBx3ub3xxhsQBAGpqamoqKhAdnY2dDodXnjhBYSFhaG6\nuhoJCQlYv349amtrYbFYkJqaqvBREBFRO0G6ebpCsjo3IUXpCESaY8i1whk/QLbx1bx8B6g7v9ls\n9nqfbr38SERE2sJSIyIizWCpERGRZrDUiIhIM7r11Y9dzZBrVTqCT0RRD6eK77zM/MqSPb8pSr6x\nSXVYal1Iziu05BSi4qunAOZXmtrzk7pw+ZGIiDSDpUZERJrBUiMiIs1gqRERkWaw1IiISDNYakRE\npBksNSIi0gyWGhERaQZLjYiINIOlRkREmsFSIyIizWCpERGRZrDUiIhIM1hqRESkGSw1IiLSDJYa\nERFpBkuNiIg0g3e+7kJiZZnSEXzSKuohOh1Kx/AZ89+BKQrOiEj5xifqQiy1LmRfkqN0BKIODLlW\ngKVGGsHlRyIi0gyWGhERaQZLjYiINKPblNr333+PKVOmoKamRukoREQkk25TakVFRRg6dCj27t2r\ndBQiIpJJt7j6saWlBT/88APee+89LFy4EJMnT0ZpaSm2bNkCo9GIc+fOIS4uDllZWQCAzMxMjBo1\nCgcPHoTL5cLMmTNhNpvR2tqKTz75BOfPn4fD4cDkyZORkpKi8NEREVG7bjFTKy4uxpAhQxAZGYme\nPXvi9OnTAICqqiq8/PLLWL58OWpra3HixAn3PmFhYbBarXjqqaewbds2AMDf/vY3DB48GAsXLsT8\n+fOxceNG2O12RY6JiIg66hYztT179mDixIkAgMceewx79uxBcnIyEhISEBERAQCIjY1FXV0d+vfv\nDwBITU0FAMTFxeH7778HABw9ehQHDx7EN998AwBwOByor6+H2Wzu8J42mw02m839OCMjQ74DJLoL\noqhHiNEo2/gGgwFGGceXG/Mrq7Cw0P23xWKBxWK57faaL7WrV6/CZrPh3LlzEAQBLpcLgiBg6NCh\n0Ot/PnydTgen0+l+HBAQ0OF5SZIwe/Zs9OnT547v68mHT+QPnE4HmpqaZBvfaDTKOr7cmF85RqPR\n6wmB5pcf9+/fj5EjR2LVqlUoKCjA6tWrER0djbIy73+yasiQIfjnP//pflxVVXUPkxIR0d3SfKkV\nFRW5lxLbpaamoqioCIIgdLrPrz3/3HPPweFwYM6cOZg9ezY2b958z/MSEZHvBEmSJKVDdBfnJvBK\nSfI/hlwrnPEDZBtfzctfAPMrqbPrFe5E8zM1IiLqPlhqRESkGSw1IiLSDJYaERFpBkuNiIg0Q/Nf\nvvYnhlyr0hF8Iop6OJ0OpWP4jPnvwBQl39hEXYyl1oXkvGxaTiEqviQYYH6i7oTLj0REpBksNSIi\n0gyWGhERaQZLjYiINIOlRkREmsFSIyIizWCpERGRZvDWM0REpBmcqXWRwsJCpSP4TM3ZAeZXGvMr\nS835fcnOUiMiIs1gqRERkWaw1LqIxWJROoLP1JwdYH6lMb+y1Jzfl+y8UISIiDSDMzUiItIMlhoR\nEWkG76cms5KSEnz66aeQJAlPPPEEJk2apHSk21qzZg0OHTqEsLAw5OXlAQCuXr2KFStWoK6uDtHR\n0Zg5cyZCQkIUTtq5H3/8EQUFBbhy5QoEQcCYMWMwfvx4VRxDW1sb5s+fD4fDAYfDgZSUFEydOlUV\n2W/mcrkwd+5cmEwm5OTkqCp/ZmYmQkJCIAgCRFHE4sWLVZW/ubkZf/7zn3Hu3DkIgoDp06ejT58+\nqshfU1ODFStWQBAESJKE2tpaTJkyBSNHjvQuv0SycTqd0htvvCFdunRJamtrk+bMmSOdP39e6Vi3\nVVZWJp0+fVqaPXu2+7mNGzdKW7dulSRJkr7++mvpiy++UCreHf3000/S6dOnJUmSpOvXr0tvvvmm\ndP78edUcQ0tLiyRJN/7t/PGPf5TKyspUk73dtm3bpJUrV0pLliyRJEld/34yMzOlpqamW55TU/6C\nggJp586dkiRJksPhkK5du6aq/O2cTqf0+uuvS3V1dV7n5/KjjE6ePIk+ffogKioKer0e6enpOHDg\ngNKxbispKQmhoaG3PFdcXIxRo0YBAEaPHu3XxxAeHo7Y2FgAQFBQEO6//378+OOPqjmGwMBAADdm\nbS6XCz169FBNduDGTPnw4cMYM2aM+zk15ZckCdIvrp1TS/7m5maUl5fjiSeeAACIooiQkBDV5L