{
"cells": [
{
"cell_type": "code",
"execution_count": 305,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Math + `pandas` = 😍\n",
"\n",
"Since y'all love math, we're going to do plenty of both today.\n",
"\n",
"## Flavors of statistics\n",
"\n",
"One of the most basic ways to split statistics is to break it into two categories: **descriptive** and **inferential**.\n",
"\n",
"* **Inferential statistics** takes part of a population and attempts to *infer* something about the entire population. **For example,** I interview 100 likely voters about who they're going to vote for, and *infer* who is going to win an election.\n",
"* **Descriptive statistics** describes only the numbers you have right in front of you. **For example,** I have a list of all the planes that took off from the airport yesterday, and they were on average ten minutes late.\n",
"\n",
"We're going to be doing some **basic descriptive statistics**, because we sure aren't going to release our entire dataset to our readers. Summing it all up into a few numbers works much more nicely.\n",
"\n",
"## Types of data\n",
"\n",
"The two major categories of data are **qualitative/categorical** and **quantitative/numerical**. I'll use both words to describe each because I'm incapcable of picking a term and stick to it.\n",
"\n",
"* **Qualitative** or **categorical** data is... well, categories. Things that aren't numbers. Whether you're married or single, live in Arkansas or Alabama, or have blue eyes or brown eyes.\n",
"* **Quantitative** or **numerical** data is, obviously, based on numbers. \n",
"\n",
"### Kinds of numeric data\n",
"\n",
"And, lucky us, there are kinds of numeric data!\n",
"\n",
"* **Continuous** data can be broken down into smaller and smaller numerical pieces. **For example,** is the temperature in your apartment 69°F, or 69.4°F, or 69.123°F?\n",
"* **Discrete** data are still numbers, but they can only have certain values. **For example,** Yelp ratings are 1, 2, 3, 4 or 5 stars.\n",
"\n",
"# Your good friend descriptive statistics\n",
"\n",
"You use descriptive statistics all the time! Averages! Maximums! Minimums! These old friends are your new friends, too.\n",
"\n",
"We can break down descriptive statistics into a few major concepts, we'll talk about **central tendency** and **variability**. Let's take a look at those with a really dumb sample data set."
]
},
{
"cell_type": "code",
"execution_count": 306,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" salary | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Smushface | \n",
" 1200 | \n",
"
\n",
" \n",
" 1 | \n",
" Jen | \n",
" 25000 | \n",
"
\n",
" \n",
" 2 | \n",
" James | \n",
" 55000 | \n",
"
\n",
" \n",
" 3 | \n",
" John | \n",
" 35000 | \n",
"
\n",
" \n",
" 4 | \n",
" Josephine | \n",
" 25000 | \n",
"
\n",
" \n",
" 5 | \n",
" Jacques | \n",
" 15000 | \n",
"
\n",
" \n",
" 6 | \n",
" Bill Gates | \n",
" 100000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name salary\n",
"0 Smushface 1200\n",
"1 Jen 25000\n",
"2 James 55000\n",
"3 John 35000\n",
"4 Josephine 25000\n",
"5 Jacques 15000\n",
"6 Bill Gates 100000"
]
},
"execution_count": 306,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Let's build a data set\n",
"df = pd.DataFrame([\n",
" { 'name': 'Smushface', 'salary': 1200 } ,\n",
" { 'name': 'Jen', 'salary': 25000 },\n",
" { 'name': 'James', 'salary': 55000 },\n",
" { 'name': 'John', 'salary': 35000 },\n",
" { 'name': 'Josephine', 'salary': 25000 },\n",
" { 'name': 'Jacques', 'salary': 15000 },\n",
" { 'name': 'Bill Gates', 'salary': 100000 } \n",
"])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Central Tendency\n",
"\n",
"If someone hears we have this data set about salaries, they're probably going to ask, \"how much do people make?\" They don't want a long list of numbers, they want a single, solitary number. We can get most of the way there by describing **the central tendency**.\n",
"\n",
"Data in the world tends to clump around certain numbers - the average height of a man, or the average score on a test. This is called the **central tendency**, and is usually just called the **average**. Luckily for us average has like *two hundred different meanings*: **mean**, **median**, and **mode**.\n",
"\n",
"Double-luckily for us, `pandas` can compute all of those for us with appropriately-named functions."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The MEAN\n",
"\n",
"The **mean** is what we've always thought of as the average. You add up all the data points and divide by the number of data points."
]
},
{
"cell_type": "code",
"execution_count": 307,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2888571.4285714286"
]
},
"execution_count": 307,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(0 + 25000 + 55000 + 35000 + 25000 + 80000 + 20000000) / 7"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But like I said, `pandas` can help us out here with the `.mean()` method."
]
},
{
"cell_type": "code",
"execution_count": 308,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"36600.0"
]
},
"execution_count": 308,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['salary'].mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That looks ugly, let's convert it to an integer!"
]
},
{
"cell_type": "code",
"execution_count": 309,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"36600"
]
},
"execution_count": 309,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['salary'].mean().astype(int)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we want to get real crazy, we can add commas to it using our old friend `.format()`"
]
},
{
"cell_type": "code",
"execution_count": 310,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'36,600'"
]
},
"execution_count": 310,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# format trick stolen from http://stackoverflow.com/a/10742904\n",
"mean_salary = df['salary'].mean().astype(int)\n",
"\"{:,}\".format(mean_salary)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But **back to the mean:** apparently the average of all of these salaries is **over two million dollars**. Does that look right to you?"
]
},
{
"cell_type": "code",
"execution_count": 311,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" salary | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Smushface | \n",
" 1200 | \n",
"
\n",
" \n",
" 1 | \n",
" Jen | \n",
" 25000 | \n",
"
\n",
" \n",
" 2 | \n",
" James | \n",
" 55000 | \n",
"
\n",
" \n",
" 3 | \n",
" John | \n",
" 35000 | \n",
"
\n",
" \n",
" 4 | \n",
" Josephine | \n",
" 25000 | \n",
"
\n",
" \n",
" 5 | \n",
" Jacques | \n",
" 15000 | \n",
"
\n",
" \n",
" 6 | \n",
" Bill Gates | \n",
" 100000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name salary\n",
"0 Smushface 1200\n",
"1 Jen 25000\n",
"2 James 55000\n",
"3 John 35000\n",
"4 Josephine 25000\n",
"5 Jacques 15000\n",
"6 Bill Gates 100000"
]
},
"execution_count": 311,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The problem with adding everything together is **Bill Gates is exerting undue influence**. His salary is an **outlier** - a number that's either way too high or way too low and kind of screws up our data. He might actually be making that much money, sure, but by taking the mean we aren't doing a good job describing what we'd think of as the \"average.\"\n",
"\n",
"Because of how it's calculated, **the mean is suseptible to outliers.** Because you need to be so careful with it, the mean is definitely not my favorite way of getting the average."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The MEDIAN\n",
"\n",
"The **median** is like a new, improved mean, in that it describes the central tendency **without being suseptible to outliers**. To compute the median you do two things:\n",
"\n",
"1. Order the numbers largest to smallest\n",
"2. Pick the middle number"
]
},
{
"cell_type": "code",
"execution_count": 312,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0 1200\n",
"5 15000\n",
"1 25000\n",
"4 25000\n",
"3 35000\n",
"2 55000\n",
"6 100000\n",
"Name: salary, dtype: int64"
]
},
"execution_count": 312,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['salary'].sort_values()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have seven values, so it will be number four. Count up the list to discover it: **35,000** is the median. I'll prove it, too, using the power of `pandas`."
]
},
{
"cell_type": "code",
"execution_count": 313,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"25000.0"
]
},
"execution_count": 313,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['salary'].median()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See? Told you!\n",
"\n",
"If you happen to have an **even number of data points** you won't have a middle number, you'll take the **mean of the middle two numbers**.\n",
"\n",
"My favorite description of the median comes from [Statistics for the Terrified](http://www.conceptstew.co.uk/pages/mean_or_median.html)\n",
"\n",
"> We are all much more familiar with the mean - why? People like using the mean because it is a much easier thing to deal with than the median, mathematically, particularly in more complex situations...\n",
"> ...\n",
"> Always use the median when the distribution is skewed. You can use either the mean or the median when the population is symmetrical, because then they will give almost identical results.\n",
"\n",
"Which to me reads like \"if you have a computer, **use the median.**\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The MODE\n",
"\n",
"The **mode** is the least-used measurement of central tendency: it's the **most popular value**. Even though our salary dataset has a most popular value, the mode actually shouldn't be used with *continuous* data, you should only use it with discrete data.\n",
"\n",
"Let's say our buddies are reviewing a restaurant"
]
},
{
"cell_type": "code",
"execution_count": 314,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" restaurant | \n",
" reviewer | \n",
" yelp_stars | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Burger King | \n",
" Smushface | \n",
" 2 | \n",
"
\n",
" \n",
" 1 | \n",
" Burger King | \n",
" Jen | \n",
" 2 | \n",
"
\n",
" \n",
" 2 | \n",
" Burger King | \n",
" James | \n",
" 5 | \n",
"
\n",
" \n",
" 3 | \n",
" Burger King | \n",
" John | \n",
" 4 | \n",
"
\n",
" \n",
" 4 | \n",
" Burger King | \n",
" Josephine | \n",
" 4 | \n",
"
\n",
" \n",
" 5 | \n",
" Burger King | \n",
" Jacques | \n",
" 3 | \n",
"
\n",
" \n",
" 6 | \n",
" Burger King | \n",
" Bill Gates | \n",
" 2 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" restaurant reviewer yelp_stars\n",
"0 Burger King Smushface 2\n",
"1 Burger King Jen 2\n",
"2 Burger King James 5\n",
"3 Burger King John 4\n",
"4 Burger King Josephine 4\n",
"5 Burger King Jacques 3\n",
"6 Burger King Bill Gates 2"
]
},
"execution_count": 314,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Let's build a data set\n",
"reviews_df = pd.DataFrame([\n",
" { 'restaurant': 'Burger King', 'reviewer': 'Smushface', 'yelp_stars': 2 } ,\n",
" { 'restaurant': 'Burger King', 'reviewer': 'Jen', 'yelp_stars': 2 },\n",
" { 'restaurant': 'Burger King', 'reviewer': 'James', 'yelp_stars': 5 },\n",
" { 'restaurant': 'Burger King', 'reviewer': 'John', 'yelp_stars': 4 },\n",
" { 'restaurant': 'Burger King', 'reviewer': 'Josephine', 'yelp_stars': 4 },\n",
" { 'restaurant': 'Burger King', 'reviewer': 'Jacques', 'yelp_stars': 3 },\n",
" { 'restaurant': 'Burger King', 'reviewer': 'Bill Gates', 'yelp_stars': 2 } \n",
"])\n",
"reviews_df"
]
},
{
"cell_type": "code",
"execution_count": 315,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0 2\n",
"dtype: int64"
]
},
"execution_count": 315,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"reviews_df['yelp_stars'].mode()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Despite the fact that most people gave Burger King a `3` or above, the fact that **the most popular score is `2`** might mean something.\n",
"\n",
"My favorite example of the mode being useful (and possibly only example of the mode being useful) is **Amazon reviews.** For example, [this charger for a MacBook](https://www.amazon.com/Apple-Magsafe-Adapter-Charger-MacBook/dp/B014Z9P2VI/ref=sr_1_3?ie=UTF8&qid=1467768369&sr=8-3&keywords=macbook+charger) has some... interesting reviews."
]
},
{
"cell_type": "code",
"execution_count": 316,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Import this because it won't let us display images otherwise\n",
"from IPython.display import display, HTML"
]
},
{
"cell_type": "code",
"execution_count": 317,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(HTML('''
'''))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Look at that adapter!**\n",
"\n",
"2.5 stars, not too shabby. And so cheap! The real ones are like 80 bucks, I think.\n",
"\n",
"Let's take a look at the actual distribution of the scores..."
]
},
{
"cell_type": "code",
"execution_count": 318,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(HTML('''
'''))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Oh wait, *the mode of the data is 1*. **The adapters are probably terrible**, cancel that order."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Measures of central tendency, a review\n",
"\n",
"There are three measures of central tendency.\n",
"\n",
"* The **mean** is the sum of all the numbers divided by the count of the numbers, and is pulled towards outliers.\n",
"* The **median** is the middle number, and is not affected by outliers.\n",
"* The **mode** is the most frequent number, is only used with nominal data, and isn't terribly useful.\n",
"\n",
"The median should probably be favorite."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Slight detour: Making sense of `.describe()`\n",
"\n",
"One of our old pandas friends is `.describe()`, which... describes some math-y stuff about a data set."
]
},
{
"cell_type": "code",
"execution_count": 319,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" salary | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Smushface | \n",
" 1200 | \n",
"
\n",
" \n",
" 1 | \n",
" Jen | \n",
" 25000 | \n",
"
\n",
" \n",
" 2 | \n",
" James | \n",
" 55000 | \n",
"
\n",
" \n",
" 3 | \n",
" John | \n",
" 35000 | \n",
"
\n",
" \n",
" 4 | \n",
" Josephine | \n",
" 25000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name salary\n",
"0 Smushface 1200\n",
"1 Jen 25000\n",
"2 James 55000\n",
"3 John 35000\n",
"4 Josephine 25000"
]
},
"execution_count": 319,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 320,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" salary | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 7.000 | \n",
"
\n",
" \n",
" mean | \n",
" 36600.000 | \n",
"
\n",
" \n",
" std | \n",
" 32530.806 | \n",
"
\n",
" \n",
" min | \n",
" 1200.000 | \n",
"
\n",
" \n",
" 25% | \n",
" 20000.000 | \n",
"
\n",
" \n",
" 50% | \n",
" 25000.000 | \n",
"
\n",
" \n",
" 75% | \n",
" 45000.000 | \n",
"
\n",
" \n",
" max | \n",
" 100000.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" salary\n",
"count 7.000\n",
"mean 36600.000\n",
"std 32530.806\n",
"min 1200.000\n",
"25% 20000.000\n",
"50% 25000.000\n",
"75% 45000.000\n",
"max 100000.000"
]
},
"execution_count": 320,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Make it so we only have three decimal places\n",
"pd.set_option('display.float_format', lambda x: '%.3f' % x)\n",
"df.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And you see the mean displayed in all its glory, and so you scream, **it doesn't include the median what garbage!!!**\n",
"\n",
"But it does! Really! Give it a look around and see if you can find it.\n",
"\n",
"---\n",
"\n",
"waiting!\n",
"\n",
"---\n",
"\n",
"waiting!\n",
"\n",
"---\n",
"\n",
"waiting!\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yes, that's right - **50% is the median**. Half of the values are above, half are below. The 25% and 75% are similar meaures:\n",
"\n",
"* 25%, a.k.a. **Q1**, a.k.a. **the first quartile**, has 25% of the values below it and 75% above it.\n",
"* 75%, a.k.a. **Q3**, a.k.a. **the third quartile**, has 75% of the values below it and 25% below it.\n",
"* and, of course, 50% i also known as **Q2**.\n",
"\n",
"25% can be thought of as the median of the bottom half of the data, and 75% can describe the median of the top half of the data. They give you a sense of **the range of data**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Box-and-whisker plots\n",
"\n",
"If we get tired of looking at lists of numbers, there's always [box-and-whisker plots](http://www.regentsprep.org/regents/math/algebra/ad3/boxwhisk.htm). They're the visual version of `.describe()` - they describe the minimum, Q1, median, Q3, and maximum.\n",
"\n",
"Well, **usually.**"
]
},
{
"cell_type": "code",
"execution_count": 321,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 321,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAExRJREFUeJzt3HGsnfV93/H3J7iUZCEYVAGTCTFLMIF2reNpplU25a40\nENIVUNUgR6jxTaxIDUzJummKXSlzO/+xhm2am64gVaXYICLPpZOCWmpcBKfTFBLoupQsJsbSaoqd\n4GgYvCWa1EC/++M81xx8rs197r3PPefc835JB57nd3+/c3+PZZ/PeX7f53lSVUiSNOhto56AJGn8\nGA6SpCGGgyRpiOEgSRpiOEiShhgOkqQhbxkOSe5LciLJswNtFyc5mORwkseSXDTwsx1JjiR5LsmN\nA+2bkjyb5Pkkuwfaz0+yrxnzVJIrB362tel/OMknlueQJUlvZSFnDvcDN53Rth14vKquAZ4AdgAk\nuQ64HbgWuBm4J0maMfcC26pqA7Ahydx7bgNOVtXVwG7g7ua9Lgb+NfAPgeuBnYMhJEnqzluGQ1X9\nN+CVM5pvBfY223uB25rtW4B9VfVaVR0FjgCbk1wOXFhVzzT9HhgYM/heDwM/22zfBBysqlNV9Spw\nEPhIi2OTJC3SYmsOl1bVCYCqegm4tGlfB7w40O9407YOODbQfqxpe9OYqnodOJXkknO8lySpY8tV\nkF7OZ3DkrbtIkrq0ZpHjTiS5rKpONEtG32vajwPvHuh3RdN2tvbBMd9Jch7wrqo6meQ4MHPGmCfn\nm0wSHxAlSYtQVfN+IV/omUN48zf6R4DZZnsr8JWB9i3NFUhXAe8Dnm6Wnk4l2dwUqD9xxpitzfbH\n6Be4AR4DPpzkoqY4/eGm7WwH6MvX2LzuuOPXge/TP6ne2fz/+9xxx6+PfG6+fM29zmUhl7J+Gfgq\n/SuM/jrJJ4HfbD64DwM3NPtU1SFgP3AIeBS4s96YwV3AfcDzwJGqOtC03wf8WJIjwD+nfyUUVfUK\nsAv4c+DrwG9UvzAtjb1du2Z573t3Aj8AjgI/4L3v3cmuXbMjnJW0cHmr9JgESWo1HIdWl7/6qxf4\nwhf28Pjj/4Wf+7lfZNeuWa666j2jnpZ0WhLqLMtKhoPUsV6vx8zMzKinIQ0xHCRJQ84VDj5bSepY\nr9cb9RSk1gwHSdIQl5UkaUq5rCRJasVwkDpmzUGTyHCQJA2x5iBJU8qagySpFcNB6pg1B00iw0GS\nNMSagyRNKWsOkqRWDAepY9YcNIkMB0nSEGsOkjSlrDlIkloxHKSOWXPQJDIcJElDrDlI0pSy5iBJ\nasVwkDpmzUGTyHCQJA2x5iBJU8qagySpFcNB6pg1B00iw0GSNMSagyRNKWsOkqRWDAepY9YcNIkM\nB0nSEGsOkjSlrDlIkloxHKSOWXPQJDIcJElDlhQOSXYk+VaSZ5M8lOT8JBcnOZjkcJLHklx0Rv8j\nSZ5LcuNA+6bmPZ5Psnug/fwk+5oxTyW5cinzlUZhZmZm1FOQWlt0OCR5D/Bp4ANV9ZPAGuDjwHbg\n8aq6BngC2NH0vw64HbgWuBm4J8lcIeReYFtVbQA2JLmpad8GnKyqq4HdwN2Lna8kaeGWcubwf4C/\nAf5OkjXA24HjwK3A3qbPXuC2ZvsWYF9VvVZVR4EjwOYklwMXVtUzTb8HBsYMvtfDwA1LmK80EtYc\nNIkWHQ5V9QrwH4C/ph8Kp6rqceCyqjrR9HkJuLQZsg54ceAtjjdt64BjA+3HmrY3jamq14FXk1yy\n2DlLkhZmzWIHJvl7wK8C7wFOAX+Q5A7gzBsOlvMGhHmvxwWYnZ1l/fr1AKxdu5aNGzeeXuud++bm\nvvuj2J9rG5f5uD+9+71ejz179gCc/rw8m0XfBJfkduDDVfXpZv+XgZ8GfhaYqaoTzZLRk1V1bZLt\nQFXVF5v+B4CdwAtzfZr2LcCHquozc32q6utJzgO+W1WXzjMXb4KTpJa6ugnuMPDTSS5oCss3AIeA\nR4DZps9W4CvN9iPAluYKpKuA9wFPN0tPp5Jsbt7nE2eM2dpsf4x+gVuaKHPf3KRJsuhlpar6yyQP\nAP8deB34H8DvAhcC+5N8iv5Zwe1N/0NJ9tMPkB8Cdw583b8L2ANcADxaVQea9vuAB5McAV4Gtix2\nvpKkhfPZSpI0pXy2kiSpFcNB6pg1B00iw0GSNMSagyRNKWsOkqRWDAepY9YcNIkMB0nSEGsOkjSl\nrDlIkloxHKSOWXPQJDIcJElDrDlI0pSy5iBJasVwkDpmzUGTyHCQJA2x5iBJU8qagySpFcNB6pg1\nB00iw0GSNMSagyRNKWsOkqRWDAepY9YcNIkMB0nSEGsOkjSlrDlIkloxHKSOWXPQJDIcJElDrDlI\n0pSy5iBJasVwkDpmzUGTyHCQJA2x5iBJU8qagySpFcNB6pg1B00iw0GSNGRJ4ZDkoiR/kOS5JN9K\ncn2Si5McTHI4yWNJLhrovyPJkab/jQPtm5I8m+T5JLsH2s9Psq8Z81SSK5cyX2kUZmZmRj0FqbWl\nnjn8FvBoVV0L/BTwbWA78HhVXQM8AewASHIdcDtwLXAzcE+SuULIvcC2qtoAbEhyU9O+DThZVVcD\nu4G7lzhfSdICLDockrwL+MdVdT9AVb1WVaeAW4G9Tbe9wG3N9i3AvqbfUeAIsDnJ5cCFVfVM0++B\ngTGD7/UwcMNi5yuNijUHTaKlnDlcBfzvJPcn+Yskv5vkHcBlVXUCoKpeAi5t+q8DXhwYf7xpWwcc\nG2g/1rS9aUxVvQ68muSSJcxZkrQASwmHNcAm4HeqahPwA/pLSmfecLCcNyDMez2uNM6sOWgSrVnC\n2GPAi1X1583+H9IPhxNJLquqE82S0feanx8H3j0w/oqm7Wztg2O+k+Q84F1VdXK+yczOzrJ+/XoA\n1q5dy8aNG0//o5w7rXfffffdn+b9Xq/Hnj17AE5/Xp7Nku6QTvJnwKer6vkkO4F3ND86WVVfTPJ5\n4OKq2t4UpB8Crqe/XPSnwNVVVUm+BnwWeAb4Y+BLVXUgyZ3AT1TVnUm2ALdV1ZZ55uEd0hpbvV7v\n9D9UaZyc6w7ppZw5QP8D/aEkPwL8L+CTwHnA/iSfAl6gf4USVXUoyX7gEPBD4M6BT/S7gD3ABfSv\nfjrQtN8HPJjkCPAyMBQMkqTl57OVJGlK+WwlSVIrhoPUsbmCoDRJDAdJ0hBrDpI0paw5SJJaMRyk\njllz0CQyHCRJQ5Z6E5w0Vd54yny3rKFp1AwHqQU/tDUtXFaSOmbNQZPIcJAkDTEcpI71ejOjnoLU\nmjfBSR1LwL+eGkfeBCeNVG/UE5BaMxwkSUNcVpI65rKSxpXLSpKkVgwHqWNbt/ZGPQWpNcNB6tjs\n7KhnILVnzUGSppQ1B0lSK4aD1DGfraRJZDhIkoYYDlLHfLaSJpEFaalj3gSncWVBWhqp3qgnILVm\nOEiShrisJHXMZSWNK5eVJEmtGA6aapdc0v9m3+ULep3/jksuGfWfpFYbw0FT7ZVX+ks+Xb6efLL7\n3/HKK6P+k9RqY81BU2211ANWy3FoZVlzkCS1YjhIHfPZSppEhoMkaYg1B0211bJWv1qOQyur05pD\nkrcl+YskjzT7Fyc5mORwkseSXDTQd0eSI0meS3LjQPumJM8meT7J7oH285Psa8Y8leTKpc5XkvTW\nlmNZ6XPAoYH97cDjVXUN8ASwAyDJdcDtwLXAzcA9SeYS615gW1VtADYkualp3wacrKqrgd3A3csw\nX2lFWXPQJFpSOCS5Avgo8HsDzbcCe5vtvcBtzfYtwL6qeq2qjgJHgM1JLgcurKpnmn4PDIwZfK+H\ngRuWMl9J0sIs9czhPwL/Chhc7bysqk4AVNVLwKVN+zrgxYF+x5u2dcCxgfZjTdubxlTV68CrSbwX\nVBNlZmZm1FOQWlt0OCT5eeBEVX0DmLeg0VjOMtm5fo8kaZmsWcLYDwK3JPko8HbgwiQPAi8luayq\nTjRLRt9r+h8H3j0w/oqm7Wztg2O+k+Q84F1VdXK+yczOzrJ+/XoA1q5dy8aNG09/Y5tb83Xf/VHs\n7969e0X+PsJ4HK/747vf6/XYs2cPwOnPy7NZlktZk3wI+JdVdUuSu4GXq+qLST4PXFxV25uC9EPA\n9fSXi/4UuLqqKsnXgM8CzwB/DHypqg4kuRP4iaq6M8kW4Laq2jLP7/dSVi3KSlwC2uv1Tv9D7YqX\nsmoxznUp61LOHM7mN4H9ST4FvED/CiWq6lCS/fSvbPohcOfAJ/pdwB7gAuDRqjrQtN8HPJjkCPAy\nMBQM0rjrOhikLngTnKbaavnGvVqOQyvLB+9JI/RGTUCaHIaDJGmIy0qaaqtlOWa1HIdWlstKkqRW\nDAepY9YcNIkMB0nSEGsOmmqrZa1+tRyHVpY1B0lSK4aD1DFrDppEhoMkaYg1B0211bJWv1qOQyvL\nmoMkqRXDQeqYNQdNIsNBkjTEmoOm2mpZq18tx6GVZc1BktSK4SB1zJqDJpHhIEkaYs1BU221rNWv\nluPQyrLmIElqxXCQOmbNQZPIcJAkDbHmoKm2WtbqV8txaGVZc5AktWI4SB2z5qBJZDhIkoZYc9BU\nWy1r9avlOLSyrDlIkloxHKSOWXPQJFoz6glIo1QE5j2pniw18F9pOVhz0FRbLWv1q+U4tLKsOUiS\nWjEcpI5Zc9AkMhwkSUOsOWiqrZa1+tVyHFpZ1hwkSa0sOhySXJHkiSTfSvLNJJ9t2i9OcjDJ4SSP\nJbloYMyOJEeSPJfkxoH2TUmeTfJ8kt0D7ecn2deMeSrJlYudrzQq1hw0iZZy5vAa8C+q6seBnwHu\nSvJ+YDvweFVdAzwB7ABIch1wO3AtcDNwT5K505l7gW1VtQHYkOSmpn0bcLKqrgZ2A3cvYb6SpAVa\ndDhU1UtV9Y1m+/vAc8AVwK3A3qbbXuC2ZvsWYF9VvVZVR4EjwOYklwMXVtUzTb8HBsYMvtfDwA2L\nna80KjMzM6OegtTastQckqwHNgJfAy6rqhPQDxDg0qbbOuDFgWHHm7Z1wLGB9mNN25vGVNXrwKtJ\nLlmOOUuSzm7Jj89I8k763+o/V1XfT3LmNRPLeQ3FWR90MDs7y/r16wFYu3YtGzduPP2NbW7N1333\n59tP+vsw0/x/ufd30//u1NX793jnO9/YH/Wfp/vju9/r9dizZw/A6c/Ls1nSpaxJ1gB/BPxJVf1W\n0/YcMFNVJ5oloyer6tok24Gqqi82/Q4AO4EX5vo07VuAD1XVZ+b6VNXXk5wHfLeqLp1nHl7KqrGV\n9KiaGfU0pCFdXsr6+8ChuWBoPALMNttbga8MtG9prkC6Cngf8HSz9HQqyeamQP2JM8ZsbbY/Rr/A\nLU2YmVFPQGpt0WcOST4I/Ffgm/SXjgr4NeBpYD/wbvpnBbdX1avNmB30r0D6If1lqINN+z8A9gAX\nAI9W1eea9h8FHgQ+ALwMbGmK2WfOxTMHjS1vUNO4OteZg3dISx1zWUnjyjukJUmtGA5Sx3bunBn1\nFKTWXFaSpCnlspI0QnPXmUuTxHCQJA1xWUmSppTLSpKkVgwHqWOzs71RT0FqzWUlqWPeBKdx5R3S\n0gj5+AyNK2sOkqRWDAepc71RT0BqzXCQJA0xHKSO+WwlTSIL0pI0pSxISyPks5U0iQwHSdIQl5Uk\naUq5rCRJasVwkDrms5U0iVxWkjrms5U0rny2kjRCPltJ48qagySpFcNB6lxv1BOQWjMcJElDDAep\nYz5bSZPIgrQkTSkL0tII+WwlTSLDQZI0xGUlSZpSLitJkloxHKSO+WwlTSKXlaSO+WwljSufrSSN\nkM9W0riy5iBJamUiwiHJR5J8O8nzST4/6vlI7fRGPQGptbEPhyRvA/4TcBPw48DHk7x/tLOS2vjG\nqCcgtbZm1BNYgM3Akap6ASDJPuBW4NsjnZWmUjLv8uwCxv1qq/7W0DRqY3/mAKwDXhzYP9a0SSuu\nqlq/du7c2XqMNGqTEA7SRDt69OiopyC1NgnLSseBKwf2r2ja3mSxp/vSSti7d++opyC1Mvb3OSQ5\nDzgM3AB8F3ga+HhVPTfSiUnSKjb2Zw5V9XqSfwYcpL8Mdp/BIEndGvszB0nSyrMgLS2zJPcn+cVR\nz0NaCsNBGrGmriaNlbGvOUjjIMk7gP3077E5D9gFvB/4BeAC4KtV9SvzjPsC8E+Btw/2SfIk/Vun\nPwj8UZJZ4OqmxnYh8Jdz+10fmzQfzxykhfkIcLyqPlBVPwkcAH67qjY3++9I8vPzjPvtqrr+LH1+\npBn/b4AngbmfbQH+0GDQKBkO0sJ8E/hwkn+b5B9V1f8FbkjytSTPAv+E/rO/znSuPv95YPs+4JPN\n9ieB+5f/EKSFc1lJWoCqOpJkE/BRYFeSJ4C7gE1V9Z0kO+kvL52W5EeB3zlHnx8MvP9Xk6xP8iHg\nbVV1qOtjks7FMwdpAZL8XeD/VdWXgX8PbAIKOJnkncAvzTPsgqbPy+foM+hB4MvA7y/bxKVF8sxB\nWpi/D/y7JH8L/A3wGeA24H/yxp37cwqgqk4l+T3gW2frc4aH6Be69y377KWWvAlOGhNJfgn4hara\nOuq5SJ45SGMgyZfoXxH10VHPRQLPHCRJ87AgLUkaYjhIkoYYDpKkIYaDJGmI4SBJGmI4SJKG/H8i\nT3Z8RYK+tgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.boxplot(column='salary', sym='o', return_type='axes')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The box part is 25%-75%, with the red line being the median. The **whiskers** are usually the maximum and minimum, but `matplotlib`/`pandas` likes to display it as \"oh this is where nice values live\" (a.k.a. IQR 1.5). We can make it do max and min by passing `whis='range'` when we make the box plot."