/Z\nsWPH0Lt3b0RGRnqdn8uPMmpoaECvXr3cj00mE06ePKlgIt9cuXIF4eHhAG6UxpUrVxRO5JlLly7h\nzJkzSExMVM0xuFwu5Obmora2Fk899RRiYmJUkx0APvvsM7zwwgtobm52P6em/IIgYMGCBdDpdBg7\ndizGjBmjmvyXLl2C0WjE6tWrcebMGcTFxeGll15STf6bFRUVYcSIEQC8//fDUiOvCYKgdIQ7amlp\nwfLly/HSSy8hKCiow+v+egw6nQ4ffPABmpubsXDhQthstg7b+Gv29nOxsbGxneZu56/5AeD9999H\nREQEGhsbsWDBApjN5g7b+Gt+l8uF06dP4w9/+APi4+Px6aefYuvWrR2289f87RwOB4qLi/H88893\n+vqd8rPUZGQymVBfX+9+3NDQAJPJpGAi34SHh+Py5cvu/w0LC1M60m05nU4sW7YMI0eOxLBhwwCo\n7xhCQkLwyCOPoLKyUjXZy8vLUVxcjMOHD8Nut+P69ev405/+pJr8ABAREQEA6NmzJ4YNG4aTJ0+q\nJr/JZEKvXr0QHx8PAHj00UexdetW1eRvV1JSgri4OPTs2ROA9//f5Tk1GSUkJODixYuoq6uDw+HA\n3r17kZKSonSsO/rleYXk5GTs2rULALBr1y6/P4Y1a9YgJiYG48ePdz+nhmNobGx0L9vZ7XYcO3YM\nDz74oCqyA8DUqVOxZs0aFBQU4O2338agQYOQlZWlmvytra1oaWkBcGOmf/ToUfTt21c1+cPDw9Gr\nVy/U1NQAuHFeKiYmRjX52+3Zswfp6enux97m5y+KyKykpAQbNmyAJEl48skn/f6S/pUrV6K0tBRN\nTU0ICwtDRkYGhg0bhvz8fNTX1yMqKgozZ87scDGJvygvL8f8+fPRt29fCIIAQRDwu9/9DgkJCX5/\nDGfPnsWqVavc/1Hx+OOP47e//S2uXr3q99l/qbS0FNu2bXNf0q+G/JcuXcLSpUshCAKcTicef/xx\nTJo0STX5AaCqqgofffQRHA4HevfujRkzZsDlcqkmf2trK2bMmIGCggIEBwcDgNefP0uNiIg0g8uP\nRESkGSw1IiLSDJYaERFpBkuNiIg0g6VGRESawVIjIiLNYKkREZFmsNSIiEgz/g9zhau4XTaW5gAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot(kind='barh', x='name', y='length', legend=False)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#* Make a sorted horizontal bar graph of the cats,\n", "# with the larger cats on top." ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAD/CAYAAAC3mQLPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNtJREFUeJzt3X1s1IUdx/HP9WpbCqWlUKblqUKtk9ax0a5GiMgoZkFI\n5rLQRRMW3ZwLUhYRXWFjIrEMOqBIdtpsCYpKRtYum7Fb5h7ciPKogE9cWxiVCpSJha4PyPp0/e0P\npPOkZb9Cr98f5f36i7ve/e5zX+749PfA7+dzHMcRAAADLMo6AADg2kQBAQBMUEA9CAaD1hEuQiZ3\nyOSeF3ORyZ3BkokC6sFg+cuNNDK548VMkjdzkcmdwZKJAgIAmKCAAAAmfByGDQCwEG0dwKtOnjxp\nHSFMQkKCWlparGOEIZM7XswkeTMXmdzxYqbU1NQ+P4dNcAAAExQQAMAEBQQAMEEBAQBMUEAAABMU\nEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcEG6Xvhr\nqqwjhGnzR8sf6rSOEYZM7ngxk+TNXGRyx4uZdBkXpOOS3L04PjfHOgIAXDXG/XFfn5/DJjgAgAkK\nCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmrpqzYX/7\n299WWlqaurq65Pf79d3vflcZGRm9Pr6yslKvvPKKli1bNoApAQBuXTUFFBcXp+LiYknSu+++q1//\n+td68sknL/kcn883AMkAAJfjqimgz1414ty5cxo2bFj37ZdeeknvvPOOoqKi9M1vflPTpk3rftza\ntWv10UcfKSsrSw8++OCA5wYA9OyqKaD29nYVFhaqvb1djY2NeuKJJyRJe/fu1bFjx7RhwwY1NTVp\n+fLlmjx5siSppqZGGzdu1KhRo7R69Wrt3btXt912m+XbAAB86qopoNjY2O5NcIcPH1YgENCGDRtU\nXV2t6dOnS5ISExM1efJk1dTUaMiQIUpPT1dKSookafr06aqurqaAAMAjrpoC+qyMjAw1Nzerubm5\nT8/rbZ9QMBhUMBjsvp2fn39F+QDgWlRWVtb958zMTGVmZl7y8VdNAX12H1BdXZ0cx1FCQoJuueUW\n/e1vf9OMGTN09uxZVVVVacGCBaqrq9ORI0dUX1+vkSNHateuXbrrrrt6XLabQQEALq2vv7xfNQXU\n0dGhwsLC7iIqKCiQz+dTbm6uDh8+rMcff1xRUVFasGCBEhMTVVdXp/T0dG3evFmnTp1SZmamcnNz\njd8FAOACn/PZVQt0Oz43xzoCAFw1xv1xX5+fw5kQAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJ\nCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImr5npAAy1mWbF1hDB+f7RCoU7r\nGGHI5I4XM0nezEUmd7yY6XJQQL0ITbrFOkKY+IQEtbS0WMcIQyZ3vJhJ8mYuMrnjxUyXg01wAAAT\nFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT\nFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT\nFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATERbB/Aq\nf02VdYQwbf5o+UOd1jHCkMkdL2aSvJnLi5k6vpAqDUu0jjEoUUC9aF9baB0BgAf4f7KBAooQNsEB\nAExQQAAAExQQAMBEn/YB1dXVaffu3WpsbNSDDz6ouro6dXZ2asKECZHKBwAYpFyvAe3evVsrV65U\nQ0OD3njjDUlSa2urXnzxxYiFAwAMXq7XgMrKyrRixQqlpaVp9+7dkqQJEyaotrY2UtkAAIOY6zWg\npqamiza1+Xw++Xy+fg8FABj8XBfQxIkT9frrr4fdt3PnTqWnp/d7KADA4Od6E9wDDzygoqIi/f3v\nf1dbW5tWr16tkydPasWKFZHMBwAYpFwX0JgxY/T0009r//79ys7O1siRI5Wdna24uLhI5gMADFJ9\nOgw7NjZW06ZNi1QWAMA1xHUBnT59WuXl5aqtrVVra2vYzzZt2tTvwQAAg5vrAiopKVFqaqry8/MV\nExMTyUx68803tWHDBm3cuFGpqakRfS0AgA3XBVRXV6eioiJFRUX+7D27du3S1KlTtXPnTs2fPz/i\nrwcAGHiuCyg7O1uVlZXKysqKZB61trbqn//8p1atWqXVq1dr/vz5qqysVHl5uRISEnT8+HFNnDhR\nixcvliQtWrRId955p/bv36+uri4tWbJEqampamtr03PPPacTJ06os7NT8+fPV05OTkSzAwDc69Nh\n2CtWrND111+vxMTwa2M8/PDD/RZo3759mjJlikaNGqXhw4fr6NGjkqTa2lqVlJQoKSlJP/3pT3Xo\n0CHdfPPNkqTExEQVFxfrL3/5iyoqKvSDH/xAv/vd73Trrbdq4cKFOnfunJYvX64vfelLEd98CABw\nx3UBlZaWyu/3a8yYMRH9R3zHjh2aN2+eJOn222/Xjh07lJ2drfT0dI0YMUKSlJaWpvr6+u4Cys3N\nlXT+P8u++eabkqT33ntP+/fv1yuvvCJJ6uzs1OnTp3vcpxQMBhUMBrtv5+fnR+z9Abi6REX5lJCQ\nYB0jTExMjOcySedP2XZBZmamMjMzL/l41wV08OBB/fKXv9SQIUMuP93/cfbsWQWDQR0/flw+n09d\nXV3y+XyaOnWqoqP/FzUqKkqhUKj79nXXXXfR/Y7jaOnSpbrhhhv+7+u6GRSAa1NXl6OWlhbrGGES\nEhI8mamvv7y7PqJgwoQJEX/De/bs0YwZM/TMM88oEAjo2Wef1ejRo1VVVdXnZU2ZMkV/+tOfum9z\n0lQA8BbXa0CZmZlavXq1Zs6cedE