]
},
{
"cell_type": "code",
"execution_count": 322,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 322,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE1pJREFUeJzt3HGsnfV93/H3B1xKshAMk4DJhDpTMIF2jeNpplM25a4o\nENIVUNUgR9Pim1iRFpgSddMUe1LrbNG0wjbVTVeQqlKuQUSuQ/8IaqlxEZxWVUmg61KymIClyRQ7\nwdEweGs1qUC//eM81xx8ro2fe+9zn3Pufb+kC+f53d/v3O9j2fd7nu/3eX6pKiRJGnVe3wFIkiaP\nyUGSNMbkIEkaY3KQJI0xOUiSxpgcJElj3jE5JLkvyfEkz46MXZLkYJLnkzyW5OKR7+1KcjjJc0lu\nHBnfkuTZJC8k2TMyfkGSfc2ap5JcNfK97c3855N8enlOWZL0Ts7lyuF+4KbTxnYCj1fVNcATwC6A\nJNcBtwPXAjcD9yRJs+ZeYEdVbQI2JZl/zx3Aiaq6GtgD3N281yXALwH/CLge2D2ahCRJ3XnH5FBV\nfwy8etrwrcDe5vVe4Lbm9S3Avqp6o6qOAIeBrUmuAC6qqmeaeQ+MrBl9r4eBn25e3wQcrKqTVfUa\ncBD4eItzkyQt0mJ7DpdV1XGAqnoZuKwZ3wC8NDLvWDO2ATg6Mn60GXvbmqp6EziZ5NKzvJckqWPL\n1ZBezj048s5TJEldWrfIdceTXF5Vx5uS0Q+b8WPA+0bmXdmMnWl8dM33k5wPvLeqTiQ5BsyctubJ\nhYJJ4gZRkrQIVbXgB/JzTQ7h7Z/oHwFmgbuA7cA3RsYfSvIrDEtAHwCerqpKcjLJVuAZ4NPAV0fW\nbAe+BXySYYMb4DHgPzVN6POAjzFshJ/pBM/xVKSVlXyZqi/3HYY05q37hca9Y3JI8jWGn+D/bpK/\nAHYDvwx8PclngRcZ3qFEVR1Ksh84BLwO3FFv/da+E5gDLgQeraoDzfh9wINJDgOvANua93o1yVeA\nP2VYtvoPTWNamiof+tCRvkOQWstq+MSdpFbDeWh1mp2dZW5uru8wpDFJzlhW8glpqWOzs7N9hyC1\n5pWDJK1RXjlIPRoMBn2HILVmcpAkjTE5SB0bDGb6DkFqzZ6D1LEE/OupSWTPQerVoO8ApNZMDpKk\nMZaVpI5ZVtKksqwkSWrF5CB1bPv2Qd8hSK2ZHKSOuXuGppE9B0lao+w5SJJaMTlIHXNvJU0jk4Mk\naYzJQeqYeytpGtmQljrmQ3CaVDakpV4N+g5Aas3kIEkaY1lJ6phlJU0qy0qSpFZMDlLH3FtJ08jk\nIHXMvZU0jew5SNIaZc9BktSKyUHqmHsraRqZHCRJY0wOUsfcW0nTyIa01DEfgtOksiEt9WrQdwBS\nayYHSdIYy0pSxywraVJZVpIktWJykDrm3kqaRiYHqWPuraRptKTkkGRXku8meTbJQ0kuSHJJkoNJ\nnk/yWJKLT5t/OMlzSW4cGd/SvMcLSfaMjF+QZF+z5qkkVy0lXqkPMzMzfYcgtbbo5JDkx4DPAR+u\nqp8E1gGfAnYCj1fVNcATwK5m/nXA7cC1wM3APUnmGyH3AjuqahOwKclNzfgO4ERVXQ3sAe5ebLyS\npHO3lCuH/wv8NfB3kqwD3gUcA24F9jZz9gK3Na9vAfZV1RtVdQQ4DGxNcgVwUVU908x7YGTN6Hs9\nDNywhHilXri3kqbRopNDVb0K/DfgLxgmhZNV9ThweVUdb+a8DFzWLNkAvDTyFseasQ3A0ZHxo83Y\n29ZU1ZvAa0kuXWzMkqRzs26xC5P8feAXgB8DTgJfT/IvgNPv6F7OO7wXvB8XYHZ2lo0bNwKwfv16\nNm/efKrWO//JzWOP+ziemwMYTEw8Hq/d48FgwNzwL+Sp35dnsuiH4JLcDnysqj7XHP9L4KeAnwZm\nqup4UzJ6sqquTbITqKq6q5l/ANgNvDg/pxnfBny0qj4/P6eqvpXkfOAHVXXZArH4EJwmlg/BaVJ1\n9RDc88BPJbmwaSzfABwCHgFmmznbgW80rx8BtjV3IL0f+ADwdFN6Oplka/M+nz5tzfbm9ScZNril\nKTPoOwCptUWXlarqz5M8APwP4E3gfwK/AVwE7E/yWYZXBbc38w8l2c8wgbwO3DHycf9OYA64EHi0\nqg404/cBDyY5DLwCbFtsvJKkc+feSlLHLCtpUrm3kiSpFZOD1DH3VtI0MjlIHXNvJU0jew6StEbZ\nc5AktWJykDo2/4SqNE1MDpKkMSYHqWODwUzfIUit2ZCWOuZDcJpUNqSlXg36DkBqzeQgSRpjWUnq\nmGUlTSrLSpKkVkwOUsfcW0nTyOQgdcy9lTSN7DlI0hplz0GS1IrJQeqYeytpGpkcJEljTA5Sx9xb\nSdPIhrTUMR+C06SyIS31atB3AFJrJgdJ0hjLSlLHLCtpUllWkiS1YnKQOubeSppGJgepY+6tpGlk\nz0GS1ih7DpKkVkwOUsfcW0nTyOQgSRpjcpA65t5KmkY2pKWO+RCcJpUNaalXg74DkFozOUiSxiwp\nOSS5OMnXkzyX5LtJrk9ySZKDSZ5P8liSi0fm70pyuJl/48j4liTPJnkhyZ6R8QuS7GvWPJXkqqXE\nK/Vjpu8ApNaWeuXwq8CjVXUt8CHge8BO4PGqugZ4AtgFkOQ64HbgWuBm4J4k87Wue4EdVbUJ2JTk\npmZ8B3Ciqq4G9gB3LzFeSdI5WHRySPJe4J9W1f0AVfVGVZ0EbgX2NtP2Arc1r28B9jXzjgCHga1J\nrgAuqqpnmnkPjKwZfa+HgRsWG6/UF/dW0jRaypXD+4H/k+T+JH+W5DeSvBu4vKqOA1TVy8BlzfwN\nwEsj6481YxuAoyPjR5uxt62pqjeB15JcuoSYpRXn3kqaRktJDuuALcCvV9UW4K8YlpROv2lvOW/i\nW/CWK2mSzczM9B2C1Nq6Jaw9CrxUVX/aHP8Ow+RwPMnlVXW8KRn9sPn+MeB9I+uvbMbOND665vtJ\nzgfeW1UnFgpmdnaWjRs3ArB+/Xo2b9586h/l/PYFHnvsscdr+XgwGDA3Nwdw6vflmSzpIbgkfwh8\nrqpeSLIbeHfzrRNVdVeSLwGXVNXOpiH9EHA9w3LRHwBXV1Ul+SbwBeAZ4PeAr1bVgSR3AD9RVXck\n2QbcVlXbFojDh+A0sQaDwal/qNIkOdtDcEu5coDhL/SHkvwI8L+BzwDnA/uTfBZ4keEdSlTVoST7\ngUPA68AdI7/R7wTmgAsZ3v10oBm/D3gwyWHgFWAsMUiSlp/bZ0gd+/KXh1/SpDnblYPJQeqYeytp\nUrm3ktSrQd8BSK2ZHCRJYywrSR2zrKRJZVlJktSKyUHqmHsraRqZHKSOubeSppE9B0lao+w5SJJa\nMTlIHZvf+EyaJiYHSdIYk4PUscFgpu8QpNZsSEsd8yE4TSob0lKvBn0HILVmcpAkjbGsJHXMspIm\nlWUlSVIrJgepY+6tpGlkcpA65t5Kmkb2HCRpjbLnIElqxeQgdcy9lTSNTA6SpDEmB6lj7q2kaWRD\nWuqYD8FpUtmQlno16DsAqTWTgyRpjGUlqWOWlTSpLCtJkloxOWhNu/TS4Sf7Lr9g0PnPuPTSvv8k\ntdqYHLSmvfrqsOTT5deTT3b/M159te8/Sa029hy0pq2WfsBqOQ+tLHsOkqRWTA5Sx9xbSdPI5CBJ\nGmPPQWvaaqnVr5bz0MrqtOeQ5Lwkf5bkkeb4kiQHkzyf5LEkF4/M3ZXkcJLnktw4Mr4lybNJXkiy\nZ2T8giT7mjVPJblqqfFKkt7ZcpSVvggcGjneCTxeVdcATwC7AJJcB9wOXAvcDNyTZD5j3QvsqKpN\nwKYkNzXjO4ATVXU1sAe4exnilVaUPQdNoyUlhyRXAp8AfnNk+FZgb/N6L3Bb8/oWYF9VvVFVR4DD\nwNYkVwAXVdUzzbwHRtaMvtfDwA1LiVeSdG6WeuXwK8C/A0arnZdX1XGAqnoZuKwZ3wC8NDLvWDO2\nATg6Mn60GXvbmqp6E3gtic+CaqrMzMz0HYLU2qKTQ5KfAY5X1beBBRsajeVsk53t50iSlsm6Jaz9\nCHBLkk8A7wIuSvIg8HKSy6vqeFMy+mEz/xjwvpH1VzZjZxofXfP9JOcD762qEwsFMzs7y8aNGwFY\nv349mzdvPvWJbb7m67HHfRzv2bNnRf4+wmScr8eTezwYDJibmwM49fvyTJblVtYkHwX+bVXdkuRu\n4JWquivJl4BLqmpn05B+CLieYbnoD4Crq6qSfBP4AvAM8HvAV6vqQJI7gJ+oqjuSbANuq6ptC/x8\nb2XVoqzELaCDweDUP9SueCurFuNst7Iu5crhTH4Z2J/ks8CLDO9QoqoOJdnP8M6m14E7Rn6j3wnM\nARcCj1bVgWb8PuDBJIeBV4CxxCBNuq4Tg9QFH4LTmrZaPnGvlvPQynLjPalHb/UEpOlhcpAkjbGs\npDVttZRjVst5aGVZVpIktWJykDpmz0HTyOQgSRpjz0Fr2mqp1a+W89DKsucgSWrF5CB1zJ6DppHJ\nQZI0xp6D1rTVUqtfLeehlWXPQZLUislB6pg9B00jk4MkaYw9B61pq6VWv1rOQyvLnoMkqRWTg9Qx\new6aRiYHSdIYew5a01ZLrX61nIdWlj0HSVIrJgepY/YcNI1MDpKkMfYctKatllr9ajkPrSx7DpKk\nVkwOUsfsOWgamRwkSWPsOWhNWy21+tVyHlpZ9hwkSa2YHKSO2XPQNFrXdwBSn4rAghfV06VG/ist\nB3sOWtNWS61+tZyHVpY9B0lSKyYHqWP2HDSNTA6SpDH2HLSmrZZa/Wo5D60sew6SpFYWnRySXJnk\niSTfTfKdJF9oxi9JcjDJ80keS3LxyJpdSQ4neS7JjSPjW5I8m+SFJHtGxi9Isq9Z81SSqxYbr9QX\new6aRku5cngD+DdV9ePAPwbuTPJBYCfweFVdAzwB7AJIch1wO3AtcDNwT5L5y5l7gR1VtQnYlOSm\nZnwHcKKqrgb2AHcvIV5J0jladHKoqper6tvN678EngOuBG4F9jbT9gK3Na9vAfZV1RtVdQQ4DGxN\ncgVwUVU908x7YGTN6Hs9DNyw2HilvszMzPQdgtTasvQckmwENgPfBC6vquMwTCDAZc20DcBLI8uO\nNWMbgKMj40ebsbetqao3gdeSXLocMUuSzmzJ22ckeQ/DT/VfrKq/THL6PRPLeQ/FGTc6mJ2dZePG\njQCsX7+ezZs3n/rENl/z9djjhY6T4THMNP9f7uM9DD87dfX+A97znreO+/7z9HhyjweDAXNzcwCn\nfl+eyZJuZU2yDvhd4Per6lebseeAmao63pSMnqyqa5PsBKqq7mrmHQB2Ay/Oz2nGtwEfrarPz8+p\nqm8lOR/4QVVdtkAc3sqqiZUMqJrpOwxpTJe3sv4WcGg+MTQeAWab19uBb4yMb2vuQHo/8AHg6ab0\ndDLJ1qZB/enT1mxvXn+SYYNbmjIzfQcgtbboK4ckHwH+CPgOw9JRAf8eeBrYD7yP4VXB7VX1WrNm\nF8M7kF5nWIY62Iz/Q2AOuBB4tKq+2Iz/KPAg8GHgFWBb08w+PRavHDSxfEBNk+psVw4+IS11zLKS\nJpVPSEuSWjE5SB3bvXum7xCk1iwrSdIaZVlJ6tH8febSNDE5SJLGWFaSpDXKspIkqRWTg9Sx2dlB\n3yFIrVlWkjrmQ3CaVD4hLfXI7TM0qew5SJJaMTlInRv0HYDUmslBkjTG5CB1zL2VNI1sSEvSGmVD\nWuqReytpGpkcJEljLCtJ0hplWUmS1IrJQeqYeytpGllWkjrm3kqaVO6tJPXIvZU0qew5SJJaMTlI\nnRv0HYDUmslBkjTG5CB1zL2VNI1sSEvSGmVDWuqReytpGpkcJEljLCtJ0hplWUmS1IrJQeqYeytp\nGllWkjrm3kqaVO6tJPXIvZU0qew5SJJamYrkkOTjSb6X5IUkX+o7HqmdQd8BSK1NfHJIch7w34Gb\ngB8HPpXkg/1GJbXx7b4DkFpb13cA52ArcLiqXgRIsg+4Ffher1FpTUoWLM+ew7pfaDXfHpr6NvFX\nDsAG4KWR46PNmLTiqqr11+7du1uvkfo2DclBmmpHjhzpOwSptWkoKx0Drho5vrIZe5vFXu5LK2Hv\n3r19hyC1MvHPOSQ5H3geuAH4AfA08Kmqeq7XwCRpFZv4K4eqejPJvwYOMiyD3WdikKRuTfyVgyRp\n5dmQlpZZkvuT/FzfcUhLYXKQetb01aSJMvE9B2kSJHk3sJ/hMzbnA18BPgj8LHAh8CdV9a8WWPeL\nwD8H3jU6J8mTDB+d/gjwu0lmgaubHttFwJ/PH3d9btJCvHKQzs3HgWNV9eGq+kngAPBrVbW1OX53\nkp9ZYN2vVdX1Z5jzI836/wg8Ccx/bxvwOyYG9cnkIJ2b7wAfS/Kfk/yTqvp/wA1JvpnkWeCfMdz7\n63Rnm/PbI6/vAz7TvP4McP/yn4J07iwrSeegqg4n2QJ8AvhKkieAO4EtVfX9JLsZlpdOSfKjwK+f\nZc5fjbz/nyTZmOSjwHlVdajrc5LOxisH6Rwk+XvA/6+qrwH/FdgCFHAiyXuAn19g2YXNnFfOMmfU\ng8DXgN9atsClRfLKQTo3/wD4L0n+Bvhr4PPAbcD/4q0n9+cVQFWdTPKbwHfPNOc0DzFsdO9b9uil\nlnwITpoQSX4e+Nmq2t53LJJXDtIESPJVhndEfaLvWCTwykGStAAb0pKkMSYHSdIYk4MkaYzJQZI0\nxuQgSRpjcpAkjflb6ai7VaaC6O0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.boxplot(column='salary', sym='o', whis='range', return_type='axes')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It might look a little bit better if we pull in an actual data set. Let's use those billionaires we worked on before."
]
},
{
"cell_type": "code",
"execution_count": 323,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" rank | \n",
" citizenship | \n",
" countrycode | \n",
" networthusbillion | \n",
" selfmade | \n",
" typeofwealth | \n",
" gender | \n",
" age | \n",
" ... | \n",
" relationshiptocompany | \n",
" foundingdate | \n",
" gdpcurrentus | \n",
" sourceofwealth | \n",
" notes | \n",
" notes2 | \n",
" source | \n",
" source_2 | \n",
" source_3 | \n",
" source_4 | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 2014 | \n",
" A. Jerrold Perenchio | \n",
" 663 | \n",
" United States | \n",
" USA | \n",
" 2.600 | \n",
" self-made | \n",
" executive | \n",
" male | \n",
" 83.000 | \n",
" ... | \n",
" former chairman and CEO | \n",
" 1955.000 | \n",
" nan | \n",
" television, Univision | \n",
" represented Marlon Brando and Elizabeth Taylor | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/Jerry_Perenchio | \n",
" http://www.forbes.com/profile/a-jerrold-perenc... | \n",
" COLUMN ONE; A Hollywood Player Who Owns the Ga... | \n",
" NaN | \n",
"
\n",
" \n",
" 5 | \n",
" 2014 | \n",
" Abdulla Al Futtaim | \n",
" 687 | \n",
" United Arab Emirates | \n",
" ARE | \n",
" 2.500 | \n",
" inherited | \n",
" inherited | \n",
" male | \n",
" nan | \n",
" ... | \n",
" relation | \n",
" 1930.000 | \n",
" nan | \n",
" auto dealers, investments | \n",
" company split between him and cousin in 2000 | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/Al-Futtaim_Group | \n",
" http://www.al-futtaim.ae/content/groupProfile.asp | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
2 rows × 30 columns
\n",
"
"
],
"text/plain": [
" year name rank citizenship countrycode \\\n",
"1 2014 A. Jerrold Perenchio 663 United States USA \n",
"5 2014 Abdulla Al Futtaim 687 United Arab Emirates ARE \n",
"\n",
" networthusbillion selfmade typeofwealth gender age ... \\\n",
"1 2.600 self-made executive male 83.000 ... \n",
"5 2.500 inherited inherited male nan ... \n",
"\n",
" relationshiptocompany foundingdate gdpcurrentus \\\n",
"1 former chairman and CEO 1955.000 nan \n",
"5 relation 1930.000 nan \n",
"\n",
" sourceofwealth notes \\\n",
"1 television, Univision represented Marlon Brando and Elizabeth Taylor \n",
"5 auto dealers, investments company split between him and cousin in 2000 \n",
"\n",
" notes2 source \\\n",
"1 NaN http://en.wikipedia.org/wiki/Jerry_Perenchio \n",
"5 NaN http://en.wikipedia.org/wiki/Al-Futtaim_Group \n",
"\n",
" source_2 \\\n",
"1 http://www.forbes.com/profile/a-jerrold-perenc... \n",
"5 http://www.al-futtaim.ae/content/groupProfile.asp \n",
"\n",
" source_3 source_4 \n",
"1 COLUMN ONE; A Hollywood Player Who Owns the Ga... NaN \n",
"5 NaN NaN \n",
"\n",
"[2 rows x 30 columns]"
]
},
"execution_count": 323,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df = pd.read_excel(\"rich_people.xlsx\")\n",
"rich_df = rich_df[rich_df['year'] == 2014]\n",
"rich_df.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 324,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/numpy/lib/function_base.py:3823: RuntimeWarning: Invalid value encountered in percentile\n",
" RuntimeWarning)\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" rank | \n",
" networthusbillion | \n",
" age | \n",
" north | \n",
" politicalconnection | \n",
" founder | \n",
" foundingdate | \n",
" gdpcurrentus | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 1578.000 | \n",
" 1578.000 | \n",
" 1578.000 | \n",
" 1578.000 | \n",
" 1578.000 | \n",
" 54.000 | \n",
" 1578.000 | \n",
" 1578.000 | \n",
" 0.000 | \n",
"
\n",
" \n",
" mean | \n",
" 2014.000 | \n",
" 805.160 | \n",
" 3.958 | \n",
" 63.393 | \n",
" 0.577 | \n",
" 1.000 | \n",
" 0.519 | \n",
" 1963.465 | \n",
" nan | \n",
"
\n",
" \n",
" std | \n",
" 0.000 | \n",
" 463.300 | \n",
" 5.857 | \n",
" 13.154 | \n",
" 0.494 | \n",
" 0.000 | \n",
" 0.500 | \n",
" 38.329 | \n",
" nan | \n",
"
\n",
" \n",
" min | \n",
" 2014.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 24.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 1615.000 | \n",
" nan | \n",
"
\n",
" \n",
" 25% | \n",
" 2014.000 | \n",
" 408.000 | \n",
" 1.400 | \n",
" 53.000 | \n",
" 0.000 | \n",
" nan | \n",
" 0.000 | \n",
" 1948.000 | \n",
" nan | \n",
"
\n",
" \n",
" 50% | \n",
" 2014.000 | \n",
" 796.000 | \n",
" 2.200 | \n",
" 63.000 | \n",
" 1.000 | \n",
" nan | \n",
" 1.000 | \n",
" 1973.000 | \n",
" nan | \n",
"
\n",
" \n",
" 75% | \n",
" 2014.000 | \n",
" 1210.000 | \n",
" 3.700 | \n",
" 73.000 | \n",
" 1.000 | \n",
" nan | \n",
" 1.000 | \n",
" 1991.000 | \n",
" nan | \n",
"
\n",
" \n",
" max | \n",
" 2014.000 | \n",
" 1565.000 | \n",
" 76.000 | \n",
" 98.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 2012.000 | \n",
" nan | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" year rank networthusbillion age north \\\n",
"count 1578.000 1578.000 1578.000 1578.000 1578.000 \n",
"mean 2014.000 805.160 3.958 63.393 0.577 \n",
"std 0.000 463.300 5.857 13.154 0.494 \n",
"min 2014.000 1.000 1.000 24.000 0.000 \n",
"25% 2014.000 408.000 1.400 53.000 0.000 \n",
"50% 2014.000 796.000 2.200 63.000 1.000 \n",
"75% 2014.000 1210.000 3.700 73.000 1.000 \n",
"max 2014.000 1565.000 76.000 98.000 1.000 \n",
"\n",
" politicalconnection founder foundingdate gdpcurrentus \n",
"count 54.000 1578.000 1578.000 0.000 \n",
"mean 1.000 0.519 1963.465 nan \n",
"std 0.000 0.500 38.329 nan \n",
"min 1.000 0.000 1615.000 nan \n",
"25% nan 0.000 1948.000 nan \n",
"50% nan 1.000 1973.000 nan \n",
"75% nan 1.000 1991.000 nan \n",
"max 1.000 1.000 2012.000 nan "
]
},
"execution_count": 324,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df = rich_df.dropna(subset=['age', 'networthusbillion', 'foundingdate'])\n",