+oFmzZvVLmF27dukb3/hG2H25ubn661//quuvv77H5/R2MtRv\nfetb2rJlix577DE5jqPRo0ersLCwX3ICAK6cz3Ecx80DV61a1evPVq5c2W+BvOL4XI6YAyAN+ckG\ntafdZB0jjBc3wV3O/9l0vQY0GEsGAGCnT+eCu8BxHH12xWkg/nMqAGBwcV1ADQ0N2rx5s6qqqvTJ\nJ5+E/ew3v/lNvwcDAAxurlddfvWrXyk6OlpPPPGE4uLiVFxcrJycHH3/+9+PZD4AwCDluoAOHz6s\nhQsXKi0tTT6fT2lpaVq4cKH+8Ic/RDIfAGCQcl1AUVFR8vv9kqShQ4equblZsbGxamhoiFg4AMDg\n5XofUHp6ut5++23l5uZqypQp2rhxo2JiYjRp0qRI5gMADFKuC2jx4sXdR77df//9qqioUGtrq+bO\nnRuxcACAwct1AcXGxmr79u1hV0R1HEdbt25VQUFBxAICAAYn1wUUCAT04YcfKjs7+6JT8QAA0Feu\nC+jdd99VIBDQ0KFDI5kHAHCNcH0U3KhRo9TR0RHJLACAa4jrNaAZM2Zo3bp1mjNnjpKSksJ+FunL\ndAMABh/XBfTqq69KkrZt2xZ2v8/nUyAQ6N9UAIBBz/XlGK41p954zTpCGL8/WqFQp3WMMGRyx4uZ\nJG/m8mKm676QqtZh3jrw6pq7HMO1JjTpFusIYeI9+IEjkztezCR5M5dXM7V6LNNgwXUUAAAmKCAA\ngAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAA\ngAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAA\ngAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGAi2jqAV/lrqqwjhGnz\nR8sf6rSOEYZM7ngxk+TNXFeUKTlFoRGj+jcQIooC6kX72kLrCAD6IGZZsUQBXVXYBAcAMEEBAQBM\nUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMDEgJ6MtLGxUVu2\nbNEHH3ygoUOHKjExUTk5Odq3b5+WLVt22cstLy/XkCFDNG/ePJWVlWny5MnKysrqx+QAgP42oAW0\nfv16zZw5U4888ogk6dixY3rrrbfk8/kue5ldXV1ht/Pz868oIwBgYAxYAR08eFDR0dGaPXt2933j\nx4/X2bNndfDgQZWUlOj48eOaOHGiFi9eLEn67W9/qwMHDqi9vV0ZGRl66KGHJEmrVq3ShAkTdOjQ\nIU2fPj3sdZ599lllZ2frtttu0wcffKAXX3xRbW1tSkhI0MMPP6ykpKSBessAgEsYsH1AF8qlJ7W1\ntXrggQdUUlKiU6dO6dChQ5KkOXPm6Gc/+5nWr1+v9vZ2HThwoPs5oVBIa9as0bx583pcZigU0vPP\nP6+lS5dqzZo1mjlzprZt29b/bwwAcFk8cUG69PR0jRgxQpKUlpam+vp63XzzzXr//fdVUVGhtrY2\nffLJJxo3bpymTp0qSZo2bdoll3ny5EkdO3ZMRUVFchxHjuN0vwYAwN6AFdC4ceO0Z8+enkNE/y9G\nVFSUQqGQOjo6tHnzZhUXFys5OVnl5eXq6OjoflxsbOwlX89xHI0fP15PPfXU/80WDAYVDAa7b7Mf\nCbj6+P3Rik9I6PflxsTEKCECy70SXswkSWVlZd1/zszMVGZm5iUfP2AFlJWVpW3btum1115TXl6e\npPMHIVRVVfX4+I6ODvl8PiUkJKi1tVV79uzR7bff7vr1UlNT1dzcrMOHDysjI0OhUEj/+te/NHbs\n2Ise62ZQALwtFOpUS0tLvy83ISEhIsu9El7N1Ndf3gd0E9zjjz+u559/Xi+//LJiYmKUkpKi3Nzc\nHh8bHx+vWbNm6dFHH9WIESOUnp7ep9eKjo7Wo48+queee07nzp1TV1eX5s6d22MBAQAGns9xHMc6\nhBcdn5tjHQFAH8QsK1Zo0i39vlyvrm14LVNqamqfn8OZEAAAJiggAIAJCggAYIICAgCYoIAAACYo\nIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJT1yS24tilhVbRwjj90cr\nFOq0jhGGTO54MZPkzVxXlCk5pX/DIOIooF5E4roiVyLeg9f/IJM7XswkeTOXFzMhctgEBwAwQQEB\nAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEB\nAExQQAAAExQQAMAEBQQAMOFzHMexDgEAuPawBtSDsrIy6wgXIZM7ZHLPi7nI5M5gyUQBAQBMUEAA\nABP+J5988knrEF40evRo6wgXIZM7ZHLPi7nI5M5gyMRBCAAAE2yCAwCYoIAAACairQN4yTvvvKMt\nW7bIcRx97Wtf0z333GMdSYsWLVJ8fLx8Pp/8fr/WrFljkqO0tFQHDhxQYmKi1q9fL0k6e/asnn76\nadXX12v06NFasmSJ4uPjTTOVl5frtddeU2JioiTp3nvv1Ze//OUBy3TmzBkFAgE1NTXJ5/MpLy9P\nd999t+msPp9p9uzZmjNnjumsOjo6tHLlSnV2dqqzs1M5OTm67777TOfUWybrz5QkdXV1afny5UpO\nTlZhYaH5d+9CpmXLlmnkyJEqLCy8vDk5cBzHcUKhkFNQUOB8/PHHTkdHh/PYY485J06csI7lLFq0\nyGlpabGO4VRVVTlHjx51li5d2n3fSy+95Lz88suO4zjO73//e2fr1q3mmcrKypyKiooBzfFZ//73\nv52jR486juM4//nPf5wf/vCHzokTJ0xn1Vsm61m1trY6jnP+u/fjH//YqaqqMv9M9ZTJek6O4zgV\nFRXOpk2bnLVr1zqOY//d6ynT5cyJTXCfOnLkiG644QalpKQoOjpa06dP11tvvWUdS47jyPHAcSJf\n/OIXNXTo0LD79u3bpzvvvFOSNHPmzAGfV0+ZJJnOKykpSWlpaZKkuLg4jRkzRmfOnDGdVU+ZGhoa\nJNnOKjY2VtL5NY+uri4NGzbM/DPVUybJdk5nzpzR22+/rby8vO77rOfUUyap73NiE9ynGhoaNHLk\nyO7bycnJOnLkiGGi83w+n4qKihQVFaW8vDzNnj3bOlK3pqYmJSUlSTr/j1xTU5NxovNeffVVvf76\n65o0aZK+853vDPimiQs+/vhjffjhh8rIyPDMrC5kuummm1RdXW06qwubcE6dOqW77rpLY8eONZ9T\nT5kk28/UCy+8oAULFujcuXPd91nPqadMUt/nxBqQxz311FMqLi7W8uXL9ec//1nV1dXWkXrl8/ms\nI+jrX/+6AoGA1q1bp6SkJL3wwgsmOVpbW1VSUqL7779fcXFxF/3cYlafz2Q9q6ioKP385z9XaWmp\nqqqqFAwGL3rMQM/p85kqKytN53RhH2daWtol1y4Gck69ZbqcOVFAn0pOTtbp06e7bzc0NCg5Odkw\n0XkjRoyQJA0fPly5ubmeWCu7ICkpSY2NjZKkxsbG7p2PloYPH979ZczLy1NNTc2AZwiFQtqwYYNm\nzJihr371q5LsZ9VTJi/MSpLi4+P1la98RTU1NeZz6imT5Zyqq6u1b98+FRQUaNOmTTp48KB+8Ytf\nmM6pp0yBQOCy5kQBfSo9PV0fffSR6uvr1dnZqZ07dyonJ8c0U1tbm1pbWyWd/+31vffe07hx48zy\nfH5/VHZ2trZv3y5J2r59u8m8Pp/pwpdSkvbu3Wsyr9LSUo0dO1Z33313933Ws+opk+Wsmpubuzff\ntLe36/3339eNN95oOqeeMqWlpZnO6b777lNpaakCgYAeeeQRZWVlafHixaZz6ilTQUHBZc2JfUCf\nioqK0ve+9z0VFRXJcRzNmjWre/uvlaamJq1bt04+n0+hUEh33HGHpkyZYpJl06ZNqqysVEtLixYu\nXKj8/Hzdc8892rhxo/7xj38oJSVFS5YsMc8UDAZVW1srn8+nlJQUPfTQQwOaqbq6Wm+88YbGjx+v\nH/3oR/L5fLr33ntNZ9Vbph07dpjNqrGxUc8880z3LxB33HGHbr31Vt14441mc+otUyAQMP1M9cT6\nu9eTrVu39nlOnIoHAGCCTXAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEz8Fww/\nrxlxe33eAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df[df['animal'] == 'cat'].sort_values(by='length').plot(kind='barh', x='name', y='length', legend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Part 