"rich_df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 325,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 325,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEACAYAAAB4ayemAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEudJREFUeJzt3X+MZfdZ3/H3x7FxYkI8a8quW5J44qDYLjSZhGAUDPUV\njik/WmwoSYkS6kkBtRVRUlJZWVdCu0hV5A2qUggSNAr1TFEDdZAS2wGyi7FvmoSkGP8I+eUFQmwI\nsBMlaxvSpIHYT/+Ys7vD9R3vvTv37j1nzvsljed8zz3n3Oeudx995/me80yqCklSN5yz6AAkSZMz\naUtSh5i0JalDTNqS1CEmbUnqEJO2JHXIREk7yU1JPpHkD5P8zyRfk2RPkiNJjiY5nOTCeQcrSX13\n2qSd5BLgJ4EXV9ULgXOBVwH7gTur6jLgLuCmeQYqSZpspv3XwN8CX5vkXOAZwF8A1wHrzTHrwPVz\niVCSdNJpk3ZVPQL8F+DP2EzWj1XVncC+qtpojjkG7J1noJKkycojlwI/DVwC/CM2Z9yvBkaff/d5\neEmas3MnOOalwIeq6jhAkncD3wFsJNlXVRtJLgY+N+7kJCZzSToDVZXRfZMk7aPAzyR5OvAV4Brg\nHuCLwCpwCLgBuO0p3vgMwpXm6+DBgxw8eHDRYUhjJU/K18AESbuqPprkfwD3Ao8D9wNvB74OuDXJ\nvwEeBl45s2ils+Chhx5adAjS1CaZaVNVPwf83Mju48DLZx6RJGlbPhGp3lpdXV10CNLUMu96c5Ky\npi1J00kydiHSmbZ6azgcLjoEaWombUnqEMsjktRClkckaRcwaau3rGmriya6T1vqgu2eIJs1y31a\nJJO2dg2TqfrA8ogkdYhJW721ujpcdAjS1LzlT72VDKkaLDoMaaztbvkzaau3EvCvptrK+7QlaRcw\naavHhosOQJqaSVuSOsSkrd46cGCw6BCkqbkQKUkt5EKkNMLeI+qi0ybtJC9Icn+S+5rvjyV5fZI9\nSY4kOZrkcJILz0bAktRnU5VHkpwDfBb4duB1wBeq6i1J3gTsqar9Y86xPCJJU5pVeeTlwKer6s+B\n64D1Zv86cP3OQpQknc60SftfAe9stvdV1QZAVR0D9s4yMGne7D2iLpq4PJLkPOAvgSuq6vNJjlfV\nRVte/0JVff2Y8yyPqJXsPaI22648Mk0/7e8D7q2qzzfjjST7qmojycXA57Y7cXV1leXlZQCWlpZY\nWVlhMBgAp1bwHTs+++NBy+Jx3OfxcDhkbW0N4GS+HGeamfavAe+rqvVmfAg4XlWHXIhUF9kwSm22\noy5/SS4AHgYuraq/afZdBNwKPKd57ZVV9eiYc03aaiXLI2qzHZVHqupLwDeM7DvO5t0kkqSzxCci\n1Vv2HlEX2XtEklrI3iPSiBMr91KXmLQlqUMsj0hSC1kekaRdwKSt3rL3iLrI8oh6y4dr1GY7eiJy\nh29s0lYr+Ri72syatiTtAiZt9dhw0QFIUzNpS1KHmLTVW/YeURe5EClJLeRCpDTC3iPqIpO2JHWI\n5RFJaiHLI5K0C5i01Vv2HlEXTZS0k1yY5F1JPpXkE0m+PcmeJEeSHE1yOMmF8w5WmqX19UVHIE1v\n0pn2zwO/VVVXAC8CHgT2A3dW1WXAXcBN8wlRmpfBogOQpnbahcgkzwLur6rnj+x/ELi6qjaSXAwM\nq+ryMee7EKlWsmGU2mwnC5HPAz6f5JYk9yV5e5ILgH1VtQFQVceAvbMNWZq34aIDkKZ27oTHvAT4\nqar6gyRvZbM0MjpH2XbOsrq6yvLyMgBLS0usrKwwGAyAUw84OHbs2HGfx8PhkLW1NYCT+XKcScoj\n+4APV9Wlzfg72UzazwcGW8ojdzc179HzLY+olQ4e3PyS2mhHvwQhyfuBn6yqP0pyALigeel4VR1K\n8iZgT1XtH3OuSVuSprTTpP0i4B3AecCfAq8FngbcCjwHeBh4ZVU9OuZck7ZaaTgcnvwxVWqb7ZL2\nJDVtquqjwLeNeenlOw1MkjQ5e49IUgvZe0SSdgGTtnrL3iPqIssj6q1kSNVg0WFIY+3o7pEdvrFJ\nW63kY+xqM2vakrQLmLTVY8NFByBNzaQtSR1i0lZvHTgwWHQI0tRciJSkFnIhUhpxoi2m1CUmbUnq\nEMsjktRClkckaRcwaau37D2iLrI8ot6y94jazN4j0gh7j6jNrGlL0i5g0laPDRcdgDS1iX5HZJKH\ngMeAJ4C/q6ork+wB/hdwCfAQm7/Y97E5xSlJYvKZ9hPAoKpeXFVXNvv2A3dW1WXAXcBN8whQmhd7\nj6iLJlqITPIZ4KVV9YUt+x4Erq6qjSQXA8OqunzMuS5EStKUdroQWcDvJLknyU80+/ZV1QZAVR0D\n9s4mVOnssPeIumiimjZwVVX9VZJvAI4kOcpmIt9q2+n06uoqy8vLACwtLbGyssJgMABO/cNx7Nix\n4z6Ph8Mha2trACfz5ThT36ed5ADwReAn2KxznyiP3F1VV4w53vKIJE3pjMsjSS5I8sxm+2uB7wE+\nBtwOrDaH3QDcNrNoJUljTVLT3gd8MMn9wEeAO6rqCHAIuLYplVwD3Dy/MKXZs/eIusjH2NVb9h5R\nm9l7RBph7xG1mb1HJGkXMGmrx4aLDkCamklbkjrEpK3esveIusiFSElqIRcipREnHiGWusSkLUkd\nYnlEklrI8ogk7QImbfWWvUfURZZH1Fv2HlGb2XtEGmHvEbWZNW1J2gVM2uqx4aIDkKZm0pakDjFp\nq7fsPaIuciFSklrIhUhphL1H1EUTJ+0k5yS5L8ntzXhPkiNJjiY5nOTC+YUpSYLpZtpvAD65Zbwf\nuLOqLgPuAm6aZWDSvA0Gg0WHIE1toqSd5NnA9wPv2LL7OmC92V4Hrp9taJKkUZPOtN8K3AhsXVHc\nV1UbAFV1DNg749ikubL3iLro3NMdkOQHgI2qeiDJ4CkO3fYWkdXVVZaXlwFYWlpiZWXl5I+mJxaD\nHDs+2+P19VOJuw3xOO73eDgcsra2BnAyX45z2lv+krwZeA3wVeAZwNcB7wZeCgyqaiPJxcDdVXXF\nmPO95U+tZO8RtdkZ3/JXVf+pqp5bVZcCPwrcVVU/BtwBrDaH3QDcNsN4JUlj7OQ+7ZuBa5McBa5p\nxlKHDBcdgDQ1n4hUb9lPW23mE5HSCHuPqIucaUtSCznTlkacuN1K6hKTtiR1iOURSWohyyOStAuY\ntNVb9h5RF1keUW95n7babLvyiElbvWXvEbWZNW1J2gVM2uqx4aIDkKZm0pakDjFpq7fsPaIuciFS\nklrIhUhphL1H1EUmbUnqEMsjktRClkckaRcwaau37D2iLjpt0k5yfpL/k+T+JJ9I8uZm/54kR5Ic\nTXI4yYXzD1eanfX1RUcgTW+imnaSC6rqS0meBnwI+I/ADwJfqKq3JHkTsKeq9o8515q2WsneI2qz\nHdW0q+pLzeb5zTmPANcBJ+Yq68D1M4hTkvQUJkraSc5Jcj9wDBhW1SeBfVW1AVBVx4C98wtTmofh\nogOQpnbuJAdV1RPAi5M8CzicZACM/mC57Q+aq6urLC8vA7C0tMTKygqDwQA49YCDY8eOHfd5PBwO\nWVtbAziZL8eZ+j7tJD8DfBn4cWBQVRtJLgburqorxhxvTVutdPDg5pfURmf8SxCS/APg76rqsSTP\nAA4DPwt8D3C8qg65EClJs7WThch/CNzd1LQ/AtxeVb8LHAKuTXIUuAa4eZYBS/N24kdTqUtOW9Ou\nqo8BLxmz/zjw8nkEJUkaz94jktRC9h6RpF3ApK3esveIusjyiHorGVI1WHQY0lhnfMvfDN7YpK1W\nsveI2syatiTtAiZt9dhw0QFIUzNpS1KHmLTVWwcODBYdgjQ1FyIlqYVciJRG2HtEXWTSlqQOsTwi\nSS1keUSSdgGTtnrL3iPqIssj6i17j6jN7D0ijbD3iNrMmrYk7QImbfXYcNEBSFM7bdJO8uwkdyX5\nRJKPJXl9s39PkiNJjiY5nOTC+YcrSf02yUz7q8Abq+qbgZcBP5XkcmA/cGdVXQbcBdw0vzCl2bP3\niLpo6oXIJO8BfrH5urqqNpJcDAyr6vIxx7sQKUlTmslCZJJlYAX4CLCvqjYAquoYsHfnYUpnj71H\n1EXnTnpgkmcCvwG8oaq+mGR0+rztdHp1dZXl5WUAlpaWWFlZYTAYAKf+4Th27Nhxn8fD4ZC1tTWA\nk/lynInKI0nOBd4L/HZV/Xyz71PAYEt55O6qumLMuZZHJGlKOy2P/HfgkycSduN2YLXZvgG4bUcR\nSpJOa5Jb/q4CXg18d5L7k9yX5HuBQ8C1SY4C1wA3zzdUabbsPaIu8jF29Za9R9Rm9h6RRth7RG1m\n7xFJ2gVM2uqx4aIDkKZm0pakDjFpq7fsPaIuciFSklrIhUhpxIlHiKUuMWlLUodYHpGkFrI8Ikm7\ngElbvWXvEXWR5RH1lr1H1Gb2HpFG2HtEbWZNW5J2AZO2emy46ACkqZm0JalDTNrqLXuPqItciJSk\nFjrjhcgkv5JkI8kfbtm3J8mRJEeTHE5y4awDlubN3iPqoknKI7cA/2xk337gzqq6DLgLuGnWgUmS\nnmyi8kiSS4A7quqFzfhB4Oqq2khyMTCsqsu3OdfyiCRNadb3ae+tqg2AqjoG7N1JcJKkyczq7hGn\n0uoce4+oi849w/M2kuzbUh753FMdvLq6yvLyMgBLS0usrKwwGAyAU4tBjh2f7fH6+qnE3YZ4HPd7\nPBwOWVtbAziZL8eZtKa9zGZN+58040PA8ao6lORNwJ6q2r/Nuda01Ur2HlGbnXHDqCTvBAbA1wMb\nwAHgPcC7gOcADwOvrKpHtznfpK1WMmmrzezyJ42wNavazC5/krQLmLTVW/YeURdZHpGkFrI8Io04\ncbuV1CUmbUnqEMsjktRClkckaRcwaau37D2iLrI8ot7y4Rq1mU9ESiN8jF1tZk1bknYBk7Z6bLjo\nAKSpmbQlqUOsaauVLroIHnlk0VHs3J49cPz4oqNQF7kQqU7ZLYuEu+Vz6OxzIVIaYe8RdZFJW5I6\nxPKIWmm3lBV2y+fQ2bddeeRMfxu7NFdF4El/XbuntvxXmoUdlUeSfG+SB5P8UfNb2aWZCLU5RZ3j\n1/Duu+f+HjFha8bOeKad5BzgF4FrgL8E7klyW1U9OKvg1G+Z+0z7AWAw13fYs2eul1cP7aQ8ciXw\nx1X1MECSXweuA0za2rEzqQPnjLL8T099hms0WqSdlEe+EfjzLePPNvukhaiqqb4OHDgw9TkmbC2a\nt/yptx566KFFhyBNbSflkb8Anrtl/Oxm35Oc2Y+t0vytr68vOgRpKmd8n3aSpwFH2VyI/Cvg94FX\nVdWnZheeJGmrM55pV9XjSV4HHGGzzPIrJmxJmq+5PxEpSZodFyK1cEmuS3L5HK57dZKXbRnfkuSH\nZ3DdsddJ8q1J/muzfUOSX2i2DyR5Y7P9s0m+e6cxqL98jF1tcD3wXmZ4j3+z5jIAvgh8eFbXfSpV\ndS9w72mOOXA2YtHu5UxbM5fkkiSfTPL2JB9P8r4k5ye5NMlvJ7knyfuTvKCZCf8g8JYk9yW5Mskf\nNNd5UZInkjy7Gf9Jkqc31//dJA8k+Z0tr9+S5JeSfBi4Ffh3wH9orntVE97VST7UXOuHm/OuTnLH\nlvjfluRfN9s3N5/hgSRv2fIxr20+x4NJfmDcdbb5s7lly/te08T20STvSHJes/8zSQ4mubd57QU7\n/F+iXcSkrXn5JuBtVfUtwKPAjwBvB15XVd8G3Aj8UlV9GLgduLGqXlJVvw+cn+SZwHcC9wDfleS5\nwEZV/T/gbcAtVbUCvLMZn/CNVfWyqvqXwC8Db22u+6Hm9Yur6irgXwCHtpz3pMWdJBcB11fVtzTv\n9Z+3vHxJ8zn+OfDLSb5mu+uMk+R84BbgFVX1IuA84N9vOeRzVfWtzWe4cZJrqh9M2pqXz1TVx5rt\n+4Bl4DuAdyW5H/hvwL5tzv09NhP2PwXeDFwNfBfwgeb1lwG/1mz/KnDVlnPfdZq43gPQ3Om09zTH\nPgZ8uZkF/xDw5S2v3dpc50+ATwPT1uQvA/60qj7djNfZ/LwnvLv5fi9wyZTX1i5mTVvz8pUt24+z\nmaAfqaqXTHDuB9hM0s+tqtuS7AeeAH6zef2pZrP/d4q4Tjz19VX+/gTm6XDyttYr2XwW4RXA65rt\n0Rhympi281RPnZ2I83H8d6otnGlrXkYT0l8Dn0nyIycPSF7YbP4N8Kwtx34AeA3wx834OPD9wAeb\n8e8Br2q2X8OpGfio0etuF+PDwD9Ocl6SJZrEnOQCYKmq3ge8EXjhlnNfkU3PB57H5oNm0zgKXJLk\n0mb8Y8Bwymuoh0zampfRmWcBrwZ+vFnU+zibC5AAvw7c2Cy8Pe9E50jg/c33DwKPVtVjzfj1wGuT\nPNBc8w3bvOcdwA9tWYgcFxNV9Vk2yx0fb2K5r3n9WcB7k3wU+N+caglYwJ+x+RTwbwL/tqr+9rR/\nIn//Pb8CvBb4jeb6j7NZMhr3OaSTfLhGkjrEmbYkdYhJW5I6xKQtSR1i0pakDjFpS1KHmLQlqUNM\n2pLUISZtSeqQ/w9Y5u6pVQOZjgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df.boxplot(column='networthusbillion', whis='range', return_type='axes')"
]
},
{
"cell_type": "code",
"execution_count": 326,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 326,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEbRJREFUeJzt3W2MXOdZxvH/1brQpgHvBmobkbRLC01cJFgg0EChHZq0\nvCqJQAqvlQcIQgKUUCQUp3xI+ECbVEIVSPChKmQtVF4S1CopAmxCPJQCfUHNQkiChSgOocJbyFtV\nkEra3nzYcbw4Z23PzO7MnDP/n+RknuM5PveR4jvPXPOcZ1NVSJLa7wWzLkCStDNs6JLUETZ0SeoI\nG7okdYQNXZI6woYuSR1x3oae5LeTbCT5hy3HlpMcS3IiydEke7f83q1J/jnJo0nevFuFS5L+vwuZ\nod8FfNdZxw4D91fV5cADwK0ASV4D3AAcBL4H+K0k2blyJUnbOW9Dr6oPAU+ddfg64Mjw9RHg+uHr\na4E/qKrPVdVJ4J+Bb9mZUiVJ5zJuhr6vqjYAquoUsG94/CuBx7e875PDY5KkXbZTX4q6f4Akzdie\nMc/bSLK/qjaSHAA+NTz+SeCyLe+7dHjseZL4PwFJGkNVNX43eaENPcNfp90H9IE7gUPAvVuOvzfJ\nu9iMWr4a+Og5irrAy0vTdfvtt3P77bfPugzpec61zuS8DT3J7wE94MuS/BtwG3AHcE+SnwQeY3Nl\nC1X1SJK7gUeAZ4GfLbu2WujkyZOzLkEa2XkbelX96Da/dc02738H8I5JipIkjc4nRaUG/X5/1iVI\nIxv3S1GpNab1bJvpombNGbo6r6pG/nX8+PGRz5FmzYYuSR2RWc0skrgARpJGlGTbdejO0KUGLkFX\nGzlDlxokA6p6sy5Deh5n6JK0AJyhSw0S8D9PzSNn6JK0AGzoUqPBrAuQRmZDlxocOjTrCqTRmaFL\nUouYoUvSArChSw0Gg8GsS5BGZkOXpI4wQ5ekFjFDl0bkXi5qI2foUgP3ctG82rUZepKbkzw0/HXT\n8NhykmNJTiQ5mmTvJNeQJF2YsRt6kq8Ffgq4ElgFvj/Jq4DDwP1VdTnwAHDrThQqTVdv1gVII5tk\nhn4Q+EhVfbaqPg98EPgB4FrgyPA9R4DrJytRknQhJmno/wh8xzBiuQj4XuAyYH9VbQBU1Slg3+Rl\nStM2mHUB0sj2jHtiVf1TkjuBPwc+AzwIfL7preNeQ5oV93JRG43d0AGq6i7gLoAkvwo8Dmwk2V9V\nG0kOAJ/a7vx+v8/KygoAS0tLrK6u0uv1gDNP6jl2PItxv795bF7qcby448FgwNraGsBz/XI7Ey1b\nTPKyqvrPJC8H/gy4Cvhl4MmqujPJLcByVR1uONdli5I0onMtW5y0oX8QuAR4FnhrVQ2SXALczWae\n/hhwQ1U93XCuDV1za+vsXJon52rok0Yur2849iRwzSR/riRpdD4pKkkt4l4u0ojcy0Vt5AxdauBe\nLppXztAlaQE4Q5caJOB/nppHztAlaQHY0KVGg1kXII3Mhi41cC8XtZEZuiS1iBm6JC0AG7rU4PRu\nd1Kb2NAlqSPM0CWpRczQpRG5l4vayBm61MC9XDSvnKFL0gJwhi41cC8XzStn6JK0AGzoUqPBrAuQ\nRjZRQ09ya5KHk/xDkvcm+aIky0mOJTmR5GiSvTtVrDQt7uWiNho7Q0/yCuA4cEVV/W+SPwT+BHgN\n8ERVvTPJLcByVR1uON8MXZJGtFsZ+qeB/wVemmQP8BLgk8B1wJHhe44A109wDUnSBRq7oVfVU8Cv\nAf/GZiN/pqruB/ZX1cbwPaeAfTtRqDRN7uWiNtoz7olJXgm8FXgF8AxwT5IfA87OUbbNVfr9Pisr\nKwAsLS2xurpKr9cDzvyFcux4FuP19fW5qsfx4o4HgwFra2sAz/XL7UySod8AvKmqfno4fgtwFfBG\noFdVG0kOAMer6mDD+WbokjSi3crQTwBXJXlxkgBXA48A9wH94XsOAfdOcA1pJtzLRW000ZOiSX6J\nzeb9eeBB4EbgS4C7gcuAx4AbqurphnOdoWtuuZeL5tW5Zug++i81sKFrXtnQpRG5l4vmlXu5SNIC\nsKFLjQazLkAamQ1dauBeLmojM3RJahEzdElaADZ0qcHpR6+lNrGhS1JHmKFLUouYoUsjci8XtZEz\ndKmBj/5rXjlDl6QF4AxdauBeLppXztAlaQHY0KVGg1kXII1s7J8pKs3KJZfAU0/t/nXS+KF25ywv\nw5NP7u41tFjM0NU6Xcm3u3Ifmi4zdElaADZ0qYF7uaiNxm7oSV6d5MEkHx/++5kkNyVZTnIsyYkk\nR5Ps3cmCJUnNdiRDT/IC4N+B1wI/DzxRVe9McguwXFWHG84xQ9dYupI9d+U+NF3TyNCvAf6lqh4H\nrgOODI8fAa7foWtIks5hpxr6DwG/N3y9v6o2AKrqFLBvh64hTY0Zutpo4nXoSV4EXAvcMjx09ofI\nbT9U9vt9VlZWAFhaWmJ1dZVerwec+Qvl2PEsxuvr61O5HszH/Tqe3/FgMGBtbQ3guX65nYkz9CTX\nAj9bVd89HD8K9KpqI8kB4HhVHWw4zwxdY+lK9tyV+9B07XaG/iPA728Z3wf0h68PAffuwDUkSecx\nUUNPchGbX4i+b8vhO4E3JTkBXA3cMck1pFk4E4lI7TFRhl5V/wO87KxjT7LZ5CVJU+ReLmqdrmTP\nXbkPTZd7uUjSArChSw3M0NVGNnRJ6ggzdLVOV7LnrtyHpssMXZIWgA1damCGrjayoUtSR5ihq3W6\nkj135T40XWbokrQAbOhSAzN0tZENXZI6wgxdrdOV7Lkr96HpMkOXpAVgQ5camKGrjSb+maLStBWB\nxg+c7VJb/intBDN0tU5Xsueu3IemywxdkhaADV1qYIauNpr0h0TvTXJPkkeTPJzktUmWkxxLciLJ\n0SR7d6pYSdL2JsrQk6wBf1lVdyXZA7wUeBvwRFW9M8ktwHJVHW441wxdY+lK9tyV+9B0nStDH7uh\nJ/lS4MGqetVZx/8JeENVbSQ5AAyq6oqG823oGktXGmFX7kPTtVtfin4V8F9J7kry8STvTnIRsL+q\nNgCq6hSwb4JrSDNhhq42mmQd+h7gG4Gfq6q/S/Iu4DDPX1i77Ryk3++zsrICwNLSEqurq/R6PeDM\nXyjHjmcxXl9fn8r1YD7u1/H8jgeDAWtrawDP9cvtTBK57Af+tqpeORx/O5sN/VVAb0vkcryqDjac\nb+SisXQlqujKfWi6diVyGcYqjyd59fDQ1cDDwH1Af3jsEHDvuNeQJF24SVe5fD3wHuBFwCeAnwBe\nCNwNXAY8BtxQVU83nOsMXWOZxsx2MBg89/F3tzhD1zjONUOfaC+Xqvp74JsbfuuaSf5cSdLo3MtF\nrdOVmW1X7kPT5V4ukrQAbOhSgzPLCqX2sKFLUkeYoat1upI9d+U+NF1m6JK0AGzoUgMzdLWRDV2S\nOsIMXa3Tley5K/eh6TJDl6QFYEOXGpihq41s6JLUEWboap2uZM9duQ9Nlxm6JC0AG7rUwAxdbTTR\nfujSrKTxA2e7LC/PugJ1jRm61MB8W/PKDF2SFoANXWo0mHUB0sgmytCTnASeAb4APFtV35JkGfhD\n4BXASTZ/SPQzE9YpSTqPiTL0JJ8Avqmqntpy7E7giap6Z5JbgOWqOtxwrhm65pYZuubVbmboafgz\nrgOODF8fAa6f8BrS1N1226wrkEY3aUMv4M+TfCzJjcNj+6tqA6CqTgH7JryGNHW93mDWJUgjm3Qd\n+uuq6j+SvAw4luQEm01+q20/uPb7fVZWVgBYWlpidXWVXq8HnHmww7HjWYzX19fnqh7HizseDAas\nra0BPNcvt7Nj69CT3AZ8BrgR6FXVRpIDwPGqOtjwfjN0SRrRrmToSS5KcvHw9UuBNwMPAfcB/eHb\nDgH3jnsNSdKFmyRD3w98KMmDwIeBD1TVMeBO4E3D+OVq4I7Jy5Sm6/RHXqlNxs7Qq+pfgdWG408C\n10xSlDRra2swjDOl1nAvF6mB69A1r9zLRZIWgA1dajSYdQHSyGzoktQRZuhSAzN0zSszdGlE7uWi\nNrKhSw3cy0VtZEOXpI4wQ5ekFjFDl6QFYEOXGriXi9rIhi41GG4/LbWKGbrUwHXomldm6JK0AGzo\nUqPBrAuQRmZDl6SOMEOXGpiha16ZoUsjci8XtZENXWrgXi5qo4kbepIXJPl4kvuG4+Ukx5KcSHI0\nyd7Jy5Qknc9OzNBvBh7ZMj4M3F9VlwMPALfuwDWkqer5E6LVQhM19CSXAt8LvGfL4euAI8PXR4Dr\nJ7mGJOnCTDpDfxfwS8DW9QD7q2oDoKpOAfsmvIY0de7lojbaM+6JSb4P2Kiq9SS9c7x128Vf/X6f\nlZUVAJaWllhdXX3uo+7pv1COHc9ifMcd63NVj+PFHQ8GA9aGmwud7pfbGXsdepK3Az8OfA54CfAl\nwPuBK4FeVW0kOQAcr6qDDee7Dl1zy3Xomle7sg69qt5WVS+vqlcCPww8UFVvAT4A9IdvOwTcO+41\nJEkXbjfWod8BvCnJCeDq4VhqmcGsC5BG5qP/UoNkQFVv1mVIz3OuyMWGLjUwQ9e8ci8XaUTu5aI2\nsqFLDdzLRW1kQ5ekjjBDl6QWMUOXpAVgQ5canH70WmoTG7rUYLh1htQqZuhSA9eha16ZoUvSArCh\nS40Gsy5AGpkNXZI6wgxdamCGrnllhi6NyL1c1EY2dKmBe7mojWzoktQRZuiS1CJm6JK0AMZu6Em+\nOMlHkjyY5OEkbx8eX05yLMmJJEeT7N25cqXpcC8XtdHYDb2qPgt8Z1V9A/B1wBuTvA44DNxfVZcD\nDwC37kil0hS5l4vaaEcy9CQXsfloXR94H/CGqtpIcgAYVNUVDeeYoWtuuQ5d82rXMvQkL0jyIHCK\nzcb9CLC/qjYAquoUsG+Sa0iSLsxEDb2qvjCMXC4FviNJDzh7XuM8Ry00mHUB0sj27MQfUlWfTvIn\nwJXARpL9WyKXT213Xr/fZ2VlBYClpSVWV1fp9XrAmS+lHDuexRjWGQzmpx7HizseDAasDb/UOd0v\ntzN2hp7ky4Fnq+qZJC8BjgK/ArwZeLKq7kxyC7BcVYcbzjdD19wyQ9e8OleGPskM/SuAI0nCZnTz\nu1X1F8NM/e4kPwk8BtwwwTWkmXAvF7WRT4pKDQaDwZb4RZofPikqSQvAGboktYgzdElaADZ0qcHp\nZWNSm9jQpQbu5aI2MkOXGrgOXfPKDF2SFoANXWo0mHUB0shs6JLUEWboUgMzdM0rM3RpRO7lojay\noUsNer3BrEuQRmZDl6SO2JEfcCHNs80dnnef3wlp1mzo6jwbrRaFkYvUwL1c1EY2dEnqCNehS1KL\nuA5dkhbA2A09yaVJHkjycJKHktw0PL6c5FiSE0mOJtm7c+VK02GGrjaaZIb+OeAXq+prgW8Ffi7J\nFcBh4P6quhx4ALh18jKl6VpfX591CdLIxm7oVXWqqtaHrz8DPApcClwHHBm+7Qhw/aRFStP29NNP\nz7oEaWQ7kqEnWQFWgQ8D+6tqAzabPrBvJ64hSTq3iRt6kouBPwJuHs7Uz1664lIWtc7JkydnXYI0\nsomWLSbZA/wx8KdV9evDY48CvaraSHIAOF5VBxvOtdFL0hi2W7Y46aP/vwM8crqZD90H9IE7gUPA\nvaMUJEkaz9gz9CSvAz4IPMRmrFLA24CPAncDlwGPATdUld8wSdIum9mTopKkneWTopLUETZ0SeoI\nG7oWUpL3J/nYcNuKG4fHfmq4ZcWHk7w7yW8Mj395kj9K8pHhr2+bbfVSMzN0LaQkS1X1dJIXAx8D\nvgv4azYfkPsMcBxYr6qbkrwX+M2q+psklwFHq+o1Myte2oY/sUiL6heSnN6W4lLgLcCgqp4BSHIP\n8DXD378GOJgzP8vu4iQXVdX/TLVi6Txs6Fo4Sd4AvBF4bVV9NslxNvciet4DcKdPGb732WnVKI3D\nDF2LaC/w1LCZXwFcBVwMvD7J3uET0D+45f3HgJtPD5J8/VSrlS6QDV2L6M+AFyV5GHg78LfAvw9f\nfxT4K+BfgWeG778ZuDLJ3yf5R+Bnpl+ydH5+KSoNJXlpVf13khcC7wd+u6oat66Q5pEzdOmM25M8\nyOZ2Fp+wmattnKFLUkc4Q5ekjrChS1JH2NAlqSNs6JLUETZ0SeoIG7okdcT/AWhvypBns9Z1AAAA\nAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df.boxplot(column='age', whis='range', return_type='axes')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Officializing the spread\n",
"\n",
"I'm going to steal a set of numbers from [Khan Academy](https://www.khanacademy.org/math/probability/descriptive-statistics/variance-std-deviation/v/range-variance-and-standard-deviation-as-measures-of-dispersion). Let's say we have two very boring sets of numbers."
]
},
{
"cell_type": "code",
"execution_count": 327,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"list one is\n",
"0 -10\n",
"1 0\n",
"2 10\n",
"3 20\n",
"4 30\n",
"dtype: int64\n",
"list two is\n",
"0 8\n",
"1 9\n",
"2 10\n",
"3 11\n",
"4 12\n",
"dtype: int64\n"
]
}
],
"source": [
"list_one = pd.Series([-10, 0, 10, 20, 30])\n",
"list_two = pd.Series([8, 9, 10, 11, 12])\n",
"print(\"list one is\")\n",
"print(list_one)\n",
"print(\"list two is\")\n",
"print(list_two)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use their central tendencies to describe them."
]
},
{
"cell_type": "code",
"execution_count": 328,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The mean of list_one is 10.0\n",
"The mean of list_two is 10.0\n",
"The median of list_one is 10.0\n",
"The median of list_two is 10.0\n"
]
}
],
"source": [
"print(\"The mean of list_one is\", list_one.mean())\n",
"print(\"The mean of list_two is\", list_one.mean())\n",
"print(\"The median of list_one is\", list_one.median())\n",
"print(\"The median of list_two is\", list_one.median())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Huh! But I mean, let's be honest: THESE LISTS OF NUMBERS ARE VERY DIFFERENT. If their central tendencies are the same, the way to describe them, then, is to talk about the *spread*, or how the actual numbers themselves are distributed."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So we learned about the **range** before, it's the difference between the smallest and largest number.\n",
"\n",
"* For `[-10, 0, 10, 20, 30]`, the range is `40`. It's much more dispersed.\n",
"* For `[8, 9, 10, 11, 12]`, the range is `4`. It's much tighter.\n",
"\n",
"That's helpful! But there are more ways to measure the spread than just range.\n",
"\n",
"## Measures of spread\n",
"\n",
"Along with range, there are two other things we need to learn about how these numbers are distributed: **variance** and **standard deviation**.\n",
"\n",
"* **Range** is the difference between the largest and smallest number\n",
"* **Variance** is difference between each data point and the mean, squared. And then you take the mean of that. *What* Yeah, I know, we'll break it down in a second.\n",
"* **Standard deviation** is the square root of the variance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Variance\n",
"\n",
"Each data point, subtracted from the mean, squared, and then you add all that together. It looks like this:"
]
},
{
"cell_type": "code",
"execution_count": 329,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"200.0"
]
},
"execution_count": 329,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Data points [-10, 0, 10, 20, 30]\n",
"# Mean: 10\n",
"((-10 - 10)**2 + (0 - 10)**2 + (10 - 10)**2 + (20 - 10)**2 + (30 - 10)**2) / 5"
]
},
{
"cell_type": "code",
"execution_count": 330,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2.0"
]
},
"execution_count": 330,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Data points [8, 9, 10, 11, 12]\n",
"# Mean: 10\n",
"((8 - 10)**2 + (9 - 10)**2 + (10 - 10)**2 + (11 - 10)**2 + (12 - 10)**2) / 5"
]
},
{
"cell_type": "code",
"execution_count": 331,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"200.0\n",
"2.0\n"
]
}
],
"source": [
"# And pandas agrees\n",
"# Please don't ask why ddof=0 it has to do with sample variance\n",
"print(list_one.var(ddof=0))\n",
"print(list_two.var(ddof=0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So first, the first data set has a much higher variance than the first variance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Standard deviation"
]
},
{
"cell_type": "code",
"execution_count": 332,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import math"
]
},
{
"cell_type": "code",
"execution_count": 333,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"14.142135623730951"
]
},
"execution_count": 333,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Data points [-10, 0, 10, 20, 30]\n",
"# Variance: 200\n",
"math.sqrt(200)"
]
},
{
"cell_type": "code",
"execution_count": 334,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"1.4142135623730951"
]
},
"execution_count": 334,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Data points [8, 9, 10, 11, 12]\n",
"# Variance: 2.0\n",
"math.sqrt(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The guy on Khan Academy is like \"Yeah! The first data set has ten times the standard deviation than the second data set!\" which he is really excited about. Since the standard deviation is 10x larger, think about it as \"generally, a data point in the first data set is 10x further from the mean than in the second data set.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Measures of spread recap\n",
"\n",
"Range is easy. Variance and standard deviation are a little tougher - think of them as **measurements of how far away from the mean your data generally is**. High variance/standard deviation = numbers are generally spread out. Small variance/standard deviation = numbers are generally closer to the mean."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Finding outliers\n",
"\n",
"Standard deviation is helpful because it describes how far away from the mean your data generally is. We can use this to **find data points that are usually far from the mean.** These are outliers!"
]
},
{
"cell_type": "code",
"execution_count": 335,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" rank | \n",
" citizenship | \n",
" countrycode | \n",
" networthusbillion | \n",
" selfmade | \n",
" typeofwealth | \n",
" gender | \n",
" age | \n",
" ... | \n",
" relationshiptocompany | \n",
" foundingdate | \n",
" gdpcurrentus | \n",
" sourceofwealth | \n",
" notes | \n",
" notes2 | \n",
" source | \n",
" source_2 | \n",
" source_3 | \n",
" source_4 | \n",
"
\n",
" \n",
" \n",
" \n",
" 516 | \n",
" 2014 | \n",
" David Rockefeller, Sr. | \n",
" 580 | \n",
" United States | \n",
" USA | \n",
" 2.900 | \n",
" inherited | \n",
" inherited | \n",
" male | \n",
" 98.000 | \n",
" ... | \n",
" relation | \n",
" 1870.000 | \n",
" nan | \n",
" oil, banking | \n",
" family made most of fortune in the late 19th a... | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/David_Rockefeller | \n",
" http://en.wikipedia.org/wiki/Standard_Oil | \n",
" http://en.wikipedia.org/wiki/Rockefeller_family | \n",
" NaN | \n",
"
\n",
" \n",
" 1277 | \n",
" 2014 | \n",
" Karl Wlaschek | \n",
" 305 | \n",
" Austria | \n",
" AUT | \n",
" 4.800 | \n",
" self-made | \n",
" founder non-finance | \n",
" male | \n",
" 96.000 | \n",
" ... | \n",
" founder | \n",
" 1953.000 | \n",
" nan | \n",
" retail | \n",
" NaN | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/BILLA | \n",
" http://en.wikipedia.org/wiki/Karl_Wlaschek | \n",
" https://www.billa.at/Footer_Nav_Seiten/Geschic... | \n",
" NaN | \n",
"
\n",
" \n",
" 1328 | \n",
" 2014 | \n",
" Kirk Kerkorian | \n",
" 328 | \n",
" United States | \n",
" USA | \n",
" 4.500 | \n",
" self-made | \n",
" self-made finance | \n",
" male | \n",
" 96.000 | \n",
" ... | \n",
" investor | \n",
" 1924.000 | \n",
" nan | \n",
" casinos, investments | \n",
" purchased in 1969 | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/Kirk_Kerkorian | \n",
" http://www.forbes.com/profile/kirk-kerkorian/ | \n",
" PROFILE: Las Vegas billionaire amassed his wea... | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
3 rows × 30 columns
\n",
"
"
],
"text/plain": [
" year name rank citizenship countrycode \\\n",
"516 2014 David Rockefeller, Sr. 580 United States USA \n",
"1277 2014 Karl Wlaschek 305 Austria AUT \n",
"1328 2014 Kirk Kerkorian 328 United States USA \n",
"\n",
" networthusbillion selfmade typeofwealth gender age \\\n",
"516 2.900 inherited inherited male 98.000 \n",
"1277 4.800 self-made founder non-finance male 96.000 \n",
"1328 4.500 self-made self-made finance male 96.000 \n",
"\n",
" ... relationshiptocompany foundingdate gdpcurrentus \\\n",
"516 ... relation 1870.000 nan \n",
"1277 ... founder 1953.000 nan \n",
"1328 ... investor 1924.000 nan \n",
"\n",
" sourceofwealth notes \\\n",
"516 oil, banking family made most of fortune in the late 19th a... \n",
"1277 retail NaN \n",
"1328 casinos, investments purchased in 1969 \n",
"\n",
" notes2 source \\\n",
"516 NaN http://en.wikipedia.org/wiki/David_Rockefeller \n",
"1277 NaN http://en.wikipedia.org/wiki/BILLA \n",
"1328 NaN http://en.wikipedia.org/wiki/Kirk_Kerkorian \n",
"\n",
" source_2 \\\n",
"516 http://en.wikipedia.org/wiki/Standard_Oil \n",
"1277 http://en.wikipedia.org/wiki/Karl_Wlaschek \n",
"1328 http://www.forbes.com/profile/kirk-kerkorian/ \n",
"\n",
" source_3 source_4 \n",
"516 http://en.wikipedia.org/wiki/Rockefeller_family NaN \n",
"1277 https://www.billa.at/Footer_Nav_Seiten/Geschic... NaN \n",
"1328 PROFILE: Las Vegas billionaire amassed his wea... NaN \n",
"\n",
"[3 rows x 30 columns]"
]
},
"execution_count": 335,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df.sort_values(by='age', ascending=False).head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How strange is it that those old rich people are *so old*? We can see how many standard deviations they are away from the mean."
]
},
{
"cell_type": "code",
"execution_count": 336,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"rich_df['age_std'] = ((rich_df['age'] - rich_df['age'].mean()).apply(abs) / rich_df['age'].std())"
]
},
{
"cell_type": "code",
"execution_count": 337,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" rank | \n",
" citizenship | \n",
" countrycode | \n",
" networthusbillion | \n",
" selfmade | \n",
" typeofwealth | \n",
" gender | \n",
" age | \n",
" ... | \n",
" foundingdate | \n",
" gdpcurrentus | \n",
" sourceofwealth | \n",
" notes | \n",
" notes2 | \n",
" source | \n",
" source_2 | \n",
" source_3 | \n",
" source_4 | \n",
" age_std | \n",
"
\n",
" \n",
" \n",
" \n",
" 516 | \n",
" 2014 | \n",
" David Rockefeller, Sr. | \n",
" 580 | \n",
" United States | \n",
" USA | \n",
" 2.900 | \n",
" inherited | \n",
" inherited | \n",
" male | \n",
" 98.000 | \n",
" ... | \n",
" 1870.000 | \n",
" nan | \n",
" oil, banking | \n",
" family made most of fortune in the late 19th a... | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/David_Rockefeller | \n",
" http://en.wikipedia.org/wiki/Standard_Oil | \n",
" http://en.wikipedia.org/wiki/Rockefeller_family | \n",
" NaN | \n",
" 2.631 | \n",
"
\n",
" \n",
" 1277 | \n",
" 2014 | \n",
" Karl Wlaschek | \n",
" 305 | \n",
" Austria | \n",
" AUT | \n",
" 4.800 | \n",
" self-made | \n",
" founder non-finance | \n",
" male | \n",
" 96.000 | \n",
" ... | \n",
" 1953.000 | \n",
" nan | \n",
" retail | \n",
" NaN | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/BILLA | \n",
" http://en.wikipedia.org/wiki/Karl_Wlaschek | \n",
" https://www.billa.at/Footer_Nav_Seiten/Geschic... | \n",
" NaN | \n",
" 2.479 | \n",
"
\n",
" \n",
" 1328 | \n",
" 2014 | \n",
" Kirk Kerkorian | \n",
" 328 | \n",
" United States | \n",
" USA | \n",
" 4.500 | \n",
" self-made | \n",
" self-made finance | \n",
" male | \n",
" 96.000 | \n",
" ... | \n",
" 1924.000 | \n",
" nan | \n",
" casinos, investments | \n",
" purchased in 1969 | \n",
" NaN | \n",
" http://en.wikipedia.org/wiki/Kirk_Kerkorian | \n",
" http://www.forbes.com/profile/kirk-kerkorian/ | \n",
" PROFILE: Las Vegas billionaire amassed his wea... | \n",
" NaN | \n",
" 2.479 | \n",
"
\n",
" \n",
"
\n",
"
3 rows × 31 columns
\n",
"
"
],
"text/plain": [
" year name rank citizenship countrycode \\\n",
"516 2014 David Rockefeller, Sr. 580 United States USA \n",
"1277 2014 Karl Wlaschek 305 Austria AUT \n",
"1328 2014 Kirk Kerkorian 328 United States USA \n",
"\n",
" networthusbillion selfmade typeofwealth gender age ... \\\n",
"516 2.900 inherited inherited male 98.000 ... \n",
"1277 4.800 self-made founder non-finance male 96.000 ... \n",
"1328 4.500 self-made self-made finance male 96.000 ... \n",
"\n",
" foundingdate gdpcurrentus sourceofwealth \\\n",
"516 1870.000 nan oil, banking \n",
"1277 1953.000 nan retail \n",
"1328 1924.000 nan casinos, investments \n",
"\n",
" notes notes2 \\\n",
"516 family made most of fortune in the late 19th a... NaN \n",
"1277 NaN NaN \n",
"1328 purchased in 1969 NaN \n",
"\n",
" source \\\n",
"516 http://en.wikipedia.org/wiki/David_Rockefeller \n",
"1277 http://en.wikipedia.org/wiki/BILLA \n",
"1328 http://en.wikipedia.org/wiki/Kirk_Kerkorian \n",
"\n",
" source_2 \\\n",
"516 http://en.wikipedia.org/wiki/Standard_Oil \n",
"1277 http://en.wikipedia.org/wiki/Karl_Wlaschek \n",
"1328 http://www.forbes.com/profile/kirk-kerkorian/ \n",
"\n",
" source_3 source_4 age_std \n",
"516 http://en.wikipedia.org/wiki/Rockefeller_family NaN 2.631 \n",
"1277 https://www.billa.at/Footer_Nav_Seiten/Geschic... NaN 2.479 \n",
"1328 PROFILE: Las Vegas billionaire amassed his wea... NaN 2.479 \n",
"\n",
"[3 rows x 31 columns]"
]
},
"execution_count": 337,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df.sort_values(by='age', ascending=False).head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"They are **thirteen standard deviations away from the mean.** Generally, 3.0 is considered a crazy outlier. 1.5 is considered *maybe* an outlier, but probably not really. So no one's looking *crazy old* here.\n",
"\n",
"What about in terms of wealth?"
]
},
{
"cell_type": "code",
"execution_count": 338,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 338,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD7pJREFUeJzt3X+s3Xddx/HnaxSFMai3QlvjCjKUrpAImAWmqBxhgKLZ\nGk3qT9IKGBMwm5iQtfjHrn8IjMQQTDSRgMuNGUpHXDYN0lrbE/zBL0ORsY2GiJRB7EXZWpwmMMbb\nP+4ZXMq5t/ee77n3nvM5z0dyt3O+9/vt53OS5bVP39/393NSVUiSpt9lWz0BSdJ4GOiS1AgDXZIa\nYaBLUiMMdElqhIEuSY24ZKAneU+SxSSfWnZsLsnxJGeSHEuyfdnvjiT5bJL7k7xioyYuSfpOa1mh\n3wa88qJjh4ETVbUXOAkcAUjyHOAAsA/4OeBPk2R805UkreSSgV5V/wQ8dNHhG4CFwesFYP/g9fXA\nX1XVN6rq88BngReOZ6qSpNWMWkPfWVWLAFV1Dtg5OP6DwAPLzvvS4JgkaYON66ao+wdI0hbbNuJ1\ni0l2VdVikt3AlwfHvwTsWXbelYNj3yWJ/xOQpBFU1dB7k2sN9Ax+HnM3cAi4FTgI3LXs+O1J3sFS\nqeWHgY+tMqk1Di9trvn5eebn57d6GtJ3Wa3P5JKBnuS9QA/4/iRfAG4B3gbckeQ1wFmWOluoqvuS\nHAXuAx4BXl+mtiRtiksGelX92gq/um6F898KvLXLpCRJ6+eTotIQvV5vq6cgrduoN0WlqbFZz7ZZ\nXdRWM9DVPINWs8KSiyQ1wkCXpEYY6NIQtqBrGmWr6otJbFHXxErA/zw1iZKs+KSoK3RJaoSBLkmN\nMNAlqREGuiQ1wkCXhrjllq2egbR+drlI0hSxy0WSZoCBLkmNMNAlqREGuiQ1wkCXhnAvF00ju1yk\nIdzLRZNqw7pcktyU5J7Bz42DY3NJjic5k+RYku1dxpAkrc3IgZ7kucBrgWuA5wO/kORZwGHgRFXt\nBU4CR8YxUUnS6rqs0PcBH62qr1XVo8CHgF8ErgcWBucsAPu7TVGStBZdAv3TwE8NSiyXA68C9gC7\nqmoRoKrOATu7T1OSdCkjf0l0VX0mya3A3wMPA6eBR4edOuoY0lZxLxdNo5EDHaCqbgNuA0jyh8AD\nwGKSXVW1mGQ38OWVrp9f1hvW6/Xo9XpdpiONjW2LmhT9fp9+v7+mczu1LSZ5WlX9V5KnAx8ErgV+\nH3iwqm5NcjMwV1WHh1xr26IkrdNqbYtdA/1DwA7gEeCNVdVPsgM4ylI9/SxwoKrOD7nWQJekddqw\nQO/CQJek9XP7XEmaAQa6NIQ3RTWNLLlIQ7iXiyaVJRdJmgEGuiQ1wkCXpEYY6JLUCANdGsK9XDSN\n7HKRpClil4skzQADXZIaYaBLUiMMdElqhIEuDeFeLppGdrlIQ7iXiyaVXS6SNAMMdElqhIEuSY0w\n0CWpEZ0CPcmRJPcm+VSS25N8T5K5JMeTnElyLMn2cU1W2izu5aJpNHKXS5JnAKeAq6vq60neB3wA\neA7wlap6e5KbgbmqOjzkertcJGmdNqrL5avA14EnJdkGPBH4EnADsDA4ZwHY32EMSdIajRzoVfUQ\n8EfAF1gK8gtVdQLYVVWLg3POATvHMVFJ0uq2jXphkquANwLPAC4AdyT5deDiOsqKdZX5ZY/j9Xo9\ner3eqNORpCb1+336/f6azu1SQz8AvLyqfmvw/tXAtcBLgV5VLSbZDZyqqn1DrreGLknrtFE19DPA\ntUmekCTAy4D7gLuBQ4NzDgJ3dRhD2hLu5aJp1GkvlyRvYim8HwVOA68DngwcBfYAZ4EDVXV+yLWu\n0DWx3MtFk2q1Fbqbc0lDGOiaVG7OJUkzwECXpEYY6JLUCANdGsK9XDSNvCkqSVPEm6KSNAMMdElq\nhIEuSY0w0CWpEQa6NIR7uWga2eUiDeGj/5pUdrlI0gww0CWpEQa6JDXCQJekRoz8naLSVtmxAx56\naOPHydDbTuMzNwcPPrixY2i22OWiqdNKB0orn0Obyy4XSZoBBrokNWLkQE/y7CSnk3xi8O8LSW5M\nMpfkeJIzSY4l2T7OCUuShhtLDT3JZcAXgRcBvwN8parenuRmYK6qDg+5xhq6RtJK7bmVz6HNtRk1\n9OuAf6+qB4AbgIXB8QVg/5jGkCStYlyB/svAewevd1XVIkBVnQN2jmkMSdIqOvehJ3k8cD1w8+DQ\nxX+JXPEvlfPLtrTr9Xr0er2u05GkpvT7ffr9/prO7VxDT3I98Pqq+tnB+/uBXlUtJtkNnKqqfUOu\ns4aukbRSe27lc2hzbXQN/VeBv1z2/m7g0OD1QeCuMYwhSbqETiv0JJcDZ4Grqup/Bsd2AEeBPYPf\nHaiq80OudYWukbSysm3lc2hzrbZC99F/TZ1WgrCVz6HN5aP/kjQDDHRJaoSBLkmNMNAlqREGuiQ1\nwkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1IjO3ykqbbYiMHQ3\n6OlSy/4pjYOBrqkTqokvhkiMc42XJRdJaoSBLkmN6BToSbYnuSPJ/UnuTfKiJHNJjic5k+RYku3j\nmqwkaWVdV+jvBD5QVfuA5wGfAQ4DJ6pqL3ASONJxDEnSGqRGvLuU5CnA6ap61kXHPwO8pKoWk+wG\n+lV19ZDra9SxNdsS2rkp2sDn0OZKQlUN7fPqskJ/JvDfSW5L8okk70pyObCrqhYBquocsLPDGJKk\nNerStrgN+DHgDVX1r0newVK55eI1x4prkPn5+W+97vV69Hq9DtORpPb0+336/f6azu1SctkFfLiq\nrhq8/0mWAv1ZQG9ZyeXUoMZ+8fWWXDSSVkoVrXwOba4NKbkMyioPJHn24NDLgHuBu4FDg2MHgbtG\nHUOStHYjr9ABkjwPeDfweOBzwG8CjwOOAnuAs8CBqjo/5FpX6BpJKyvbVj6HNtdqK/ROgd6Fga5R\ntRKErXwOba6N6nKRJE0QA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhph\noEtSIwx0SWqEgS5JjTDQJakRBrokNaLLd4pKWyZDd4OeLnNzWz0DtcZA19TZjC+F8MsnNI0suUhS\nIwx0SWpEp5JLks8DF4BvAo9U1QuTzAHvA54BfJ6lL4m+0HGekqRL6LpC/ybQq6oXVNULB8cOAyeq\nai9wEjjScQxJ0hp0DfQM+TNuABYGrxeA/R3HkDbdLbds9Qyk9Ut1uJWf5HPAeeBR4M+q6t1JHqqq\nuWXnPFhVO4ZcW13GlqRZlISqGtq427Vt8cVV9Z9JngYcT3IGuDilV0zt+fn5b73u9Xr0er2O05Gk\ntvT7ffr9/prO7bRC/44/KLkFeBh4HUt19cUku4FTVbVvyPmu0CVpnVZboY9cQ09yeZIrBq+fBLwC\nuAe4Gzg0OO0gcNeoY0iS1m7kFXqSZwJ3slRS2QbcXlVvS7IDOArsAc6y1LZ4fsj1rtAlaZ1WW6GP\nreSyXga6Jtn8/NKPNGkMdGmd3MtFk2pDauiSpMlioEtSIwx0SWqEgS5JjTDQpSHcy0XTyC4XSZoi\ndrlI0gww0CWpEQa6JDXCQJekRhjo0hDu46JpZJeLNIR7uWhS2eUiSTPAQJekRhjoktQIA12SGmGg\nS0O4l4umkV0ukjRFNrTLJcllST6R5O7B+7kkx5OcSXIsyfauY0iSLm0cJZebgPuWvT8MnKiqvcBJ\n4MgYxpAkXUKnQE9yJfAq4N3LDt8ALAxeLwD7u4whSVqbriv0dwBvApYXw3dV1SJAVZ0DdnYcQ5K0\nBttGvTDJzwOLVfXJJL1VTl3xzuf8sg0zer0evd5qf4y0eebn3c9Fk6Hf79Pv99d07shdLkneAvwG\n8A3gicCTgTuBa4BeVS0m2Q2cqqp9Q663y0UTy71cNKk2pMulqt5cVU+vqquAXwFOVtWrgb8BDg1O\nOwjcNeoYkqS124gHi94GvDzJGeBlg/eSpA3mg0XSEJZcNKncPleSZoCBLg3hXi6aRpZcJGmKWHKR\npBlgoEtSIwx0SWqEgS5JjTDQpSHcx0XTyC4XaQgfLNKksstFkmaAgS5JjTDQJakRBrokNcJAl4Zw\nLxdNI7tcJGmK2OUiSTPAQJekRhjoktSIkQM9yfcm+WiS00nuTfKWwfG5JMeTnElyLMn28U1XkrSS\nkQO9qr4G/ExVvQD4UeClSV4MHAZOVNVe4CRwZCwzlTaRe7loGo2lyyXJ5UAfOAT8NfCSqlpMshvo\nV9XVQ66xy0UTy71cNKk2rMslyWVJTgPnWAru+4BdVbUIUFXngJ1dxpAkrc22LhdX1TeBFyR5CnAs\nSQ+4eF3jOkeSNkGnQH9MVX01yQeAa4DFJLuWlVy+vNJ188sKlb1ej16vN47pSFIz+v0+/X5/TeeO\nXENP8lTgkaq6kOSJwDHgD4BXAA9W1a1JbgbmqurwkOutoWtiWUPXpFqtht5lhf4DwEKSsFSL/4uq\n+odBTf1oktcAZ4EDHcaQtoR7uWgauZeLJE0R93KRpBlgoEtSIwx0SWqEgS5JjTDQpSHcy0XTyC4X\naQj70DWp7HKRpBlgoEtSIwx0SWqEgS5JjTDQpSHcy0XTyC4XSZoidrlI0gwYyxdcSJNsaYfnjeff\nOLXVDHQ1z6DVrLDkIkmNMNAlqREGuiQ1wkCXpEaMHOhJrkxyMsm9Se5JcuPg+FyS40nOJDmWZPv4\npitJWkmXFfo3gN+rqucCPw68IcnVwGHgRFXtBU4CR7pPU9pc/X5/q6cgrdvIgV5V56rqk4PXDwP3\nA1cCNwALg9MWgP1dJyltNgNd02gsNfQkPwQ8H/gIsKuqFmEp9IGd4xhDkrS6zoGe5Arg/cBNg5X6\nxU9x+FSHJG2CTptzJdkG/C3wd1X1zsGx+4FeVS0m2Q2cqqp9Q6416CVpBCttztX10f8/B+57LMwH\n7gYOAbcCB4G71jMhSdJoRl6hJ3kx8CHgHpbKKgW8GfgYcBTYA5wFDlTV+bHMVpK0oi3bD12SNF4+\nKSpJjTDQJakRBrpmUpI7k3x8sG3F6wbHXjvYsuIjSd6V5I8Hx5+a5P1JPjr4+Ymtnb00nDV0zaQk\n31dV55M8Afg48Ergn1l6QO5h4BTwyaq6McntwJ9U1b8k2QMcq6rnbNnkpRX4jUWaVb+b5LFtKa4E\nXg30q+oCQJI7gB8Z/P46YF++/V12VyS5vKr+b1NnLF2Cga6Zk+QlwEuBF1XV15KcYmkvou96AO6x\nSwbnPrJZc5RGYQ1ds2g78NAgzK8GrgWuAH46yfbBE9C/tOz848BNj71J8rxNna20Rga6ZtEHgccn\nuRd4C/Bh4IuD1x8D/hH4D+DC4PybgGuS/FuSTwO/vflTli7Nm6LSQJInVdX/JnkccCfwnqoaunWF\nNIlcoUvfNp/kNEvbWXzOMNe0cYUuSY1whS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIa8f9tNHSz\n7ngLtgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['age'].plot(kind='box')"
]
},
{
"cell_type": "code",
"execution_count": 339,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"rich_df['wealth_std'] = ((rich_df['networthusbillion'] - rich_df['networthusbillion'].mean()).apply(abs) / rich_df['networthusbillion'].std())"
]
},
{
"cell_type": "code",
"execution_count": 340,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" rank | \n",
" citizenship | \n",
" countrycode | \n",
" networthusbillion | \n",
" selfmade | \n",
" typeofwealth | \n",
" gender | \n",
" age | \n",
" ... | \n",
" gdpcurrentus | \n",
" sourceofwealth | \n",
" notes | \n",
" notes2 | \n",
" source | \n",
" source_2 | \n",
" source_3 | \n",
" source_4 | \n",
" age_std | \n",
" wealth_std | \n",
"
\n",
" \n",
" \n",
" \n",
" 284 | \n",
" 2014 | \n",
" Bill Gates | \n",
" 1 | \n",
" United States | \n",
" USA | \n",
" 76.000 | \n",
" self-made | \n",
" founder non-finance | \n",
" male | \n",
" 58.000 | \n",
" ... | \n",
" nan | \n",
" Microsoft | \n",
" NaN | \n",
" NaN | \n",
" http://www.forbes.com/profile/bill-gates/ | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.410 | \n",
" 12.301 | \n",
"
\n",
" \n",
" 348 | \n",
" 2014 | \n",
" Carlos Slim Helu | \n",
" 2 | \n",
" Mexico | \n",
" MEX | \n",
" 72.000 | \n",
" self-made | \n",
" privatized and resources | \n",
" male | \n",
" 74.000 | \n",
" ... | \n",
" nan | \n",
" telecom | \n",
" NaN | \n",
" NaN | \n",
" http://www.ozy.com/provocateurs/carlos-slims-w... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.806 | \n",
" 11.618 | \n",
"
\n",
" \n",
" 124 | \n",
" 2014 | \n",
" Amancio Ortega | \n",
" 3 | \n",
" Spain | \n",
" ESP | \n",
" 64.000 | \n",
" self-made | \n",
" founder non-finance | \n",
" male | \n",
" 77.000 | \n",
" ... | \n",
" nan | \n",
" retail | \n",
" NaN | \n",
" NaN | \n",
" http://www.forbes.com/profile/amancio-ortega/ | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.034 | \n",
" 10.252 | \n",
"
\n",
" \n",
"
\n",
"
3 rows × 32 columns
\n",
"
"
],
"text/plain": [
" year name rank citizenship countrycode \\\n",
"284 2014 Bill Gates 1 United States USA \n",
"348 2014 Carlos Slim Helu 2 Mexico MEX \n",
"124 2014 Amancio Ortega 3 Spain ESP \n",
"\n",
" networthusbillion selfmade typeofwealth gender age \\\n",
"284 76.000 self-made founder non-finance male 58.000 \n",
"348 72.000 self-made privatized and resources male 74.000 \n",
"124 64.000 self-made founder non-finance male 77.000 \n",
"\n",
" ... gdpcurrentus sourceofwealth notes notes2 \\\n",
"284 ... nan Microsoft NaN NaN \n",
"348 ... nan telecom NaN NaN \n",
"124 ... nan retail NaN NaN \n",
"\n",
" source source_2 source_3 \\\n",
"284 http://www.forbes.com/profile/bill-gates/ NaN NaN \n",
"348 http://www.ozy.com/provocateurs/carlos-slims-w... NaN NaN \n",
"124 http://www.forbes.com/profile/amancio-ortega/ NaN NaN \n",
"\n",
" source_4 age_std wealth_std \n",
"284 NaN 0.410 12.301 \n",
"348 NaN 0.806 11.618 \n",
"124 NaN 1.034 10.252 \n",
"\n",
"[3 rows x 32 columns]"
]
},
"execution_count": 340,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df.sort_values(by='wealth_std', ascending=False).head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hey, look at that! They're crazy wealthy! It's OUT OF CONTROL! **THEY ARE SO WEALTHY**. **UNBELIEVABLE!!!!**\n",
"\n",
"We could also know that by looking at a simple histogram, of course."
]
},
{
"cell_type": "code",
"execution_count": 341,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 341,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmBJREFUeJzt3V+QXOV95vHv4whhsLFW6xRSrWRo/smWXGAjG5kEvG4M\nKHayEeyNI9trM7bXFwYvXntNIbEXim8shDdlk2S9Va4QBlwiGPIHREURQgXjWocFFMQgiZGlqd0I\nJG00CX9MFl84Fv7tRb9jWuOZnulzznSfl34+VV3T73tOz3n6aOA35/119ygiMDOzwfSWfgcwM7P+\ncREwMxtgLgJmZgPMRcDMbIC5CJiZDTAXATOzATZrEZB0h6QJSXunzP8nSQck7ZN0a9v8Rknjadva\ntvnVkvZKOiTpO9U+DTMzK2IuVwJ3Ar/VPiGpCfwucGFEXAj8tzS/EvgEsBL4OPBdSUoP+x/AFyJi\nBbBC0knf08zMem/WIhARPwJemTL9JeDWiDiR9nkxzV8D3BsRJyLiMDAOrJG0FDgjInan/e4Grq0g\nv5mZlVC0J7AC+LeSnpD0mKQPpPllwJG2/Y6luWXA0bb5o2nOzMz6aEGJxy2OiEslXQLcD5xbXSwz\nM+uFokXgCPCXABGxW9Lrkt5J6zf/s9r2W57mjgHvmmZ+WpL8gUZmZgVEhGbf6w1zXQ5Suk16APgo\ngKQVwMKIeAnYBvyepIWSzgHOB56KiOPAq5LWpEbxZ4EHZ3kitb9t2rSp7xneDBmd0znrfsslZxGz\nXglIugdoAu+U9AKwCfhT4E5J+4Cfpf+pExFjku4DxoCfA9fHG8luAIaBtwLbI2JHocQ1cvjw4X5H\nmFUOGcE5q+ac1colZxGzFoGI+NQMmz4zw/6bgc3TzD8NXNhVOjMzm1d+x3AJQ0ND/Y4wqxwygnNW\nzTmrlUvOIlR0HWk+SYo65jIzqzNJxDw1hm0aIyMj/Y4wqxwygnNWzTmrlUvOIlwEzMwGmJeDzMze\nJLwcZGZmXXERKCGHdcIcMoJzVs05q5VLziJcBMzMBph7AmZmbxLuCZiZWVdcBErIYZ0wh4zgnFVz\nzmrlkrMIFwEzswHmnoCZ2ZuEewJmZtYVF4ESclgnzCEjOGfVnLNaueQswkXAzGyAuSdgZvYm4Z6A\nmZl1xUWghBzWCXPICM5ZNeesVi45i5jLH5q/A/h3wEREXDRl238BvgX8ekS8nOY2Ap8HTgBfiYid\naX41J/+h+f88l4D79u3jgQcemPMTqtrll1/OFVdc0bfjm5nNp1l7ApIuB14D7m4vApKWA38CvBv4\nQES8LGklcA9wCbAc2AVcEBEh6UngyxGxW9J24PaIeHiGY/6yJ7B+/Rf4wQ8mgItLPtUijrBq1SGe\ne+7xPhzbzKw7RXoCs14JRMSPJJ09zaZvAzcB29rmrgHujYgTwGFJ48AaSc8DZ0TE7rTf3cC1wLRF\n4Ff9e+ALc9u1Uo8T8fU+HNfMrDcK9QQkrQOORMS+KZuWAUfaxsfS3DLgaNv80TSXtRzWCXPICM5Z\nNeesVi45i5j1SmAqSacBtwBXVx/HzMx6qesiAJwHNIBnJYnW2v8eSWto/eZ/Vtu+y9PcMeBd08zP\naGhoiEajwf79e2i1JM4DmmnrSPo63+OFrVH6LaDZbGY3bjabtcrTaTypLnl8Pud/7PNZbjwyMsLw\n8DAAjUaDIub0ZjFJDeChiLhwmm1/D6yOiFckrQK2Ah+itdzzCG80hp8AbgR2A38N/GFE7JjheFMa\nw79Jv3oCK1d+nbExN4bNrP7m5c1iku4BHgdWSHpB0uem7BKAACJiDLgPGAO2A9e3vfX3BuAO4BAw\nPlMByMnU3xDqKIeM4JxVc85q5ZKziLm8OuhTs2w/d8p4M7B5mv2eBn7lSsLMzPqn9p8d5OUgM7O5\n8WcHmZlZV1wESshhnTCHjOCcVXPOauWSswgXATOzAeaeQEfuCZhZPtwTMDOzrrgIlJDDOmEOGcE5\nq+ac1colZxEuAmZmA8w9gY7cEzCzfLgnYGZmXXERKCGHdcIcMoJzVs05q5VLziJcBMzMBph7Ah25\nJ2Bm+XBPwMzMuuIiUEIO64Q5ZATnrJpzViuXnEW4CJiZDTD3BDpyT8DM8uGegJmZdcVFoIQc1glz\nyAjOWTXnrFYuOYuYyx+av0PShKS9bXO3STogaVTSX0h6R9u2jZLG0/a1bfOrJe2VdEjSd6p/KmZm\n1q1ZewKSLgdeA+6OiIvS3FXAoxHxC0m3AhERGyWtArYClwDLgV3ABRERkp4EvhwRuyVtB26PiIdn\nOKZ7AmZmXZqXnkBE/Ah4Zcrcroj4RRo+Qet/+ADrgHsj4kREHAbGgTWSlgJnRMTutN/dwLXdBDUz\ns+pV0RP4PLA93V8GHGnbdizNLQOOts0fTXNZy2GdMIeM4JxVc85q5ZKziAVlHizpvwI/j4g/qyjP\nLw0NDdFoNNi/fw+t1ajzgGbaOpK+zvd4YWuUfgCazeZJ40kzbfd47uPR0dFa5cl97PM5GOdzZGSE\n4eFhABqNBkXM6X0Cks4GHprsCaS5IeCLwEcj4mdpbgOt/sCWNN4BbAKeBx6LiJVpfj3wkYj40gzH\nc0/AzKxL8/k+AaXb5IE+BtwErJssAMk2YL2khZLOAc4HnoqI48CrktZIEvBZ4MFugpqZWfXm8hLR\ne4DHgRWSXpD0OeCPgLcDj0jaI+m7ABExBtwHjNHqE1wfb1xq3ADcARwCxiNiR+XPpscmL8vqLIeM\n4JxVc85q5ZKziFl7AhHxqWmm7+yw/2Zg8zTzTwMXdpXOzMzmlT87qCP3BMwsH/7sIDMz64qLQAk5\nrBPmkBGcs2rOWa1cchbhImBmNsDcE+jIPQEzy4d7AmZm1hUXgRJyWCfMISM4Z9Wcs1q55CzCRcDM\nbIC5J9CRewJmlg/3BMzMrCsuAiXksE6YQ0Zwzqo5Z7VyyVmEi4CZ2QBzT6Aj9wTMLB/uCZiZWVdc\nBErIYZ0wh4zgnFVzzmrlkrMIFwEzswHmnkBH7gmYWT7cEzAzs664CJSQwzphDhnBOavmnNXKJWcR\nc/lD83dImpC0t21usaSdkg5KeljSorZtGyWNSzogaW3b/GpJeyUdkvSd6p+KmZl1a9aegKTLgdeA\nuyPiojS3BXgpIm6TdDOwOCI2SFoFbAUuAZYDu4ALIiIkPQl8OSJ2S9oO3B4RD89wTPcEzMy6NC89\ngYj4EfDKlOlrgLvS/buAa9P9dcC9EXEiIg4D48AaSUuBMyJid9rv7rbHmJlZnxTtCZwZERMAEXEc\nODPNLwOOtO13LM0tA462zR9Nc1nLYZ0wh4zgnFVzzmrlkrOIBRV9n8pfZzo0NESj0WD//j20VqPO\nA5pp60j6Ot/jha1R+gFoNpsnjSfNtN3juY9HR0drlSf3sc/nYJzPkZERhoeHAWg0GhQxp/cJSDob\neKitJ3AAaEbERFrqeSwiVkraAEREbEn77QA2Ac9P7pPm1wMfiYgvzXA89wTMzLo0n+8TULpN2gYM\npfvXAQ+2za+XtFDSOcD5wFNpyehVSWskCfhs22PMzKxP5vIS0XuAx4EVkl6Q9DngVuBqSQeBK9OY\niBgD7gPGgO3A9fHGpcYNwB3AIWA8InZU/WR6bfKyrM5yyAjOWTXnrFYuOYuYtScQEZ+aYdNVM+y/\nGdg8zfzTwIVdpTMzs3nlzw7qyD0BM8uHPzvIzMy64iJQQg7rhDlkBOesmnNWK5ecRbgImJkNMPcE\nOnJPwMzy4Z6AmZl1xUWghBzWCXPICM5ZNeesVi45i3ARMDMbYO4JdOSegJnlwz0BMzPriotACTms\nE+aQEZyzas5ZrVxyFuEiYGY2wNwT6Mg9ATPLh3sCZmbWFReBEnJYJ8whIzhn1ZyzWrnkLMJFwMxs\ngLkn0JF7AmaWD/cEzMysKy4CJeSwTphDRnDOqjlntXLJWUSpIiBpo6TnJO2VtFXSQkmLJe2UdFDS\nw5IWTdl/XNIBSWvLxzczszIK9wQknQ08BrwnIv5F0g+A7cAq4KWIuE3SzcDiiNggaRWwFbgEWA7s\nAi6IaQK4J2Bm1r1e9wT+GfgX4G2SFgCnAceAa4C70j53Adem++uAeyPiREQcBsaBNSWOb2ZmJRUu\nAhHxCvAHwAu0/uf/akTsApZExETa5zhwZnrIMuBI27c4luaylcM6YQ4ZwTmr5pzVyiVnEQuKPlDS\nucBXgbOBV4H7JX0amLq8U2i9aWhoiEajwf79e4DXgPOAZto6kr7O93hha5R+AJrN5knjSTNt93ju\n49HR0VrlyX3s8zkY53NkZITh4WEAGo0GRZTpCXwCuDoivpjGnwEuBT4KNCNiQtJS4LGIWClpAxAR\nsSXtvwPYFBFPTvO93RMwM+tSr3sCB4FLJb1VkoArgTFgGzCU9rkOeDDd3wasT68gOgc4H3iqxPHN\nzKykMj2BZ4G7gaeBZwEB3wO2AFdLOkirMNya9h8D7qNVKLYD10/3yqCcTF6W1VkOGcE5q+ac1col\nZxGFewIAEfEt4FtTpl8Grpph/83A5jLHNDOz6vizgzpyT8DM8uHPDjIzs664CJSQwzphDhnBOavm\nnNXKJWcRLgJmZgPMPYGO3BMws3y4J2BmZl1xESghh3XCHDKCc1bNOauVS84iXATMzAaYewIduSdg\nZvlwT8DMzLriIlBCDuuEOWQE56yac1Yrl5xFuAiYmQ0w9wQ6ck/AzPLhnoCZmXXFRaCEHNYJc8gI\nzlk156xWLjmLcBEwMxtg7gl05J6AmeXDPQEzM+uKi0AJOawT5pARnLNqzlmtXHIWUaoISFok6X5J\nByQ9J+lDkhZL2inpoKSHJS1q23+jpPG0/9ry8c3MrIxSPQFJw8API+JOSQuAtwG3AC9FxG2SbgYW\nR8QGSauArcAlwHJgF3BBTBPAPQEzs+71tCcg6R3AhyPiToCIOBERrwLXAHel3e4Crk331wH3pv0O\nA+PAmqLHNzOz8sosB50DvCjpTkl7JH1P0unAkoiYAIiI48CZaf9lwJG2xx9Lc9nKYZ0wh4zgnFVz\nzmrlkrOIBSUfuxq4ISL+TtK3gQ3A1OWdQutNQ0NDNBoN9u/fA7wGnAc009aR9HW+xwtbo/QD0Gw2\nTxpPmmm7x3Mfj46O1ipP7mOfz8E4nyMjIwwPDwPQaDQoonBPQNIS4H9FxLlpfDmtInAe0IyICUlL\ngcciYqWkDUBExJa0/w5gU0Q8Oc33dk/AzKxLPe0JpCWfI5JWpKkrgeeAbcBQmrsOeDDd3wasl7RQ\n0jnA+cBTRY9vZmbllX2fwI3AVkmjwPuAbwJbgKslHaRVGG4FiIgx4D5gDNgOXD/dK4NyMnlZVmc5\nZATnrJpzViuXnEWU6QkQEc/SesnnVFfNsP9mYHOZY5qZWXX82UEduSdgZvnwZweZmVlXXARKyGGd\nMIeM4JxVc85q5ZKzCBcBM7MB5p5AR+4JmFk+3BMwM7OuuAiUkMM6YQ4ZwTmr5pzVyiVnES4CZmYD\nzD2BjtwTMLN8uCdgZmZdcREoIYd1whwygnNWzTmrlUvOIlwEzMwGmHsCHbknYGb5cE/AzMy64iJQ\nQg7rhDlkBOesmnNWK5ecRbgImJkNMPcEOnJPwMzy4Z6AmZl1xUWghBzWCXPICM5ZNeesVi45iyhd\nBCS9RdIeSdvSeLGknZIOSnpY0qK2fTdKGpd0QNLassc2M7NySvcEJH0V+ADwjohYJ2kL8FJE3Cbp\nZmBxRGyQtArYSusP0y8HdgEXxDQB3BMwM+tez3sCkpYDvw38Sdv0NcBd6f5dwLXp/jrg3og4ERGH\ngXFgTZnjm5lZOWWXg74N3AS0/za/JCImACLiOHBmml8GHGnb71iay1YO64Q5ZATnrJpzViuXnEUs\nKPpASb8DTETEqKRmh10LrTcNDQ3RaDTYv38P8BpwHjB5mJH0db7HC1uj9APQbDZPGk+aabvHcx+P\njo7WKk/uY5/PwTifIyMjDA8PA9BoNCiicE9A0jeB/wCcAE4DzgD+Cvgg0IyICUlLgcciYqWkDUBE\nxJb0+B3Apoh4cprv7Z6AmVmXetoTiIhbIuKsiDgXWA88GhGfAR4ChtJu1wEPpvvbgPWSFko6Bzgf\neKro8c3MrLz5eJ/ArcDVkg4CV6YxETEG3AeMAduB66d7ZVBOJi/L6iyHjOCcVXPOauWSs4jCPYF2\nEfFD4Ifp/svAVTPstxnYXMUxzcysPH92UEfuCZhZPvzZQWZm1hUXgRJyWCfMISM4Z9Wcs1q55CzC\nRcDMbIC5J9CRewJmlg/3BMzMrCsuAiXksE6YQ0Zwzqo5Z7VyyVmEi4CZ2QBzT6Aj9wTMLB/uCZiZ\nWVdcBErIYZ0wh4zgnFVzzmrlkrMIFwEzswHmnkBH7gmYWT7cEzAzs664CJSQwzphDhnBOavmnNXK\nJWcRLgJmZgPMPYGO3BMws3y4J2BmZl0pXAQkLZf0qKTnJO2TdGOaXyxpp6SDkh6WtKjtMRsljUs6\nIGltFU+gn3JYJ8whIzhn1ZyzWrnkLKLMlcAJ4GsR8V7gN4AbJL0H2ADsioh3A48CGwEkrQI+AawE\nPg58V1JXly1mZlatynoCkh4A/jjdPhIRE5KWAiMR8R5JG4CIiC1p/78Bfj8inpzme7knYGbWpb71\nBCQ1gPcDTwBLImICICKOA2em3ZYBR9oedizNmZlZn5QuApLeDvw58JWIeA2YemlRv5cfVSSHdcIc\nMoJzVs05q5VLziIWlHmwpAW0CsD3I+LBND0haUnbctA/pvljwLvaHr48zU1raGiIRqPB/v17gNeA\n84Bm2jqSvs73eGFrlH4Ams3mSeNJM233eO7j0dHRWuXJfezzORjnc2RkhOHhYQAajQZFlOoJSLob\neDEivtY2twV4OSK2SLoZWBwRG1JjeCvwIVrLQI8AF8Q0AdwTMDPrXpGeQOErAUmXAZ8G9kl6htay\nzy3AFuA+SZ8Hnqf1iiAiYkzSfcAY8HPg+ukKgJmZ9U7hnkBE/G1E/FpEvD8iLo6I1RGxIyJejoir\nIuLdEbE2In7S9pjNEXF+RKyMiJ3VPIX+mbwsq7McMoJzVs05q5VLziL8jmEzswHmzw7qyD0BM8uH\nPzvIzMy64iJQQg7rhDlkBOesmnNWK5ecRbgImJkNMPcEOnJPwMzy4Z6AmZl1xUWghBzWCXPICM5Z\nNeesVi45i3ARMDMbYO4JdOSegJnlo6efHTQoDh3aTz//ANqSJWdz/Pjhvh3fzN7cvBw0i9df/3+0\nPhtvuttjHbZVc5uYeL5U/lzWMp2zWs5ZrVxyFuEiYGY2wNwT6Ohx4DL6+8fRRB3/jcysfvw+ATMz\n64qLQCkj/Q4wq1zWMp2zWs5ZrVxyFuEiYGY2wNwT6Mg9ATPLh3sCZmbWlZ4XAUkfk/RjSYck3dzr\n41drpN8BZpXLWqZzVss5q5VLziJ6WgQkvQX4Y+C3gPcCn5T0nl5mqNZoD45xKpIK36644orCj126\ntNGD59cyOtqLc1mec1bLOfuv11cCa4DxiHg+In4O3Atc0+MMFfpJD47xM8q963hT4ceWfbdyN37y\nk16cy/Kcs1rO2X+9LgLLgCNt46NpzuwkS5c2Sl0Blb318irIrJ9q/wFyp556Cqed9oeccsoDPT/2\n66+/zE9/2mmPwz1KUsbhEo89tacfnveNb3xjykz/XhU1MTH98z58+HBvgxTknNXKJWcRPX2JqKRL\ngd+PiI+l8QYgImLLlP38mkgzswK6fYlor4vArwEHgSuBfwCeAj4ZEQd6FsLMzH6pp8tBEfG6pC8D\nO2n1I+5wATAz659avmPYzMx6o1bvGK7rG8kk3SFpQtLetrnFknZKOijpYUmL+pkxZVou6VFJz0na\nJ+nGOmaVdKqkJyU9k7J+s445U6a3SNojaVuNMx6W9Gw6n0/VOOciSfdLOpD+3T9Ut5ySVqTzuCd9\nfVXSjXXLmbJuTOdxr6StkhYWyVmbIqB6v5HsTlq52m0AdkXEu4FHgY09T/WrTgBfi4j3Ar8B3JDO\nYa2yRsTPgCsi4mLgIuCjki6jZjmTrwBjbeM6ZvwF0IyIiyNiTZqrY87bge0RsRJ4H/BjapYzIg6l\n87ga+ADwU+CvqFlOSWcDXwQujoiLaC3tf5IiOSOiFjfgUuBv2sYbgJv7nastz9nA3rbxj4El6f5S\n4Mf9zjhN5geAq+qcFTid1gsEVtUtJ7AceARoAtvq+u8O/D3wzilztcoJvAP439PM1yrnlGxrgf9Z\nx5zA4pRpcSoA24r+t16bKwHyeyPZmRExARARx4Ez+5znJJIawPuBJ2j9UNQqa1pmeQY4DoxExBj1\ny/lt4CZOfsNC3TJCK98jknZL+o9prm45zwFelHRnWmr5nqTTqV/Odr8H3JPu1ypnRLwC/AHwAnAM\neDUidlEgZ52KQO5q02GX9Hbgz4GvRMRr/Gq2vmeNiF9EazloOfBhSU1qlFPS7wATETEKdHrddd/P\nJXBZtJYvfpvWEuCHqdG5TBYAq4H/nrL+lNbVft1yAiDpFGAdcH+aqlVOSecCX6W1QvFvgLdJ+vQ0\nuWbNWacicAw4q228PM3V1YSkJQCSlgL/2Oc8AEhaQKsAfD8iHkzTtcwKEBH/DGwHPki9cl4GrJP0\nf4A/o9W3+D5wvEYZAYiIf0hf/4nWEuAa6nUuoXVlfyQi/i6N/4JWUahbzkkfB56OiBfTuG45Pwj8\nbUS8HBGv0+pb/CYFctapCOwGzpd0tqSFwHpa61x1IU7+jXAbMJTuXwc8OPUBffKnwFhE3N42V6us\nkn598lULkk4DrgaeoUY5I+KWiDgrIs6l9bP4aER8BniImmQEkHR6uvJD0ttorWPvo0bnEiAtURyR\ntCJNXQk8R81ytvkkreI/qW45DwKXSnqrJNE6n2MUydnv5suUZsfH0pMbBzb0O09brnuA/0vrIz1f\nAD5HqyGzK+XdCfyrGuS8DHid1mdcPwPsSef0X9cpK3BhyvYM8Czw9TRfq5xteT/CG43hWmWktdY+\n+e+9b/K/m7rlTJneR+uXvVHgL4FFNc15OvBPwBltc3XMeROtQroXuAs4pUhOv1nMzGyA1Wk5yMzM\nesxFwMxsgLkImJkNMBcBM7MB5iJgZjbAXATMzAaYi4CZ2QBzETAzG2D/H+evm5eeU9DlAAAAAElF\nTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['networthusbillion'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 342,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 342,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGHtJREFUeJzt3W2QXGd55vH/5cjyCxhF2S1LtdLaLb8lUgoIDla8MRSz\n+CVOUiX7UyJgweNl+RCbgmJ3XZbYD8JfkOVsCrwv2SoqjkdOyTGGbCKxpchGZTcVwmI5lseyPEKe\n7K5sWRtNgjGilCUEyfd+6GdQM4wYnXOemTlP9/Wrmpo+T5/uc/UZaW71fXe3FBGYmdlwOm+xA5iZ\n2eJxETAzG2IuAmZmQ8xFwMxsiLkImJkNMRcBM7MhNmcRkPSQpClJB2a57t9JelPSz/WtbZY0KemQ\npFv61q+VdEDSy5I+n+8hmJlZXefyTOBh4NdmLkpaDdwMvNK3thb4LWAt8OvA70tSuvq/AR+NiGuA\nayT9xH2amdnCmrMIRMTXgTdmuepzwD0z1m4DHouIUxFxBJgE1ktaCVwSEc+m/R4Bbq+d2szMsqg1\nE5C0ATgaES/OuGoVcLRv+1haWwW81rf+WlozM7NFtKTqDSRdBHyaXivIzMwKVrkIAFcCHeCF1O9f\nDeyXtJ7ev/wv69t3dVo7BvzzWdZnJckfaGRmVkNEaO69zjjXdpDSFxFxMCJWRsQVEbGGXmvnXRHx\nt8Au4LclLZW0BrgK2BcRx4ETktanwvERYOccD6T1X1u2bFn0DIOQ0Tmds+1fpeSs41xeIvoo8A16\nr+h5VdKdM39fc6ZATACPAxPAbuCuOJPsbuAh4GVgMiL21ErcIkeOHFnsCHMqISM4Z27OmVcpOeuY\nsx0UER+c4/orZmxvBbbOst9zwNurBjQzs/njdww3MDo6utgR5lRCRnDO3Jwzr1Jy1qG6faT5JCna\nmMvMrM0kEfM0GLZZdLvdxY4wpxIygnPm5px5lZKzDhcBM7Mh5naQmdmAcDvIzMwqcRFooIQ+YQkZ\nwTlzc868SslZh4uAmdkQ80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYg\nPBMwM7NKXAQaKKFPWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplX\nKTnrcBEwMxtingmYmQ0IzwTMzKwSF4EGSugTlpARnDM358yrlJx1zFkEJD0kaUrSgb61ByQdkjQu\n6U8kva3vus2SJtP1t/StXyvpgKSXJX0+/0MxM7Oq5pwJSHoPcBJ4JCLekdZuAp6KiDcl3Q9ERGyW\ntA7YAVwHrAb2AldHREh6Bvh4RDwraTfwYEQ8cZZjeiZgZlbRvMwEIuLrwBsz1vZGxJtp85v0fuED\nbAAei4hTEXEEmATWS1oJXBIRz6b9HgFurxLUzMzyyzET+NfA7nR5FXC077pjaW0V8Frf+mtpbU6f\n+cxWliy5oNLXunXXZXhYcyuhT1hCRnDO3Jwzr1Jy1rGkyY0l/QfghxHxx5ny/Mjo6CidTocvf3kn\np09vAD4GvC9d+7X0fbbtE/z1X6+h2+0yMjICnPkB5t6eNl/3P0zb4+PjrcpT+rbP53Ccz263y9jY\nGACdToc6zul9ApIuB74yPRNIa6P0fjO/PyJ+kNY20ZsPbEvbe4AtwCvA0xGxNq1vBN4XEb9zluP9\naCawceNH+eIXfxX46Dk+pBNceOFlfP/7J85xfzOzwTCf7xNQ+po+0K3APcCG6QKQ7AI2SloqaQ1w\nFbAvIo4DJyStlyTgI8DOKkHNzCy/c3mJ6KPAN4BrJL0q6U7gPwNvBb4qab+k3weIiAngcWCC3pzg\nrr6X+dwNPAS8DExGxJ7sj2aBTT8ta7MSMoJz5uaceZWSs445ZwIR8cFZlh/+KftvBbbOsv4c8PZK\n6czMbF61/rODPBMwMzs3/uwgMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDMBM7MB4ZmAmZlV\n4iLQQAl9whIygnPm5px5lZKzDhcBM7Mh5pmAmdmA8EzAzMwqcRFooIQ+YQkZwTlzc868SslZh4uA\nmdkQ80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYgPBMwM7NKXAQaKKFP\nWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplXKTnrmLMISHpI0pSk\nA31ryyU9KemwpCckLeu7brOkSUmHJN3St36tpAOSXpb0+fwPxczMqppzJiDpPcBJ4JGIeEda2wa8\nHhEPSLoXWB4RmyStA3YA1wGrgb3A1RERkp4BPh4Rz0raDTwYEU+c5ZieCZiZVTQvM4GI+Drwxozl\n24Dt6fJ24PZ0eQPwWESciogjwCSwXtJK4JKIeDbt90jfbczMbJHUnQlcGhFTABFxHLg0ra8Cjvbt\ndyytrQJe61t/La0VrYQ+YQkZwTlzc868SslZx5JM95P9daajo6N0Oh0OHtxPrxt1JTCSru2m77Nv\nnz59im63y8hIb3v6B5h7e9p83f8wbY+Pj7cqT+nbPp/DcT673S5jY2MAdDod6jin9wlIuhz4St9M\n4BAwEhFTqdXzdESslbQJiIjYlvbbA2wBXpneJ61vBN4XEb9zluN5JmBmVtF8vk9A6WvaLmA0Xb4D\n2Nm3vlHSUklrgKuAfalldELSekkCPtJ3GzMzWyTn8hLRR4FvANdIelXSncD9wM2SDgM3pm0iYgJ4\nHJgAdgN3xZmnGncDDwEvA5MRsSf3g1lo00/L2qyEjOCcuTlnXqXkrGPOmUBEfPAsV910lv23Altn\nWX8OeHuldGZmNq/82UFmZgPCnx1kZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYgPBMw\nM7NKXAQaKKFPWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplXKTnr\ncBEwMxtingmYmQ0IzwTMzKwSF4EGSugTlpARnDM358yrlJx1uAiYmQ0xzwTMzAaEZwJmZlaJi0AD\nJfQJS8gIzpmbc+ZVSs46XATMzIaYZwJmZgPCMwEzM6vERaCBEvqEJWQE58zNOfMqJWcdjYqApM2S\nXpJ0QNIOSUslLZf0pKTDkp6QtGzG/pOSDkm6pXl8MzNrovZMQNLlwNPAL0TEP0r6IrAbWAe8HhEP\nSLoXWB4RmyStA3YA1wGrgb3A1TFLAM8EzMyqW+iZwPeAfwTeImkJcBFwDLgN2J722Q7cni5vAB6L\niFMRcQSYBNY3OL6ZmTVUuwhExBvA7wGv0vvlfyIi9gIrImIq7XMcuDTdZBVwtO8ujqW1YpXQJywh\nIzhnbs6ZVyk561hS94aSrgA+BVwOnAC+JOlDwMz2Tq1+0+joKJ1Oh4MH9wMngSuBkXRtN32fffv0\n6VN0u11GRnrb0z/A3NvT5uv+h2l7fHy8VXlK3/b5HI7z2e12GRsbA6DT6VBHk5nAbwE3R8TH0vaH\ngeuB9wMjETElaSXwdESslbQJiIjYlvbfA2yJiGdmuW/PBMzMKlromcBh4HpJF0oScCMwAewCRtM+\ndwA70+VdwMb0CqI1wFXAvgbHNzOzhprMBF4AHgGeA14ABHwB2AbcLOkwvcJwf9p/AnicXqHYDdw1\n2yuDSjL9tKzNSsgIzpmbc+ZVSs46as8EACLid4HfnbH8HeCms+y/Fdja5JhmZpaPPzvIzGxA+LOD\nzMysEheBBkroE5aQEZwzN+fMq5ScdbgImJkNMc8EzMwGhGcCZmZWiYtAAyX0CUvICM6Zm3PmVUrO\nOlwEzMyGmGcCZmYDwjMBMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDMBM7MB4ZmAmZlV4iLQ\nQAl9whIygnPm5px5lZKzDhcBM7Mh5pmAmdmA8EzAzMwqcRFooIQ+YQkZwTlzc868SslZh4uAmdkQ\n80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSso1ERkLRM0pckHZL0kqRfkbRc0pOSDkt6QtKy\nvv03S5pM+9/SPL6ZmTXRaCYgaQz4WkQ8LGkJ8Bbg08DrEfGApHuB5RGxSdI6YAdwHbAa2AtcHbME\n8EzAzKy6BZ0JSHob8N6IeBggIk5FxAngNmB72m07cHu6vAF4LO13BJgE1tc9vpmZNdekHbQG+Lak\nhyXtl/QFSRcDKyJiCiAijgOXpv1XAUf7bn8srRWrhD5hCRnBOXNzzrxKyVnHkoa3vRa4OyL+StLn\ngE3AzPZOrX7T6OgonU6Hgwf3AyeBK4GRdG03fZ99+/TpU3S7XUZGetvTP8Dc29Pm6/6HaXt8fLxV\neUrf9vkcjvPZ7XYZGxsDoNPpUEftmYCkFcD/jIgr0vZ76BWBK4GRiJiStBJ4OiLWStoERERsS/vv\nAbZExDOz3LdnAmZmFS3oTCC1fI5KuiYt3Qi8BOwCRtPaHcDOdHkXsFHSUklrgKuAfXWPb2ZmzTV9\nn8AngB2SxoF3Ap8FtgE3SzpMrzDcDxARE8DjwASwG7hrtlcGlWT6aVmblZARnDM358yrlJx1NJkJ\nEBEv0HvJ50w3nWX/rcDWJsc0M7N8/NlBZmYDwp8dZGZmlbgINFBCn7CEjOCcuTlnXqXkrMNFwMxs\niHkmYGY2IDwTMDOzSlwEGiihT1hCRnDO3Jwzr1Jy1uEiYGY2xDwTMDMbEJ4JmJlZJS4CDZTQJywh\nIzhnbs6ZVyk563ARMDMbYp4JmJkNCM8EzMysEheBBkroE5aQEZwzN+fMq5ScdbgImJkNMc8EzMwG\nhGcCZmZWiYtAAyX0CUvICM6Zm3PmVUrOOlwEzMyGmGcCZmYDwjMBMzOrxEWggRL6hCVkBOfMzTnz\nKiVnHY2LgKTzJO2XtCttL5f0pKTDkp6QtKxv382SJiUdknRL02ObmVkzjWcCkj4F/DLwtojYIGkb\n8HpEPCDpXmB5RGyStA7YAVwHrAb2AlfHLAE8EzAzq27BZwKSVgO/AfxB3/JtwPZ0eTtwe7q8AXgs\nIk5FxBFgEljf5PhmZtZM03bQ54B7gP5/za+IiCmAiDgOXJrWVwFH+/Y7ltaKVUKfsISM4Jy5OWde\npeSsY0ndG0r6TWAqIsYljfyUXWv1m0ZHR+l0Ohw8uB84CVwJTB+mm77Pvn369Cm63S4jI73t6R9g\n7u1p83X/w7Q9Pj7eqjylb/t8Dsf57Ha7jI2NAdDpdKij9kxA0meBfwWcAi4CLgH+FHg3MBIRU5JW\nAk9HxFpJm4CIiG3p9nuALRHxzCz37ZmAmVlFCzoTiIhPR8RlEXEFsBF4KiI+DHwFGE273QHsTJd3\nARslLZW0BrgK2Ff3+GZm1tx8vE/gfuBmSYeBG9M2ETEBPA5MALuBu2Z7ZVBJpp+WtVkJGcE5c3PO\nvErJWUftmUC/iPga8LV0+TvATWfZbyuwNccxzcysOX92kJnZgPBnB5mZWSUuAg2U0CcsISM4Z27O\nmVcpOetwETAzG2KeCZiZDQjPBMzMrBIXgQZK6BOWkBGcMzfnzKuUnHW4CJiZDTHPBMzMBoRnAmZm\nVomLQAMl9AlLyAjOmZtz5lVKzjpcBMzMhphnAmZmA8IzATMzq8RFoIES+oQlZATnzM058yolZx0u\nAmZmQ8wzATOzAeGZgJmZVeIi0EAJfcISMoJz5uaceZWSsw4XATOzIeaZgJnZgPBMwMzMKnERaKCE\nPmEJGcE5c3POvErJWUftIiBptaSnJL0k6UVJn0jryyU9KemwpCckLeu7zWZJk5IOSbolxwMwM7P6\nas8EJK0EVkbEuKS3As8BtwF3Aq9HxAOS7gWWR8QmSeuAHcB1wGpgL3B1zBLAMwEzs+oWdCYQEccj\nYjxdPgkcovfL/TZge9ptO3B7urwBeCwiTkXEEWASWF/3+GZm1lyWmYCkDvBLwDeBFRExBb1CAVya\ndlsFHO272bG0VqwS+oQlZATnzM058yolZx1Lmt5BagV9GfhkRJyUNLO9U6vfNDo6SqfT4eDB/cBJ\n4EpgJF3bTd9n3z59+hTdbpeRkd729A8w9/a0+br/YdoeHx9vVZ7St30+h+N8drtdxsbGAOh0OtTR\n6H0CkpYA/wP484h4MK0dAkYiYirNDZ6OiLWSNgEREdvSfnuALRHxzCz365mAmVlFi/E+gT8EJqYL\nQLILGE2X7wB29q1vlLRU0hrgKmBfw+ObmVkDTV4iegPwIeD9kp6XtF/SrcA24GZJh4EbgfsBImIC\neByYAHYDd832yqAc/uEffoikSl8rV3YqH2f6aVmblZARnDM358yrlJx11J4JRMRfAj9zlqtvOstt\ntgJb6x7z3H2fqqOIqalKz6DMzAbCQH52EPws1efRoo3nwszsXPmzg8zMrBIXgQZK6BOWkBGcMzfn\nzKuUnHW4CJiZDTHPBM4c1TMBMyuaZwJmZlaJi0ADJfQJS8gIzpmbc+ZVSs46XATMzIaYZwJnjuqZ\ngJkVzTMBMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDOBM0f1TMDMiuaZgJmZVeIi0EAJfcIS\nMoJz5uaceZWSsw4XATOzIeaZwI9cCPyg0i1WrLic48ePVDyOmdn8qDMTqP0/iw2eH+D/jczMho3b\nQQOulF6mc+blnHmVkrMOFwEzsyHmmcCZo9a4TbU5gmcIZjafPBNYcNXmCJ4hmFnbLHg7SNKtkr4l\n6WVJ9y708YdNKb1M58zLOfMqJWcdC1oEJJ0H/Bfg14BfBD4g6RcWMsPiugBJlb5Wruw0OuL4+Hie\n6PPMOfNyzrxKyVnHQj8TWA9MRsQrEfFD4DHgtgXOsIim20fn/jU1dbxR0fjud7+7cA+vAefMyznz\nKiVnHQtdBFYBR/u2X0trdlbVCsfMonHffffN+7MNMytX6wfDF1xwPhdd9J84//w/O8db/JDvfW9e\nI7XczGH1KDD2U28xNXUh0rkPrc8772LefPP/VUo11yujjhz58etWruwwNfVKpWPMR66Ztm37j9x3\n333zeowcZp7PtnLOxbegLxGVdD3wmYi4NW1vAiIits3Yr32vWzUzK0DVl4gudBH4GeAwcCPwN8A+\n4AMRcWjBQpiZ2Y8saDsoIk5L+jjwJL15xEMuAGZmi6eV7xg2M7OF0arPDmrrG8kkPSRpStKBvrXl\nkp6UdFjSE5KWLWbGlGm1pKckvSTpRUmfaGNWSRdIekbS8ynrZ9uYM2U6T9J+SbtanPGIpBfS+dzX\n4pzLJH1J0qH0c/+VtuWUdE06j/vT9xOSPtG2nCnr5nQeD0jaIWlpnZytKQItfyPZw/Ry9dsE7I2I\nnweeAjYveKqfdAr4txHxi8C/AO5O57BVWSPiB8C/jIh3Ae8A3i/pBlqWM/kkMNG33caMbwIjEfGu\niFif1tqY80Fgd0SsBd4JfIuW5YyIl9N5vBb4ZeDvgT+lZTklXQ58DHhXRLyDXmv/A9TJGRGt+AKu\nB/68b3sTcO9i5+rLczlwoG/7W8CKdHkl8K3FzjhL5j8DbmpzVuBiei8QWNe2nMBq4KvACLCrrT93\n4P8A/2TGWqtyAm8D/tcs663KOSPbLcBftDEnsDxlWp4KwK66f9db80yA8t5IdmlETAFExHHg0kXO\n82MkdYBfAr5J7w9Fq7KmNsvzwHGgGxETtC/n54B7+PE3XrQtI/TyfVXSs5L+TVprW841wLclPZxa\nLV+QdDHty9nvt4FH0+VW5YyIN4DfA14FjgEnImIvNXK2qQiUrjUTdklvBb4MfDIiTvKT2RY9a0S8\nGb120GrgvZJGaFFOSb8JTEXEOL3PGT+bRT+XwA3Ra1/8Br0W4Htp0blMlgDXAv81Zf17es/225YT\nAEnnAxuAL6WlVuWUdAXwKXodin8GvEXSh2bJNWfONhWBY8Blfdur01pbTUlaASBpJfC3i5wHAElL\n6BWAP4qInWm5lVkBIuJ7wG7g3bQr5w3ABkn/G/hjenOLPwKOtygjABHxN+n739FrAa6nXecSes/s\nj0bEX6XtP6FXFNqWc9qvA89FxLfTdttyvhv4y4j4TkScpje3+FVq5GxTEXgWuErS5ZKWAhvp9bna\nQvz4vwh30ftMBoA7gJ0zb7BI/hCYiIgH+9ZalVXSP51+1YKki4CbgedpUc6I+HREXBYRV9D7s/hU\nRHwY+AotyQgg6eL0zA9Jb6HXx36RFp1LgNSiOCrpmrR0I/ASLcvZ5wP0iv+0tuU8DFwv6UJJonc+\nJ6iTc7GHLzOGHbemBzcJbFrsPH25HgX+L70P5nkVuJPeQGZvyvsk8LMtyHkDcBoYp/dLdX86pz/X\npqzA21O254EXgH+f1luVsy/v+zgzGG5VRnq99umf94vTf2/aljNleie9f+yNA/8dWNbSnBcDfwdc\n0rfWxpz30CukB4DtwPl1cvrNYmZmQ6xN7SAzM1tgLgJmZkPMRcDMbIi5CJiZDTEXATOzIeYiYGY2\nxFwEzMyGmIuAmdkQ+//yWzjIo5S51gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['networthusbillion'].hist(bins=25)"
]
},
{
"cell_type": "code",
"execution_count": 343,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 343,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG1JJREFUeJzt3X+wXHd93vH3I/8A28G3IsRSY4OviUHIFLCB2KQu5QYZ\nBTmN7DId1y7N+GLCPyZjm7QZXzHTMfzRGmWawUxad4aB+KqMjSMSiJXY2LIqXeh0UhtiCRskC01A\nRlHRBSJsCuk4Fnr6x541q3uvtD84qz3f1fOa2dH5fve7u49W9md3P+fsHtkmIiLG17JRB4iIiOFK\noY+IGHMp9BERYy6FPiJizKXQR0SMuRT6iIgx11Ohl3SrpKeqyy3V3HJJWyXtlfSIpImO9Rsk7ZO0\nR9LaYYWPiIjuuhZ6Sa8H3g+8FbgU+BeSfgWYAbbZXgVsBzZU6y8BrgNWA+uAuyVpOPEjIqKbXt7R\nrwYes/287Z8CXwbeA6wHNlVrNgHXVtvrgfttH7G9H9gHXF5r6oiI6Fkvhf7rwNurVs3ZwNXAK4EV\ntucBbB8CzqvWnw8c6Lj9wWouIiJG4PRuC2w/LWkj8CjwY2An8NOlltacLSIiatC10APYvge4B0DS\nf6T1jn1e0grb85JWAt+rlh+k9Y6/7YJq7hiS8sIQETEA233t9+z1qJtfqv58FfAvgfuALcB0teRG\n4IFqewtwvaQzJV0EXAw8fpywjb/ccccdI8+QnMlZcs4SMpaUcxA9vaMH/kzSy4EXgJtt/6hq52yW\ndBPwDK0jbbC9W9JmYHfH+mLfve/fv3/UEXqSnPVKzvqUkBHKyTmIXls3/3yJucPAVcdZfydw588X\nLSIi6tCYb8auWnUZZ501sejyspe9gq9//esjyzU9PT2yx+5HctYrOetTQkYoJ+cgNKquiqRjOjrL\nlp2G/X3gtGPWnXvuv+Kzn/0QV1999UlOGBHRPJLwMHbGnjwTiy7SGSNNNDc3N9LH71Vy1is561NC\nRign5yAaVugjIqJuDWvd/AMLWzcTE1dz332/m9ZNRARj0bqJiIi6pdB3UUrfLjnrlZz1KSEjlJNz\nECn0ERFjLj36iIiCpEcfERGLpNB3UUrfLjnrlZz1KSEjlJNzECn0ERFjLj36iIiCpEcfERGLpNB3\nUUrfLjnrlZz1KSEjlJNzECn0ERFjrqcevaQNwL+ldVLwp4D3AecAfwJcCOwHrrP9XMf6m4AjwK22\nty5xn+nRR0T0aSg9ekkXAh8ALrP9RlpnpboBmAG22V4FbAc2VOsvoXVawdXAOuBuSX2FioiI+vTS\nuvkR8A/AOZJOB84CDgLXAJuqNZuAa6vt9cD9to/Y3g/sAy6vM/TJVErfLjnrlZz1KSEjlJNzEF0L\nve0fAn8IfIdWgX/O9jZghe35as0h4LzqJucDBzru4mA1FxERI9D15OCSXg18iFYv/jngc5LeCyxs\n7vd9QP709DSTk5OtG/soMAesqa6dO2Zt+9V2amoq4yXG7bmm5Cl93J5rSp6Sx1NTU43Kc6JxW1Py\ntJ+72dlZgBfrZb+67oyVdB3wLtsfqMa/DbwNeCcwZXte0kpgh+3VkmYA295YrX8YuMP2YwvuNztj\nIyL6NKwvTO0F3ibppdVO1TXAbmALMF2tuRF4oNreAlwv6UxJFwEXA4/3E6pJFr7SN1Vy1is561NC\nRign5yC6tm5sf03Sfwf+mtbhlTuBTwIvAzZLugl4htaRNtjeLWkzrReDF4Cb3csxnBERMRT5rZuI\niILkt24iImKRFPouSunbJWe9krM+JWSEcnIOIoU+ImLMpUcfEVGQ9OgjImKRFPouSunbJWe9krM+\nJWSEcnIOIoU+ImLMpUcfEVGQ9OgjImKRFPouSunbJWe9krM+JWSEcnIOIoU+ImLMpUcfEVGQ9Ogj\nImKRFPouSunbJWe9krM+JWSEcnIOIoU+ImLMpUcfEVGQofToJb1W0k5JT1R/PifpFknLJW2VtFfS\nI5ImOm6zQdI+SXskrR3kLxMREfXoWuhtf9P2ZbbfDLwF+AnwBWAG2GZ7FbAd2AAg6RJapxVcDawD\n7q7ONVukUvp2yVmv5KxPCRmhnJyD6LdHfxXwN7YPANcAm6r5TcC11fZ64H7bR2zvB/YBl9eQNSIi\nBtBXj17Sp4Gv2v5vkn5oe3nHdYdtv1zSHwF/Zfu+av5TwEO2P7/gvtKjj4jo0yA9+tP7uPMzaL1b\nv72aWvgK0fde3enpaSYnJ1s39lFgDlhTXTt3zNr2x6qpqamMM84441NmPDc3x+zsLMCL9bJvtnu6\n0CryD3eM9wArqu2VwJ5qewa4vWPdw8AVS9yfO0nLDEcMPuYyMbHODz74oEdlx44dI3vsfiRnvZKz\nPiVktMvJWdXOnmu37b569DcAn+0YbwGmq+0bgQc65q+XdKaki4CLgcf7evWJiIja9NSjl3Q28Azw\natv/t5p7ObAZeGV13XW2n62u2wC8H3gBuNX21iXu052PnR59RER3Q+vR2/574JcWzB2mdRTOUuvv\nBO7sJ0hERAxHfgKhi/ZOkaZLznolZ31KyAjl5BxECn1ExJjLb91ERBQkv0cfERGLpNB3UUrfLjnr\nlZz1KSEjlJNzECn0ERFjLj36iIiCpEcfERGLpNB3UUrfLjnrlZz1KSEjlJNzECn0ERFjLj36iIiC\npEcfERGLpNB3UUrfLjnrlZz1KSEjlJNzECn0ERFjLj36iIiCpEcfERGL9FToJU1I+pykPZK+IekK\nScslbZW0V9IjkiY61m+QtK9av3Z48YevlL5dctYrOetTQkYoJ+cgen1H/wngIdurgTcBT9M6Cfg2\n26uA7cAGAEmXANcBq4F1wN2S+vqYERER9enao5d0LrDT9q8smH8aeIfteUkrgTnbr5M0Q+ss5Rur\ndV8EPmL7sQW3T48+IqJPw+rRXwT8QNI9kp6Q9MnqZOErbM8D2D4EnFetPx840HH7g9VcRESMQC8n\nBz8deDPwQdtflfRxWm2bhR8F+j58Z3p6msnJydaNfRSYA9ZU184ds7bdP5uamjqp4/bcqB6/1/Fd\nd93FpZde2pg8eT5Pzrg915Q8S40XZh11nuONd+3axW233daYPO3x3Nwcs7OzAC/Wy77ZPuEFWAF8\nq2P8z4C/BPbQelcPsBLYU23PALd3rH8YuGKJ+3UnaZnhiMHHXCYm1vnBBx/0qOzYsWNkj92P5KxX\nctanhIx2OTmr2tm1dndeejqOXtKXgA/Y/qakO4Czq6sO294o6XZgue2ZamfsvcAVtFo2jwKv8YIH\nSo8+IqJ/g/Toe2ndANwC3CvpDOBbwPtoVeTNkm4CnqF1pA22d0vaDOwGXgBuXljkIyLi5Onp8Erb\nX7P9q7Yvtf0e28/ZPmz7KturbK+1/WzH+jttX2x7te2tw4s/fJ39xSZLznolZ31KyAjl5BxEvhkb\nETHm8ls3EREFyW/dRETEIin0XZTSt0vOeiVnfUrICOXkHEQKfUTEmEuPPiKiIOnRR0TEIin0XZTS\nt0vOeiVnfUrICOXkHEQKfUTEmEuPPiKiIOnRR0TEIin0XZTSt0vOeiVnfUrICOXkHEQKfUTEmEuP\nPiKiIOnRR0TEIj0Vekn7JX1N0k5Jj1dzyyVtlbRX0iOSJjrWb5C0T9IeSWuHFf5kKKVvl5z1Ss76\nlJARysk5iF7f0R8FpmxfZvvyam4G2GZ7FbAd2ABQnUrwOmA1sA64W1JfHzMiIqI+vZ4z9tvAW23/\nXcfc08A7bM9LWgnM2X6dpBlaJ6/dWK37IvAR248tuM/06CMi+jTMHr2BRyV9RdLvVHMrbM8D2D4E\nnFfNnw8c6LjtwWouIiJGoNdCf6XtNwNXAx+U9HZaxb/TWJ4AvJS+XXLWKznrU0JGKCfnIE7vZZHt\n71Z/fl/SnwOXA/OSVnS0br5XLT8IvLLj5hdUc4tMT08zOTlZPcZRYA5YU107d8za9j/C1NTUSR2P\n+vF7He/atatRefJ8npxxW1PylDzetWtXo/K0x3Nzc8zOzgK8WC/71bVHL+lsYJntH0s6B9gKfJRW\nRT5se6Ok24HltmeqnbH3AlfQatk8CrzGCx4oPfqIiP4N0qPv5R39CuALklytv9f2VklfBTZLugl4\nhtaRNtjeLWkzsBt4Abh5YZGPiIiTp2uP3va3bV9aHVr5Btsfq+YP277K9irba20/23GbO21fbHu1\n7a3D/AsM28KPyE2VnPVKzvqUkBHKyTmIfDM2ImLM5bduIiIKkt+6iYiIRVLouyilb5ec9UrO+pSQ\nEcrJOYgU+oiIMZcefUREQdKjj4iIRVLouyilb5ec9UrO+pSQEcrJOYgU+oiIMZcefUREQdKjj4iI\nRVLouyilb5ec9UrO+pSQEcrJOYgU+oiIMZcefUREQdKjj4iIRVLouyilb5ec9UrO+pSQEcrJOYie\nC72kZZKekLSlGi+XtFXSXkmPSJroWLtB0j5JeyStHUbwiIjoTc89ekkfAt4CnGt7vaSNwN/Z/oPj\nnDP2V2mdGHwbOWdsREQthtajl3QBcDXwqY7pa4BN1fYm4Npqez1wv+0jtvcD+4DL+wkVERH16bV1\n83Hg94HOd+UrbM8D2D4EnFfNnw8c6Fh3sJorUil9u+SsV3LWp4SMUE7OQXQt9JJ+E5i3vQs40ceF\n0RynGRERJ3R6D2uuBNZLuho4C3iZpM8AhyStsD0vaSXwvWr9QeCVHbe/oJpbZHp6msnJSQDso8Ac\nsKa6du6Yte1X26mpqYyXGLfnmpKn9HF7ril5Sh5PTU01Ks+Jxm1NydN+7mZnZwFerJf96usLU5Le\nAfy7amfsH9DaGbvxODtjr6DVsnmU7IyNiKjFyf7C1MeAd0naS+tt+McAbO8GNgO7gYeAmxcW+ZIs\nfKVvquSsV3LWp4SMUE7OQfTSunmR7S8BX6q2DwNXHWfdncCdP3e6iIj4ueW3biIiCpLfuomIiEVS\n6LsopW+XnPVKzvqUkBHKyTmIFPqIiDGXHn1EREHSo4+IiEVS6LsopW+XnPVKzvqUkBHKyTmIFPqI\niDGXHn1EREHSo4+IiEVS6LsopW+XnPVKzvqUkBHKyTmIFPqIiDGXHn1EREHSo4+IiEWKKPTvfe/7\nkbTosnLl5NAfu5S+XXLWKznrU0JGKCfnIPr6PfpRefbZQyx1Str5+b4+vUREnJK69uglvQT4MnBm\ndXnA9oclLQf+BLgQ2A9cZ/u56jYbgJuAI8Cttrcucb899+ife+6LLH3ucVHwyasiIvo2lB697eeB\nX7d9GfBG4J2SrgRmgG22VwHbgQ1ViEuA64DVwDrgbkl56x0RMSI99eht/321+ZLqNj8ErgE2VfOb\ngGur7fXA/baP2N4P7AMuryvwyVZK3y4565Wc9SkhI5STcxA9FXpJyyTtBA4Bc9UJwFfYngewfQg4\nr1p+PnCg4+YHq7mIiBiBnnbG2j4KXCbpXOARSVMsbpr33Syfnp5mcnKyeoyjwBywprp2bsHq9nhq\nyevbr8ZTU1On5Lg915Q8pY/bc03JU/J4amqqUXlONG5rSp72czc7OwvwYr3sV99fmJL0H4D/B7wf\nmLI9L2klsMP2akkzgG1vrNY/DNxh+7EF95OdsRERfRrKzlhJr5A0UW2fBbwL2AlsAaarZTcCD1Tb\nW4DrJZ0p6SLgYuDxfkI1ycJX+qZKznolZ31KyAjl5BxEL62bfwxsqo6cWQZ8xvb/qHr2myXdBDxD\n60gbbO+WtBnYDbwA3Oy87Y6IGJkifusmrZuIiJb81k1ERCySQt9FKX275KxXctanhIxQTs5BpNBH\nRIy59OgjIgqSHn1ERCySQt9FKX275KxXctanhIxQTs5BpNBHRIy59OgjIgqSHn1ERCySQt9FKX27\n5KxXctanhIxQTs5BpNBHRIy59OgjIgqSHn1ERCySQt9FKX275KxXctanhIxQTs5BpNBHRIy59Ogj\nIgoyrFMJXiBpu6RvSHpK0i3V/HJJWyXtlfRI+3SD1XUbJO2TtEfS2v7/KhERUZdeWjdHgN+z/Xrg\n14APSnodMANss70K2A5sAJB0Ca3TCq4G1gF3V6chLFIpfbvkrFdy1qeEjFBOzkF0LfS2D9neVW3/\nGNgDXABcA2yqlm0Crq221wP32z5iez+wD7i85twREdGjvnr0kiaBOeCfAAdsL++47rDtl0v6I+Cv\nbN9XzX8KeMj25xfcV3r0ERF9GqRHf3ofd/4LwJ8Ct9r+saSFFbbvijs9Pc3k5GTrxj5K6zVkTXXt\n3ILV7fHUkte3P3ZNTU1lnHHGGY/NeG5ujtnZWYAX62XfbHe90HpBeJhWkW/P7QFWVNsrgT3V9gxw\ne8e6h4ErlrhPd5KWGY4YfMxlYmKdgUXzrcux9zEMO3bsGPpj1CE565Wc9Skho11Ozqru9VS725de\nj6P/Y2C37U90zG0BpqvtG4EHOuavl3SmpIuAi4HH+3v5iYiIunTt0Uu6Evgy8BSt9oyBD9Mq3puB\nVwLPANfZfra6zQbg/cALtD4FbF3ift352OnRR0R0N0iPPl+YiogoSH7UbAjaO0WaLjnrlZz1KSEj\nlJNzECn0ERFjLq2biIiCpHUTERGLpNB3UUrfLjnrlZz1KSEjlJNzECn0ERFjLj36iIiCpEcfERGL\npNB3UUrfLjnrlZz1KSEjlJNzECn0ERFjLj36iIiCpEcfERGLpNB3UUrfLjnrlZz1KSEjlJNzECn0\nERFjLj36iIiCnII9+pcgadFl5crJUQeLiGiMroVe0qclzUt6smNuuaStkvZKekTSRMd1GyTtk7RH\n0tphBW95np+d9Opnl/n5Z2p7hFL6dslZr+SsTwkZoZycg+jlHf09wG8smJsBttleBWwHNgBIugS4\nDlgNrAPultTXR4yIiKhXTz16SRcCf2H7jdX4aeAdtuclrQTmbL9O0gytM5RvrNZ9EfiI7ceWuM9a\nevTp3UfEqeRk9ujPsz0PYPsQcF41fz5woGPdwWouIiJG5PSa7megt8/T09NMTk627sBHgTlgTXXt\n3ILV7fFUT9e3+21TUz/fuD1X1/0Na3zXXXdx6aWXNiZPns+TM27PNSXPUuOFWUed53jjXbt2cdtt\ntzUmT3s8NzfH7OwswIv1sm+2u16AC4EnO8Z7gBXV9kpgT7U9A9zese5h4Irj3Kc7ScsMRww+5jIx\nsa7ay+olLsefr8uOHTtqu69hSs56JWd9Sshol5Ozqm891e72pdce/SStHv0bqvFG4LDtjZJuB5bb\nnql2xt4LXEGrZfMo8Bov8SDp0UdE9G+QHn3X1o2k+2j1Q35R0neAO4CPAZ+TdBPwDK0jbbC9W9Jm\nYDfwAnDzUkU+IiJOnq47Y23/G9u/bPsltl9l+x7bP7R9le1VttfafrZj/Z22L7a92vbW4cYfvs7+\nYpMlZ72Ssz4lZIRycg6i8G/GRkREN8X/1k169BFxKjkFf+smIiK6SaHvopS+XXLWKznrU0JGKCfn\nIMa00C/9q5b5ZcuIOBWNbY/++F/WTf8+IsqVHn1ERCySQt9FKX275KxXctanhIxQTs5BpNBHRIy5\n9OgjIgqSHn1ERCxyChb6/k4oXkrfLjnrlZz1KSEjlJNzEKdgoe/vhOLvec/1OR4/Iop2Svbol77u\npbReBJaS39OJiGYYyu/Rnzra7/QX6uv5jIhonKG1biS9W9LTkr5ZnYUqhqiU/mJy1quEnCVkhHJy\nDmIohV7SMuC/AL8BvB64QdLrhvFYo9Os39PZtWvXSX/MQSRnvUrIWUJGKCfnIIb1jv5yYJ/tZ2y/\nANwPXDOkxxqRpXfqtnbsHlryBeC0087p+4Vh5crJnm7z7LPPLn0HDZOc9SohZwkZoZycgxhWj/58\n4EDH+G9pFf9TxNL9/qNHl94RPD//UqQT7Qvo7TYf/ehHWbHiQg4d2t9f3IgYa405vPK0087g3HOv\n4dxzf+uYy/PPf3XU0U6C43866P02N3Kiw0SP98ngRJ8oev000Y/9+/f39BjH+/Qz6Cejfm3c+J8b\n05Y7kYXPZxOVkBHKyTmIoRxeKeltwEdsv7sazwC2vbFjTY5NjIgYQL+HVw6r0J8G7AXWAN8FHgdu\nsL2n9geLiIgTGkqP3vZPJf0usJVWe+jTKfIREaMxsm/GRkTEyTGSnbFN/TKVpE9Lmpf0ZMfccklb\nJe2V9IikiRFnvEDSdknfkPSUpFsamvMlkh6TtLPK+p+amLNN0jJJT0jaUo0bl1PSfklfq57Txxuc\nc0LS5yTtqf7tr2haTkmvrZ7HJ6o/n5N0SwNzbqiewycl3SvpzEEynvRCr2Z/meoeWrk6zQDbbK8C\ntgMbTnqqYx0Bfs/264FfAz5YPX+Nymn7eeDXbV8GvBF4p6QraVjODrcCuzvGTcx5FJiyfZnt9uHK\nTcz5CeAh26uBNwFP07Cctr9ZPY9vBt4C/AT4Ag3KKelC4APAZbbfSKvVfsNAGW2f1AvwNuCLHeMZ\n4PaTneME+S4EnuwYPw2sqLZXAk+POuOCvH8OXNXknMDZtHbIX9LEnMAFwKPAFLClqf/uwLeBX1ww\n16icwLnA3ywx36icC7KtBf5n03ICy6s8y6siv2XQ/9dH0bpZ6stU548gR6/Osz0PYPsQcN6I87xI\n0iRwKfC/af3DNypn1Q7ZCRwC5mzvpoE5gY8Dv8+xX1xoYk4Dj0r6iqTfqeaalvMi4AeS7qnaIp+U\ndDbNy9npXwP3VduNyWn7h8AfAt8BDgLP2d42SMbGfGGqII3Yey3pF4A/BW61/WMW5xp5TttH3Wrd\nXAC8XdIUDcsp6TeBedu7OPFPlY78+QSudKvVcDWtlt3badjzSeud55uB/1pl/QmtT+1NywmApDOA\n9cDnqqnG5JT0auBDtLoMvwycI+m9S2TqmnEUhf4g8KqO8QXVXFPNS1oBIGkl8L0R50HS6bSK/Gds\nP1BNNy5nm+0fAQ8Bb6V5Oa8E1kv6FvBZWvsSPgMcalhObH+3+vP7tFp2l9O85/NvgQO2219p/zNa\nhb9pOdvWAX9t+wfVuEk53wr8L9uHbf+U1j6EfzpIxlEU+q8AF0u6UNKZwPW0ek9NIY59Z7cFmK62\nbwQeWHiDEfhjYLftT3TMNSqnpFe0jwaQdBbwLmAnDctp+8O2X2X71bT+W9xu+7eBv6BBOSWdXX2K\nQ9I5tPrKT9G853MeOCDptdXUGuAbNCxnhxtovcC3NSnnXuBtkl4qSbSey90MknFEOxneXf0l9gEz\no9rZsUSu+4D/Q+uHZL4DvI/WjpBtVd6twD8accYrgZ8Cu2gVzieq5/PlDcv5hirbTuBrwL+v5huV\nc0Hmd/CznbGNykmr993+N3+q/f9N03JWmd5E6w3dLuDzwERDc54NfB94Wcdco3LS2nf0DeBJYBNw\nxiAZ84WpiIgxl52xERFjLoU+ImLMpdBHRIy5FPqIiDGXQh8RMeZS6CMixlwKfUTEmEuhj4gYc/8f\n8xWHRiortikAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['networthusbillion'].hist(bins=50)"
]
},
{
"cell_type": "code",
"execution_count": 344,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 1578.000\n",
"mean 3.958\n",
"std 5.857\n",
"min 1.000\n",
"25% 1.400\n",
"50% 2.200\n",
"75% 3.700\n",
"max 76.000\n",
"Name: networthusbillion, dtype: float64"
]
},
"execution_count": 344,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rich_df['networthusbillion'].describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even though we have a ton of billionaires, basically everyone is a **baby billionaire** with barely billions of dollars. This is **skewed data**. Compare it with a histograph of age."
]
},
{
"cell_type": "code",
"execution_count": 345,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 345,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGHtJREFUeJzt3W2QXGd55vH/5cjyCxhF2S1LtdLaLb8lUgoIDla8MRSz\n+CVOUiX7UyJgweNl+RCbgmJ3XZbYD8JfkOVsCrwv2SoqjkdOyTGGbCKxpchGZTcVwmI5lseyPEKe\n7K5sWRtNgjGilCUEyfd+6GdQM4wYnXOemTlP9/Wrmpo+T5/uc/UZaW71fXe3FBGYmdlwOm+xA5iZ\n2eJxETAzG2IuAmZmQ8xFwMxsiLkImJkNMRcBM7MhNmcRkPSQpClJB2a57t9JelPSz/WtbZY0KemQ\npFv61q+VdEDSy5I+n+8hmJlZXefyTOBh4NdmLkpaDdwMvNK3thb4LWAt8OvA70tSuvq/AR+NiGuA\nayT9xH2amdnCmrMIRMTXgTdmuepzwD0z1m4DHouIUxFxBJgE1ktaCVwSEc+m/R4Bbq+d2szMsqg1\nE5C0ATgaES/OuGoVcLRv+1haWwW81rf+WlozM7NFtKTqDSRdBHyaXivIzMwKVrkIAFcCHeCF1O9f\nDeyXtJ7ev/wv69t3dVo7BvzzWdZnJckfaGRmVkNEaO69zjjXdpDSFxFxMCJWRsQVEbGGXmvnXRHx\nt8Au4LclLZW0BrgK2BcRx4ETktanwvERYOccD6T1X1u2bFn0DIOQ0Tmds+1fpeSs41xeIvoo8A16\nr+h5VdKdM39fc6ZATACPAxPAbuCuOJPsbuAh4GVgMiL21ErcIkeOHFnsCHMqISM4Z27OmVcpOeuY\nsx0UER+c4/orZmxvBbbOst9zwNurBjQzs/njdww3MDo6utgR5lRCRnDO3Jwzr1Jy1qG6faT5JCna\nmMvMrM0kEfM0GLZZdLvdxY4wpxIygnPm5px5lZKzDhcBM7Mh5naQmdmAcDvIzMwqcRFooIQ+YQkZ\nwTlzc868SslZh4uAmdkQ80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYg\nPBMwM7NKXAQaKKFPWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplX\nKTnrcBEwMxtingmYmQ0IzwTMzKwSF4EGSugTlpARnDM358yrlJx1zFkEJD0kaUrSgb61ByQdkjQu\n6U8kva3vus2SJtP1t/StXyvpgKSXJX0+/0MxM7Oq5pwJSHoPcBJ4JCLekdZuAp6KiDcl3Q9ERGyW\ntA7YAVwHrAb2AldHREh6Bvh4RDwraTfwYEQ8cZZjeiZgZlbRvMwEIuLrwBsz1vZGxJtp85v0fuED\nbAAei4hTEXEEmATWS1oJXBIRz6b9HgFurxLUzMzyyzET+NfA7nR5FXC077pjaW0V8Frf+mtpbU6f\n+cxWliy5oNLXunXXZXhYcyuhT1hCRnDO3Jwzr1Jy1rGkyY0l/QfghxHxx5ny/Mjo6CidTocvf3kn\np09vAD4GvC9d+7X0fbbtE/z1X6+h2+0yMjICnPkB5t6eNl/3P0zb4+PjrcpT+rbP53Ccz263y9jY\nGACdToc6zul9ApIuB74yPRNIa6P0fjO/PyJ+kNY20ZsPbEvbe4AtwCvA0xGxNq1vBN4XEb9zluP9\naCawceNH+eIXfxX46Dk+pBNceOFlfP/7J85xfzOzwTCf7xNQ+po+0K3APcCG6QKQ7AI2SloqaQ1w\nFbAvIo4DJyStlyTgI8DOKkHNzCy/c3mJ6KPAN4BrJL0q6U7gPwNvBb4qab+k3weIiAngcWCC3pzg\nrr6X+dwNPAS8DExGxJ7sj2aBTT8ta7MSMoJz5uaceZWSs445ZwIR8cFZlh/+KftvBbbOsv4c8PZK\n6czMbF61/rODPBMwMzs3/uwgMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDMBM7MB4ZmAmZlV\n4iLQQAl9whIygnPm5px5lZKzDhcBM7Mh5pmAmdmA8EzAzMwqcRFooIQ+YQkZwTlzc868SslZh4uA\nmdkQ80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYgPBMwM7NKXAQaKKFP\nWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplXKTnrmLMISHpI0pSk\nA31ryyU9KemwpCckLeu7brOkSUmHJN3St36tpAOSXpb0+fwPxczMqppzJiDpPcBJ4JGIeEda2wa8\nHhEPSLoXWB4RmyStA3YA1wGrgb3A1RERkp4BPh4Rz0raDTwYEU+c5ZieCZiZVTQvM4GI+Drwxozl\n24Dt6fJ24PZ0eQPwWESciogjwCSwXtJK4JKIeDbt90jfbczMbJHUnQlcGhFTABFxHLg0ra8Cjvbt\ndyytrQJe61t/La0VrYQ+YQkZwTlzc868SslZx5JM95P9daajo6N0Oh0OHtxPrxt1JTCSru2m77Nv\nnz59im63y8hIb3v6B5h7e9p83f8wbY+Pj7cqT+nbPp/DcT673S5jY2MAdDod6jin9wlIuhz4St9M\n4BAwEhFTqdXzdESslbQJiIjYlvbbA2wBXpneJ61vBN4XEb9zluN5JmBmVtF8vk9A6WvaLmA0Xb4D\n2Nm3vlHSUklrgKuAfalldELSekkCPtJ3GzMzWyTn8hLRR4FvANdIelXSncD9wM2SDgM3pm0iYgJ4\nHJgAdgN3xZmnGncDDwEvA5MRsSf3g1lo00/L2qyEjOCcuTlnXqXkrGPOmUBEfPAsV910lv23Altn\nWX8OeHuldGZmNq/82UFmZgPCnx1kZmaVuAg0UEKfsISM4Jy5OWdepeSsw0XAzGyIeSZgZjYgPBMw\nM7NKXAQaKKFPWEJGcM7cnDOvUnLW4SJgZjbEPBMwMxsQngmYmVklLgINlNAnLCEjOGduzplXKTnr\ncBEwMxtingmYmQ0IzwTMzKwSF4EGSugTlpARnDM358yrlJx1uAiYmQ0xzwTMzAaEZwJmZlaJi0AD\nJfQJS8gIzpmbc+ZVSs46XATMzIaYZwJmZgPCMwEzM6vERaCBEvqEJWQE58zNOfMqJWcdjYqApM2S\nXpJ0QNIOSUslLZf0pKTDkp6QtGzG/pOSDkm6pXl8MzNrovZMQNLlwNPAL0TEP0r6IrAbWAe8HhEP\nSLoXWB4RmyStA3YA1wGrgb3A1TFLAM8EzMyqW+iZwPeAfwTeImkJcBFwDLgN2J722Q7cni5vAB6L\niFMRcQSYBNY3OL6ZmTVUuwhExBvA7wGv0vvlfyIi9gIrImIq7XMcuDTdZBVwtO8ujqW1YpXQJywh\nIzhnbs6ZVyk561hS94aSrgA+BVwOnAC+JOlDwMz2Tq1+0+joKJ1Oh4MH9wMngSuBkXRtN32fffv0\n6VN0u11GRnrb0z/A3NvT5uv+h2l7fHy8VXlK3/b5HI7z2e12GRsbA6DT6VBHk5nAbwE3R8TH0vaH\ngeuB9wMjETElaSXwdESslbQJiIjYlvbfA2yJiGdmuW/PBMzMKlromcBh4HpJF0oScCMwAewCRtM+\ndwA70+VdwMb0CqI1wFXAvgbHNzOzhprMBF4AHgGeA14ABHwB2AbcLOkwvcJwf9p/AnicXqHYDdw1\n2yuDSjL9tKzNSsgIzpmbc+ZVSs46as8EACLid4HfnbH8HeCms+y/Fdja5JhmZpaPPzvIzGxA+LOD\nzMysEheBBkroE5aQEZwzN+fMq5ScdbgImJkNMc8EzMwGhGcCZmZWiYtAAyX0CUvICM6Zm3PmVUrO\nOlwEzMyGmGcCZmYDwjMBMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDMBM7MB4ZmAmZlV4iLQ\nQAl9whIygnPm5px5lZKzDhcBM7Mh5pmAmdmA8EzAzMwqcRFooIQ+YQkZwTlzc868SslZh4uAmdkQ\n80zAzGxAeCZgZmaVuAg0UEKfsISM4Jy5OWdepeSso1ERkLRM0pckHZL0kqRfkbRc0pOSDkt6QtKy\nvv03S5pM+9/SPL6ZmTXRaCYgaQz4WkQ8LGkJ8Bbg08DrEfGApHuB5RGxSdI6YAdwHbAa2AtcHbME\n8EzAzKy6BZ0JSHob8N6IeBggIk5FxAngNmB72m07cHu6vAF4LO13BJgE1tc9vpmZNdekHbQG+Lak\nhyXtl/QFSRcDKyJiCiAijgOXpv1XAUf7bn8srRWrhD5hCRnBOXNzzrxKyVnHkoa3vRa4OyL+StLn\ngE3AzPZOrX7T6OgonU6Hgwf3AyeBK4GRdG03fZ99+/TpU3S7XUZGetvTP8Dc29Pm6/6HaXt8fLxV\neUrf9vkcjvPZ7XYZGxsDoNPpUEftmYCkFcD/jIgr0vZ76BWBK4GRiJiStBJ4OiLWStoERERsS/vv\nAbZExDOz3LdnAmZmFS3oTCC1fI5KuiYt3Qi8BOwCRtPaHcDOdHkXsFHSUklrgKuAfXWPb2ZmzTV9\nn8AngB2SxoF3Ap8FtgE3SzpMrzDcDxARE8DjwASwG7hrtlcGlWT6aVmblZARnDM358yrlJx1NJkJ\nEBEv0HvJ50w3nWX/rcDWJsc0M7N8/NlBZmYDwp8dZGZmlbgINFBCn7CEjOCcuTlnXqXkrMNFwMxs\niHkmYGY2IDwTMDOzSlwEGiihT1hCRnDO3Jwzr1Jy1uEiYGY2xDwTMDMbEJ4JmJlZJS4CDZTQJywh\nIzhnbs6ZVyk563ARMDMbYp4JmJkNCM8EzMysEheBBkroE5aQEZwzN+fMq5ScdbgImJkNMc8EzMwG\nhGcCZmZWiYtAAyX0CUvICM6Zm3PmVUrOOlwEzMyGmGcCZmYDwjMBMzOrxEWggRL6hCVkBOfMzTnz\nKiVnHY2LgKTzJO2XtCttL5f0pKTDkp6QtKxv382SJiUdknRL02ObmVkzjWcCkj4F/DLwtojYIGkb\n8HpEPCDpXmB5RGyStA7YAVwHrAb2AlfHLAE8EzAzq27BZwKSVgO/AfxB3/JtwPZ0eTtwe7q8AXgs\nIk5FxBFgEljf5PhmZtZM03bQ54B7gP5/za+IiCmAiDgOXJrWVwFH+/Y7ltaKVUKfsISM4Jy5OWde\npeSsY0ndG0r6TWAqIsYljfyUXWv1m0ZHR+l0Ohw8uB84CVwJTB+mm77Pvn369Cm63S4jI73t6R9g\n7u1p83X/w7Q9Pj7eqjylb/t8Dsf57Ha7jI2NAdDpdKij9kxA0meBfwWcAi4CLgH+FHg3MBIRU5JW\nAk9HxFpJm4CIiG3p9nuALRHxzCz37ZmAmVlFCzoTiIhPR8RlEXEFsBF4KiI+DHwFGE273QHsTJd3\nARslLZW0BrgK2Ff3+GZm1tx8vE/gfuBmSYeBG9M2ETEBPA5MALuBu2Z7ZVBJpp+WtVkJGcE5c3PO\nvErJWUftmUC/iPga8LV0+TvATWfZbyuwNccxzcysOX92kJnZgPBnB5mZWSUuAg2U0CcsISM4Z27O\nmVcpOetwETAzG2KeCZiZDQjPBMzMrBIXgQZK6BOWkBGcMzfnzKuUnHW4CJiZDTHPBMzMBoRnAmZm\nVomLQAMl9AlLyAjOmZtz5lVKzjpcBMzMhphnAmZmA8IzATMzq8RFoIES+oQlZATnzM058yolZx0u\nAmZmQ8wzATOzAeGZgJmZVeIi0EAJfcISMoJz5uaceZWSsw4XATOzIeaZgJnZgPBMwMzMKnERaKCE\nPmEJGcE5c3POvErJWUftIiBptaSnJL0k6UVJn0jryyU9KemwpCckLeu7zWZJk5IOSbolxwMwM7P6\nas8EJK0EVkbEuKS3As8BtwF3Aq9HxAOS7gWWR8QmSeuAHcB1wGpgL3B1zBLAMwEzs+oWdCYQEccj\nYjxdPgkcovfL/TZge9ptO3B7urwBeCwiTkXEEWASWF/3+GZm1lyWmYCkDvBLwDeBFRExBb1CAVya\ndlsFHO272bG0VqwS+oQlZATnzM058yolZx1Lmt5BagV9GfhkRJyUNLO9U6vfNDo6SqfT4eDB/cBJ\n4EpgJF3bTd9n3z59+hTdbpeRkd729A8w9/a0+br/YdoeHx9vVZ7St30+h+N8drtdxsbGAOh0OtTR\n6H0CkpYA/wP484h4MK0dAkYiYirNDZ6OiLWSNgEREdvSfnuALRHxzCz365mAmVlFi/E+gT8EJqYL\nQLILGE2X7wB29q1vlLRU0hrgKmBfw+ObmVkDTV4iegPwIeD9kp6XtF/SrcA24GZJh4EbgfsBImIC\neByYAHYDd832yqAc/uEffoikSl8rV3YqH2f6aVmblZARnDM358yrlJx11J4JRMRfAj9zlqtvOstt\ntgJb6x7z3H2fqqOIqalKz6DMzAbCQH52EPws1efRoo3nwszsXPmzg8zMrBIXgQZK6BOWkBGcMzfn\nzKuUnHW4CJiZDTHPBM4c1TMBMyuaZwJmZlaJi0ADJfQJS8gIzpmbc+ZVSs46XATMzIaYZwJnjuqZ\ngJkVzTMBMzOrxEWggRL6hCVkBOfMzTnzKiVnHS4CZmZDzDOBM0f1TMDMiuaZgJmZVeIi0EAJfcIS\nMoJz5uaceZWSsw4XATOzIeaZwI9cCPyg0i1WrLic48ePVDyOmdn8qDMTqP0/iw2eH+D/jczMho3b\nQQOulF6mc+blnHmVkrMOFwEzsyHmmcCZo9a4TbU5gmcIZjafPBNYcNXmCJ4hmFnbLHg7SNKtkr4l\n6WVJ9y708YdNKb1M58zLOfMqJWcdC1oEJJ0H/Bfg14BfBD4g6RcWMsPiugBJlb5Wruw0OuL4+Hie\n6PPMOfNyzrxKyVnHQj8TWA9MRsQrEfFD4DHgtgXOsIim20fn/jU1dbxR0fjud7+7cA+vAefMyznz\nKiVnHQtdBFYBR/u2X0trdlbVCsfMonHffffN+7MNMytX6wfDF1xwPhdd9J84//w/O8db/JDvfW9e\nI7XczGH1KDD2U28xNXUh0rkPrc8772LefPP/VUo11yujjhz58etWruwwNfVKpWPMR66Ztm37j9x3\n333zeowcZp7PtnLOxbegLxGVdD3wmYi4NW1vAiIits3Yr32vWzUzK0DVl4gudBH4GeAwcCPwN8A+\n4AMRcWjBQpiZ2Y8saDsoIk5L+jjwJL15xEMuAGZmi6eV7xg2M7OF0arPDmrrG8kkPSRpStKBvrXl\nkp6UdFjSE5KWLWbGlGm1pKckvSTpRUmfaGNWSRdIekbS8ynrZ9uYM2U6T9J+SbtanPGIpBfS+dzX\n4pzLJH1J0qH0c/+VtuWUdE06j/vT9xOSPtG2nCnr5nQeD0jaIWlpnZytKQItfyPZw/Ry9dsE7I2I\nnweeAjYveKqfdAr4txHxi8C/AO5O57BVWSPiB8C/jIh3Ae8A3i/pBlqWM/kkMNG33caMbwIjEfGu\niFif1tqY80Fgd0SsBd4JfIuW5YyIl9N5vBb4ZeDvgT+lZTklXQ58DHhXRLyDXmv/A9TJGRGt+AKu\nB/68b3sTcO9i5+rLczlwoG/7W8CKdHkl8K3FzjhL5j8DbmpzVuBiei8QWNe2nMBq4KvACLCrrT93\n4P8A/2TGWqtyAm8D/tcs663KOSPbLcBftDEnsDxlWp4KwK66f9db80yA8t5IdmlETAFExHHg0kXO\n82MkdYBfAr5J7w9Fq7KmNsvzwHGgGxETtC/n54B7+PE3XrQtI/TyfVXSs5L+TVprW841wLclPZxa\nLV+QdDHty9nvt4FH0+VW5YyIN4DfA14FjgEnImIvNXK2qQiUrjUTdklvBb4MfDIiTvKT2RY9a0S8\nGb120GrgvZJGaFFOSb8JTEXEOL3PGT+bRT+XwA3Ra1/8Br0W4Htp0blMlgDXAv81Zf17es/225YT\nAEnnAxuAL6WlVuWUdAXwKXodin8GvEXSh2bJNWfONhWBY8Blfdur01pbTUlaASBpJfC3i5wHAElL\n6BWAP4qInWm5lVkBIuJ7wG7g3bQr5w3ABkn/G/hjenOLPwKOtygjABHxN+n739FrAa6nXecSes/s\nj0bEX6XtP6FXFNqWc9qvA89FxLfTdttyvhv4y4j4TkScpje3+FVq5GxTEXgWuErS5ZKWAhvp9bna\nQvz4vwh30ftMBoA7gJ0zb7BI/hCYiIgH+9ZalVXSP51+1YKki4CbgedpUc6I+HREXBYRV9D7s/hU\nRHwY+AotyQgg6eL0zA9Jb6HXx36RFp1LgNSiOCrpmrR0I/ASLcvZ5wP0iv+0tuU8DFwv6UJJonc+\nJ6iTc7GHLzOGHbemBzcJbFrsPH25HgX+L70P5nkVuJPeQGZvyvsk8LMtyHkDcBoYp/dLdX86pz/X\npqzA21O254EXgH+f1luVsy/v+zgzGG5VRnq99umf94vTf2/aljNleie9f+yNA/8dWNbSnBcDfwdc\n0rfWxpz30CukB4DtwPl1cvrNYmZmQ6xN7SAzM1tgLgJmZkPMRcDMbIi5CJiZDTEXATOzIeYiYGY2\nxFwEzMyGmIuAmdkQ+//yWzjIo5S51gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['networthusbillion'].hist(bins=25)"
]
},
{
"cell_type": "code",
"execution_count": 346,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 346,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHO9JREFUeJzt3X+QZWV95/H3xwygaKQnZpmudSINKgqu2v5Cs5q1Iz/W\nmA24VVtGzbq0u/GP1V0t3bUY3K1i/xIwlbJS+fGHG0KDBbqQHzJWEUEKjlnjKiZwgWVwwu5mgGUz\nnSBoylSFBPnuH+c0cx2655x7z7n3eZ65n1dV1/Q59zn3+czte57u/twfrYjAzMwWw3NSBzAzs/nx\nom9mtkC86JuZLRAv+mZmC8SLvpnZAvGib2a2QFoXfUlXSdqUdO9R+/+9pAck3SfpirH9l0p6sLns\nglmENjOz6ezqMOZq4NeBa7d2SFoDfgF4dUQ8Jeknm/1nAe8BzgL2ArdJenn4xQBmZllo/Uk/Ir4O\nPHHU7n8LXBERTzVjHmv2XwR8MSKeiohDwIPAOcPFNTOzPqbt9M8E/omkb0q6Q9Ibmv0vBh4ZG/do\ns8/MzDLQpd7Z6bjdEfEWSW8CbgTOGC6WmZnNwrSL/iPA7wNExLcl/VDSi6h/sn/J2Li9zb5nkeSe\n38xsChGhaY/tWu+o+djyJeAdAJLOBE6MiO8C+4FflHSipNOBlwF37nSlEZH9x2WXXZY8g3M6Z8k5\nS8hYUs6+Wn/Sl3Q9sAa8SNLDwGXA7wBXS7oPeBL4V80ifkDSDcAB4O+BD8cQKRM6dOhQ6gidOOew\nnHM4JWSEcnL21broR8T7d7joAzuMvxy4vE8oMzObDb8it8X6+nrqCJ0457CcczglZIRycvalVO2L\npNKbHzOzuZNEzOGB3IVVVVXqCJ0457CcczglZIRycvblRd/MbIG43jEzK4jrHTMz68yLfotSej7n\nHJZzDqeEjFBOzr686JuZLRB3+mZmBXGnb2ZmnXnRb1FKz+ecw3LO4ZSQEcrJ2ZcXfTOzBeJO38ys\nIO70zcysMy/6LUrp+ZxzWM45nBIyQjk5+/Kib2a2QNzpm5kVxJ2+mZl15kW/RSk9n3MOyzmHU0JG\nKCdnX62LvqSrJG1Kuneby/6DpKcl/cTYvkslPSjpAUkXDB3YzMym19rpS3ob8APg2oh4zdj+vcBv\nA68A3hARj0s6C7geeBOwF7gNePl25b07fTOzyc2804+IrwNPbHPRZ4FPHrXvIuCLEfFURBwCHgTO\nmTac2bwtL68gqfPH8vJK6shmE5mq05d0IfBIRNx31EUvBh4Z23602VesUno+5xzG5uZDQAB3NP8e\n+6Men07utyeUkRHKydnXrkkPkPQ84FPA+cPHMTOzWZp40QdeCqwA90gSdXd/l6RzqH+yf8nY2L3N\nvm2tr6+zsrICwNLSEqurq6ytrQFHvut6u9v21r5c8pS6/aMqYG3sc7bZJqv8OW6vra1lledY21ty\nybN1221sbAA8s1720enFWZJWgC9HxKu3uezPgddHxBOSzgauA95MXet8FT+QawWpf46Z5H4pfD+2\neZr5A7mSrge+AZwp6WFJHzxqSAACiIgDwA3AAeBm4MOlr+zb/wSYH+ccWpU6QCcl3J4lZIRycvbV\nWu9ExPtbLj/jqO3Lgct75jIzsxnwe++YjXG9Y7nze++YmVlnXvRblNLzOefQqtQBOinh9iwhI5ST\nsy8v+mZmC8SdvtkYd/qWO3f6ZmbWmRf9FqX0fM45tCp1gE5KuD1LyAjl5OzLi76Z2QJxp282xp2+\n5c6dvpmZdeZFv0UpPZ9zDq1KHaCTEm7PEjJCOTn78qJvZrZA3OmbjXGnb7lzp29mZp150W9RSs/n\nnEOrUgfopITbs4SMUE7Ovrzom5ktEHf6dtxaXl5hc/OhKY7Mq9Of9P+xZ89pHD58aHaBLKm+nb4X\nfTtuTf6gLNR/+TOvRd8PLts4P5A7Y6X0fM45tCp1gI6q1AFalfI1LyVnX13+MPpVkjYl3Tu27zOS\nHpA0kvR7kl44dtmlkh5sLr9gVsHN8nASkjp/LC+vpA5sC6613pH0NuAHwLUR8Zpm33nA7RHxtKQr\ngIiISyWdDVwHvAnYC9wGvHy7Hsf1js3avOqdWVcvrnds3MzrnYj4OvDEUftui4inm81vUi/wABcC\nX4yIpyLiEPAgcM604czMbFhDdPr/Gri5+fzFwCNjlz3a7CtWKT1f6pzLyysT1Rz5Vx1V6gAdVakD\ntEp93+yqlJx97epzsKT/BPx9RHxhmuPX19dZWVkBYGlpidXVVdbW1oAjX4DU21tyybPT9mg0Sjp/\n/ZTCO4B6+8hidPT21r6Kzc2ffWbPrL9+O+fZLh/AaMLxk13/pP+fSedPfX8scXs0GmWVZ2u7qio2\nNjYAnlkv++j0lE1JpwFf3ur0m33rwIeAd0TEk82+fdT9/pXN9leAyyLiW9tcpzv948i0/fks7wPu\n9O14NK+nbKr52Jr0ncAngQu3FvzGfuC9kk6UdDrwMuDOacOZmdmwujxl83rgG8CZkh6W9EHg14EX\nAF+VdJek3wKIiAPADcAB6p7/w6X/OP/smiBPpeQsoYOuVakDdFSlDtCqlPtmKTn7au30I+L92+y+\n+hjjLwcu7xPKzMxmw2/DYINwp9/Vc4EnW0c9mzt9q/Xt9Hs9e8fMJvUk030jMhuG33unRSk9Xyk5\nS+iga1XqAB1VqQO0KuW+WUrOvrzom5ktEHf6Ngh3+rMaP90cPreOX35rZTMz68yLfotSer5ScpbQ\nQdeq1AE6qlIHaFXKfbOUnH150TczWyDu9G0Q7vRnNX66OXxuHb/c6ZuZWWde9FuU0vOVkrOEDrpW\npQ7QUZU6QKtS7pul5OzLi76Z2QJxp2+DcKc/q/HTzeFz6/jlTt/MzDrzot+ilJ6vlJwldNC1KnWA\njqrUAVqVct8sJWdfXvStGJP+8XUzezZ3+jaIeXT60/ytWHf6drxxp29mZp150W9RSs9XSs4SOuha\nlTpAR1XqAK1KuW+WkrOvLn8Y/SpJm5LuHdu3W9Ktkg5KukXSKWOXXSrpQUkPSLpgVsHNbCcnTfTY\nhySWl1dSh7Y5ae30Jb0N+AFwbUS8ptl3JfDdiPiMpEuA3RGxT9LZwHXAm4C9wG3Ay7cr793pH1/c\n6c9q/Pzm8PlYhpl3+hHxdeCJo3ZfBFzTfH4N8O7m8wuBL0bEUxFxCHgQOGfacGZmNqxpO/1TI2IT\nICIOA6c2+18MPDI27tFmX7FK6flKyVlCB12rUgfoqEodoFUp981Scva1a6Drmer3wvX1dVZWVgBY\nWlpidXWVtbU14MgXIPX2llzy7LQ9Go2Szl+rgLWxz9lme3zsCT2eT7/T9R9rvknGj2Z8/V3Hz+v6\n6q9pLvfnFNuj0SirPFvbVVWxsbEB8Mx62Uen5+lLOg348lin/wCwFhGbkpaBOyLiLEn7gIiIK5tx\nXwEui4hvbXOd7vSPI4v8PjflZ6qP8flYhnk9T1/Nx5b9wHrz+cXATWP73yvpREmnAy8D7pw2nJmZ\nDavLUzavB74BnCnpYUkfBK4Azpd0EDi32SYiDgA3AAeAm4EPl/7jfCk9Xyk5S+iga1XqAB1VqQO0\nKuW+WUrOvlo7/Yh4/w4XnbfD+MuBy/uEMjOz2fB779gg3OnPavz85vD5WAa/946ZmXXmRb9FKT1f\nKTlL6KBrVeoAHVWpA7Qq5b5ZSs6+vOibmS0Qd/o2CHf6sxo/vzl8PpbBnb6ZmXXmRb9FKT1fKTlL\n6KBrVeoAHVWpA7Qq5b5ZSs6+vOibmS0Qd/o2CHf6sxo/vzl8PpbBnb6ZmXXmRb9FKT1fKTlL6KBr\nVeoAHVWpA7Qq5b5ZSs6+vOibmS0Qd/o2CHf6sxo/vzl8PpbBnb6ZDeAkJHX+WF5eSR3YpuRFv0Up\nPV8pOUvooGtV6gAdVQNdz5PUvx10+9jcfKh7wkLum6Xk7MuLvpnZAnGnb4Nwpz+r8fnO4fM3DXf6\nZmbWmRf9FqX0fKXkXLyufNaq1AFalXLfLCVnX70WfUmXSrpf0r2SrpN0oqTdkm6VdFDSLZJOGSqs\nmZn1M3WnL+k04A7glRHxd5L+G3AzcDbw3Yj4jKRLgN0RsW+b493pH0fc6c9qfL5z+PxNI2Wn/9fA\n3wHPl7QLeB7wKHARcE0z5hrg3T3mMDOzAU296EfEE8CvAg9TL/bfj4jbgD0RsdmMOQycOkTQVErp\n+YbOuby8MtGLdSZIOmjO2alSB+ioSh2g1aKeQ7naNe2Bks4APg6cBnwfuFHSL/Hs3xF3/B1wfX2d\nlZUVAJaWllhdXWVtbQ048gVIvb0llzw7bY9Go0Gvr37xzR3A2tYt0Py707aafW3jadme9PhZjR9l\nkmde17e1r/v4qqqyuf8PsT0ajbLKs7VdVRUbGxsAz6yXffTp9N8DnB8RH2q2PwC8BXgHsBYRm5KW\ngTsi4qxtjnenn7HJO/ocu2pnmuUcPn/TSNnpHwTeIum5qleIc4EDwH5gvRlzMXBTjznMzGxAfTr9\ne4BrgT8F7qH+UeFzwJXA+ZIOUn8juGKAnMmU0vOVkrOEDrpWpQ7QUZU6QKtS7pul5Oxr6k4fICJ+\nBfiVo3Y/DpzX53rNzGw2/N47ti13+rmMz3cOn79p+L13zMysMy/6LUrp+UrJWUIHXatSB+ioSh2g\nVSn3zVJy9uVF38xsgbjTt225089lfL5z+PxNw52+mZl15kW/RSk9Xyk5S+iga1XqAB1VqQO0KuW+\nWUrOvrzom5ktEHf6ti13+rmMz3cOn79puNM3M7POvOi3KKXnKyVnCR10rUodoKMqdYBWpdw3S8nZ\nlxd9M7MF4k7ftuVOP5fx+c7h8zcNd/pmZtaZF/0WpfR8peQsoYOuVakDdFSlDtCqlPtmKTn78qJv\nZrZA3Onbttzp5zI+3zl8/qbhTt/MzDrzot+ilJ6vlJwldNC1KnWAjqrUAVpVVcXy8gqSJvpYXl6Z\ne85F0GvRl3SKpBslPSDpfklvlrRb0q2SDkq6RdIpQ4U1szJtbj5EXR91/6iPsaH16vQlbQBfi4ir\nJe0Cng98CvhuRHxG0iXA7ojYt82x7vQz5k4/l/H5zjHJ+Tv5/WnyORZF305/6kVf0guBuyPipUft\n/w7w9ojYlLQMVBHxym2O96KfMS/6uYzPdw4v+mmkfCD3dOAxSVdLukvS5ySdDOyJiE2AiDgMnNpj\njuRK6flKyVlCB12rUgfoqEodoFUp981Scva1q+exrwc+EhF/IumzwD6e/e18x2/V6+vrrKysALC0\ntMTq6ipra2vAkS9A6u0tueTZaXs0Gg16fc3/Glgb+5xjbHcdT8v2pMfPavwokzzzur6tfd3HV1U1\nw/vT1vaRuY51/UNsj0ajbM7n8e2qqtjY2AB4Zr3so0+9swf4HxFxRrP9NupF/6XA2li9c0dEnLXN\n8a53MuZ6J5fxuc7xXODJCedwvTOEZPVOU+E8IunMZte5wP3AfmC92XcxcNO0c5hZrp5ksmfjWC76\nPk//o8B1kkbAa4FPA1cC50s6SP2N4IqecyRVSs9XSs4SOuhalTpAR1XqAB1UqQN0Us451E+fTp+I\nuAd40zYXndfnes3M4KSmZuxmz57TOHz40OziHCf83ju2LXf6uYw/XubI72mkpfJ775iZWWde9FuU\n0vOVkrOUftc5h1SlDtBJOedQP170zcwWiDt925Y7/VzGHy9zuNMfijt9MzPrzIt+i1J6vlJyltLv\nOueQqtQBOinnHOrHi76Z2QJxp2/bcqefy/jjZQ53+kNxp29mZp150W9RSs9XSs5S+l3nHFKVOkAn\n5ZxD/XjRNzNbIO70F8Dy8sqUf2Q6v87WmUqdw53+UJL9jdy+vOjPz7R/nzTHk9qZSp3Di/5Q/EDu\njJXS85WSs5R+1zmHVKUO0Ek551A/XvTNzBaI650F4HpnEouYaR5zuN4ZiusdMzPrzIt+i1J6vlJy\nltLvOueQqtQBOinnHOqn96Iv6TmS7pK0v9neLelWSQcl3SLplP4xzcxsCL07fUkfB94AvDAiLpR0\nJfDdiPiMpEuA3RGxb5vj3OnPiTv9SSxipnnM4U5/KEk7fUl7gXcBvz22+yLgmubza4B395nDzMyG\n07fe+SzwSX702/GeiNgEiIjDwKk950iqlJ6vlJyl9LvOOaQqdYBOyjmH+tk17YGSfh7YjIiRpLVj\nDN3x96319XVWVlYAWFpaYnV1lbW1+qq2vgCpt7fkkmen7dFodMzLj5x4Xbe39g09npbtSY+f1fhR\nJnnmdX1b+3IZv7VNy+Xbj5/mfBqNRtmcz+PbVVWxsbEB8Mx62cfUnb6kTwP/EngKeB7w48AfAG8E\n1iJiU9IycEdEnLXN8e7058Sd/iQWMdM85nCnP5RknX5EfCoiXhIRZwDvBW6PiA8AXwbWm2EXAzdN\nO4eZmQ1rFs/TvwI4X9JB4Nxmu1il9Hyl5Cyl33XOIVWpA3RSzjnUz9Sd/riI+Brwtebzx4Hzhrhe\nM7PuTmqqzO727DmNw4cPzSZOpvzeOwvAnf4kFjHTPObIMVN9TGnrkN97x8zMOvOi36KUnq+UnKX0\nu845pCp1gE7KOYf68aJvZrZA3OkvAHf6k1jETPOYI8dM9TGlrUPu9M3MrDMv+i1K6flKyVlKv+uc\nQ6pSB+iknHOoHy/6ZmYLxJ3+AnCnP4lFzDSPOXLMVB9T2jrkTt/MzDrzot+ilJ6vlJyl9LvOOaQq\ndYBOyjmH+vGib2a2QNzpLwB3+pNYxEzzmCPHTPUxpa1D7vTNzKwzL/otSun5SslZSr/rnEOqUgfo\npJxzqJ9B3k/f5mt5eYXNzYdSxzCzArnTL9DkHX2+feri9cg5ZprHHDlmqo8pbR1yp29mZp1NvehL\n2ivpdkn3S7pP0keb/bsl3SrpoKRbJJ0yXNz5K6fnq1IH6KhKHaCjKnWAjqrUATqoUgfopJxzvZ8+\nP+k/BXwiIl4F/DTwEUmvBPYBt0XEK4DbgUv7xzQzsyEM1ulL+hLwG83H2yNiU9IyUEXEK7cZ705/\nSu70ZzV+HnPkmGkec+SYqT6mtHUoi05f0gqwCnwT2BMRmwARcRg4dYg5zMysv96LvqQXAL8LfCwi\nfsCzv9WW9W30KOX0fFXqAB1VqQN0VKUO0FGVOkAHVeoAnZRzrvfT63n6knZRL/ifj4ibmt2bkvaM\n1Tt/udPx6+vrrKysALC0tMTq6ipra2vAkS9A6u0tueTZ2j5yIm1tj47aPvrySbe39g09npbtSY+f\n1fiut+es88zr+rb25TJ+a5uWy4cZX1UVo9Eom/N7fLuqKjY2NgCeWS/76NXpS7oWeCwiPjG270rg\n8Yi4UtIlwO6I2LfNse70p+ROf1bj5zFHjpnmMUeOmQCeCzzZefSePadx+PChCecYVt9Of+pFX9Jb\ngT8C7qO+pQP4FHAncAPwU8BDwHsi4nvbHO9Ff0pe9Gc1fh5z5JhpHnPkmGm6OVKvW8keyI2IP46I\nH4uI1Yh4XUS8PiK+EhGPR8R5EfGKiLhguwW/JOX0fFXqAB1VqQN0VKUO0FGVOkAHVeoAHVWpA8yF\nX5FrZrZA/N47BXK9M6vx85gjx0zzmCPHTNPNkXrdyuJ5+mZmVgYv+i3c6Q+tSh2goyp1gI6q1AE6\nqFIH6KhKHWAuvOibmS0Qd/oFcqc/q/HzmCPHTPOYI8dM082Ret1yp29mZp150W/hTn9oVeoAHVWp\nA3RUpQ7QQZU6QEdV6gBz4UU/A8vLK0jq/GFmNi13+hmYfUd//PSpzlTqHDlmmm6O1OuWO30zM+vM\ni34Ld/pDq1IH6KhKHaCjKnWADqrUATqqOow5aaIqdnl5ZcaZJ9fr/fTNzBbLk0xSB21u5vcYnDv9\nDLjTz2X8PObIMdM85sgx0zzmGP4xAHf6ZmbWmRf9FpN2+pM+/XK4p2BOljOdKnWAjqrUATqqUgfo\noEodoKMqdYC5cKc/sM3Nh5juV0wzs9lzp99ieXmlWcgnkV+vmF+meczhTPnMkWOmecyRX6fvRb/F\n8fHmZjlmmscczpTPHDlmmscc+S36M+v0Jb1T0nck/ZmkS2Y1j22pUgfoqEodoKMqdYCOqtQBOqhS\nB+ioSh1gLmay6Et6DvAbwD8FXgW8T9IrZzHXJNI9yDoPo9QBOnLOYZWQs4SMMJuck72Yax4v6JrV\nA7nnAA9GxEMAkr4IXAR8Z6gJIoLNzc2Jjjm+H2T9XuoAHTnnsErIWUJGmE3OyV7MBbN/QdesFv0X\nA4+Mbf9f6m8Eg/nCF77AxRf/Miec8MJO4yOeHnJ6M7MiFfuUze9973vs2rWHE074Rx2PeIq//duv\nzDRTWodSB+joUOoAHR1KHaCjQ6kDdHAodYCODqUOMBczefaOpLcA/yUi3tls7wMiIq4cG5P/U3fM\nzDKU3VM2Jf0YcBA4F/gL4E7gfRHxwOCTmZlZZzOpdyLih5L+HXAr9TOErvKCb2aWXrIXZ5mZ2fzN\n5Q3XJO2VdLuk+yXdJ+mjzf7dkm6VdFDSLZJOmUeeY+Q8SdK3JN3dZP10jjmbTM+RdJek/RlnPCTp\nnub2vDPjnKdIulHSA83X/c255ZR0ZnM73tX8+31JH80tZ5P10uZ2vFfSdZJOzDTnx5r1KKs1SdJV\nkjYl3Tu2b8dcze39YHP/vaDt+uf1LptPAZ+IiFcBPw18pHmx1j7gtoh4BXA7cOmc8mwrIp4EfjYi\nXge8BniHpLeSWc7Gx4ADY9s5ZnwaWIuI10XE1lN2c8z5a8DNEXEW8Frq15NklTMi/qy5HV8PvAH4\nG+APyCynpNOADwGvi4jXUFfI7yO/nK8C/g3wRmAV+GeSXkoeOa+mfmHruG1zSTobeA9wFvBzwG+p\n7VWlETH3D+BLwHnUJ9eeZt8y8J0UeXbIeDL1A9Bn55YT2At8FVgD9jf7ssrY5Phz4EVH7csqJ/BC\n4H9vsz+rnEdluwD47znmBHY3mXZTL/j7czzXgX8B/Nex7f8MfBJ4IIecwGnAvWPb295+zTeDS8bG\n/SHw5mNd99zfT1/SCvV31m82/4lNgIg4DJw67zxHa2qTu4HDQBURB8gv52ep76DjD8jklhHqfF+V\n9G1Jv9zsyy3n6cBjkq5uqpPPSTqZ/HKO+0Xg+ubzrHJGxBPArwIPA48C34+I28gsJ/A/gZ9papOT\ngXcBP0V+ObecukOuo18I+2izb0dzXfQlvQD4XeBjEfEDnv365OSPKkfE01HXO3up7xRrZJRT0s8D\nmxEx4tjvEZH8tgTeGnUd8S7qSu9nyOi2bOwCXg/8ZpP1b6h/esotJwCSTgAuBG5sdmWVU9IZwMep\nf1L9h8DzJf3SNrmS5oyI7wBXUv/GfDNwN/DD7YbOM9cEps41t0Vf0i7qBf/zEXFTs3tT0p7m8mXg\nL+eVp01E/DX1neGN5JXzrcCFkv4P8AXqxx0+DxzOKCMAEfEXzb9/RV3pnUNetyXUbxHySET8SbP9\ne9TfBHLLueXngD+NiMea7dxyvhH444h4PCJ+SP24wz8mv5xExNUR8caIWKN+452DZJizsVOuR6l/\nQ9myt9m3o3n+pP87wIGI+LWxffuB9ebzi4Gbjj5oniT95Naj4pKeB5xP/RNANjkj4lMR8ZKIOAN4\nL3B7RHwA+DKZZASQdHLzmx2Snk/dQ99HRrclQPMr8yOSzmx2nQvcT2Y5x7yP+pv9ltxyHgTeIum5\nzQOK51I/4SC3nEj6B82/LwH+OXVllktO8aO/ye+Uaz/w3uYZUqcDL6N+LHJnc3pQ4q3UvzqNqBfR\nu4B3Aj8B3EZ9R7kVWErxoMlYzlc32e4G7gH+Y7M/q5xjed/OkQdys8pI3ZVvfb3vA/blmLPJ9Frg\n203e3wdOyTTnycBfAT8+ti/HnJ+k/sZ5L3ANcEKmOf+Iutu/m/pZZlncntTffP4f9Vt0Pgx8kPqB\n8W1zUT+T539RPwh9Qdv1+8VZZmYLZO7P3jEzs3S86JuZLRAv+mZmC8SLvpnZAvGib2a2QLzom5kt\nEC/6ZmYLxIu+mdkC+f9CFJzitanTJgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rich_df['age'].hist(bins=25)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mostly billionaires are around 60, but sometimes they're younger or older. **This is something you can use simple summary statistics on**. The net worth data is **skewed**, and attempting to use your normal boring statistics on it is a [terrible mistake](https://www.ma.utexas.edu/users/mks/statmistakes/skeweddistributions.html).\n",
"\n",
"The age data is called a **normal distribution**. It's nice, it's pleasant, it's **normal.** You can do normal things with it, like look for outliers. Let's read in some NBA data and look for outliers."
]
},
{
"cell_type": "code",
"execution_count": 347,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"nba_df = pd.read_csv(\"nba.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 348,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 528.000\n",
"mean 221.206\n",
"std 27.943\n",
"min 20.000\n",
"25% 200.000\n",
"50% 220.000\n",
"75% 240.000\n",
"max 290.000\n",
"Name: WT, dtype: float64"
]
},
"execution_count": 348,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nba_df['WT'].describe()"
]
},
{
"cell_type": "code",
"execution_count": 349,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 349,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEthJREFUeJzt3V+MXGd5x/HfD0xCIVLsqo1XiqnXVUCEqmj7h6hSQF0J\ncKNe4IgLFOhFNlWuKH/Uqmqc3riqqgZHohJSxU0JtUFEacQFCRJ/TEKOUIqSoOIlAbupK7IhuPGC\naKCNKiESnl7McTw4O+zxznnnfc97vh9plZl3/rzPk7P77MxvZtaOCAEAxuEVuQsAACwOQx8ARoSh\nDwAjwtAHgBFh6APAiDD0AWBEth36tvfZ/qrt79h+wvaH2vU9tk/YftL2l21fOXWb222fsX3a9sGU\nDQAAuvN279O3vSRpKSLWbV8h6d8kHZJ0i6QfRcSdtm+TtCciDtt+k6TPSHqLpH2SHpD0+uADAQCQ\n3baP9CPiXESst6efl3Rak2F+SNLx9mrHJd3Ynn6XpHsi4oWI2JB0RtJ1PdcNANiBS8r0bS9LWpH0\niKS9EbEpTX4xSLqqvdrVkp6ZutnZdg0AkFnnod9GO5+V9OH2Ef/FcQ3xDQAUbleXK9nepcnA/3RE\n3Ncub9reGxGbbe7/g3b9rKTXTd18X7t28X3ySwIAdiAivNPbdn2k/0lJpyLiY1Nr90taa0/fLOm+\nqfWbbF9m+4CkayQ9ttWdRkS1X0eOHMleA/3R3xj7q7m3iPkfK2/7SN/29ZL+RNITtk9qEuP8taSj\nku61/aeSnpb0nnaQn7J9r6RTkn4m6f3RR6UDs7GxkbuEpOhv2Grur+be+rDt0I+If5X0yhkXv2PG\nbe6QdMccdQEowNLSsjY3n174vnv37te5cxsL33cMOmX6uHRra2u5S0iK/oata3+Tgb/4J+qbmzuO\nrKs/dvPa9sNZyTa2x5j6AINiW3nemOde8usa2VYs4IVcXKKmaXKXkBT9DVvN/dXcWx8Y+gAwIsQ7\nAGYi3ikP8Q4AoDOGfiK154r0N2w191dzb31g6APAiJDpA5iJTL88ZPoAgM4Y+onUnivS37DV3F/N\nvfWBoQ8AI0KmD2AmMv3ykOkDADpj6CdSe65If8NWc38199YHhj4AjAiZPoCZyPTLQ6YPAOiMoZ9I\n7bki/Q1bzf3V3FsfGPoAMCJk+gBmItMvD5k+AKAzhn4iteeK9DdsNfdXc299YOgDwIiQ6QOYiUy/\nPGT6AIDOGPqJ1J4r0t+w1dxfzb31gaEPACNCpg9gJjL98pDpAwA6Y+gnUnuuSH/DVnN/NffWB4Y+\nAIwImT6Amcj0y0OmDwDojKGfSO25Iv0NW8391dxbHxj6ADAiZPoAZiLTLw+ZPgCgM4Z+IrXnivQ3\nbDX3V3NvfWDoA8CIkOkDmIlMvzxk+gCAzhj6idSeK9LfsNXcX8299YGhDwAjQqYPYCYy/fKQ6QMA\nOmPoJ1J7rkh/w1ZzfzX31odth77tu2xv2n58au2I7e/b/mb7dcPUZbfbPmP7tO2DqQoHAFy6bTN9\n22+V9LykT0XEm9u1I5L+NyL+4aLrXivpbklvkbRP0gOSXr9VeE+mD5SPTL88yTP9iHhY0nNb7b3F\n2iFJ90TECxGxIemMpOt2WhwAoF/zZPofsL1u+xO2r2zXrpb0zNR1zrZro1N7rkh/w1ZzfzX31odd\nO7zdxyX9bUSE7b+T9FFJt17qnaytrWl5eVmStHv3bq2srGh1dVXShQM31PPr6+tF1UN/9LeT/i44\nf351QecnNZTy/yvn+aZpdOzYMUl6aV7Oo9P79G3vl/T585n+rMtsH5YUEXG0vexLko5ExKNb3I5M\nHygcmX55FvU+fWsqw7e9NHXZuyV9uz19v6SbbF9m+4CkayQ9ttPiAAD96vKWzbslfV3SG2x/z/Yt\nku60/bjtdUl/KOnPJSkiTkm6V9IpSV+Q9P6xPpx/+dPjutDfsNXcX8299WHbTD8i3rfF8j//kuvf\nIemOeYoCAKTB394BMBOZfnn42zsAgM4Y+onUnivS37DV3F/NvfWBoQ8AI0KmDxRuaWlZm5tPZ6yA\nTL8k82b6DH2gcPleTJUmH89h6JeEF3ILVXuuSH9D1+QuIJn6j918GPoAMCLEO0DhiHcwjXgHANAZ\nQz+R2nNF+hu6JncBydR/7ObD0AeAESHTBwpHpo9pZPoAgM4Y+onUnivS39A1uQtIpv5jNx+GPgCM\nCJk+UDgyfUwj0wcAdMbQT6T2XJH+hq7JXUAy9R+7+TD0AWBEyPSBwpHpY9q8mf6uPosBgH5c3v6y\nW6y9e/fr3LmNhe+7SMQ7idSeK9Lf0DW5C9jGTzV5hrGTr4d2fNu8/0LZYjD0AWBEyPSBwo010+e1\nhK3xPn0AQGcM/URqz4Tpb+ia3AUk1OQuoGgMfQAYETJ9oHBk+ovdt/S5RKYPAOiMoZ9I7Zkw/Q1d\nk7uAhJrcBRSNoQ8AI0KmDxSOTH+x+5Y+l8j0AQCdMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IHC\nkekvdt/S5xKZPgCgM4Z+IrVnwvQ3dE3uAhJqchdQNIY+AIwImT5QODL9xe5b+lwi0wcAdMbQT6T2\nTJj+hq7JXUBCTe4CisbQB4ARIdMHCkemv9h9S59LZPoAgM4Y+onUngnT39A1uQtIqMldQNG2Hfq2\n77K9afvxqbU9tk/YftL2l21fOXXZ7bbP2D5t+2CqwgEAl27bTN/2WyU9L+lTEfHmdu2opB9FxJ22\nb5O0JyIO236TpM9IeoukfZIekPT6rcJ7Mn2gGzL9xe5b+lxKnulHxMOSnrto+ZCk4+3p45JubE+/\nS9I9EfFCRGxIOiPpup0WBwDo104z/asiYlOSIuKcpKva9aslPTN1vbPt2ujUngnT39A1uQtIqMld\nQNF29XQ/O3o+tLa2puXlZUnS7t27tbKyotXVVUkXfuiGen59fb2oeuhv2P1dGGR9nV/veH1tc3mq\n8+fXFrXf+fPtuYK+H5um0bFjxyTppXk5j07v07e9X9LnpzL905JWI2LT9pKkhyLiWtuHJUVEHG2v\n9yVJRyLi0S3uk0wf6IBMf7H7lj6XFvU+fbdf590vaa09fbOk+6bWb7J9me0Dkq6R9NhOiwMA9KvL\nWzbvlvR1SW+w/T3bt0j6iKR32n5S0tvb84qIU5LulXRK0hckvX+sD+drz4Tpb+ia3AUk1OQuoGjb\nZvoR8b4ZF71jxvXvkHTHPEUBANLgb+8AhSPTX+y+pc8l/vYOAKAzhn4itWfC9Dd0Te4CEmpyF1A0\nhj4AjAiZPlA4Mv3F7lv6XCLTBwB0xtBPpPZMmP6GrsldQEJN7gKKxtAHgBEh0wcKR6a/2H1Ln0tk\n+gCAzhj6idSeCdPf0DW5C0ioyV1A0Rj6ADAiZPpA4cj0F7tv6XOJTB8A0BlDP5HaM2H6G7omdwEJ\nNbkLKBpDHwBGhEwfKByZ/mL3LX0ukekDADpj6CdSeyZMf0PX5C4goSZ3AUVj6APAiJDpA4Uj01/s\nvqXPJTJ9AEBnDP1Eas+E6W/omtwFJNTkLqBoDH0AGBEyfaBwZPqL3bf0uUSmDwDojKGfSO2ZMP0N\nXZO7gISa3AUUjaEPACNCpg8Ujkx/sfuWPpfI9AEAnTH0E6k9E6a/oWtyF5BQk7uAojH0AWBEyPSB\nwpHpL3bf0ucSmT4AoDOGfiK1Z8L0N3RN7gISanIXUDSGPgCMCJk+UDgy/cXuW/pcItMHAHTG0E+k\n9kyY/oauyV1AQk3uAorG0AeAESHTBwpHpr/YfUufS2T6AIDOGPqJ1J4J09/QNbkLSKjJXUDRGPoA\nMCJk+kDhyPQXu2/pc4lMHwDQGUM/kdozYfobuiZ3AQk1uQso2q55bmx7Q9JPJP1c0s8i4jrbeyT9\ni6T9kjYkvScifjJnnQCAHsyV6dv+rqTfi4jnptaOSvpRRNxp+zZJeyLi8Ba3JdMHOiDTX+y+pc+l\n