02: Doing some research (billionaires)\n", "\n", "Answer your own selection out of the following questions, or any other questions you might be able to think of. Write the question down first in a markdown cell (use a # to make the question a nice header), THEN try to get an answer to it. A lot of these are remarkably similar, and some you'll need to do manual work for - the GDP ones, for example.\n", "\n", "If you are trying to figure out some other question that we didn't cover in class and it does not have to do with joining to another data set, we're happy to help you figure it out during lab!\n", "\n", "* Take a peek at the billionaires notebook I uploaded into Slack, it should be helpful for the graphs (I added a few other styles and options, too). You'll probably also want to look at the \"sum()\" line I added.\n", "* What country are most billionaires from? For the top ones, how many billionaires per billion people?\n", "* Who are the top 10 richest billionaires?\n", "* What's the average wealth of a billionaire? Male? Female?\n", "* Who is the poorest billionaire? Who are the top 10 poorest billionaires?\n", "* 'What is relationship to company'? And what are the most common relationships?\n", "* Most common source of wealth? Male vs. female?\n", "* Given the richest person in a country, what % of the GDP is their wealth?\n", "* Add up the wealth of all of the billionaires in a given country (or a few countries) and then compare it to the GDP of the country, or other billionaires, so like pit the US vs India\n", "* What are the most common industries for billionaires to come from? What's the total amount of billionaire money from each industry?\n", "* How many self made billionaires vs. others?\n", "* How old are billionaires? How old are billionaires self made vs. non self made? or different industries?\n", "* Who are the youngest billionaires? The oldest? Age distribution - maybe make a graph about it?\n", "* Maybe just made a graph about how wealthy they are in general?\n", "* Maybe plot their net worth vs age (scatterplot)\n", "* Make a bar graph of the top 10 or 20 richest\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }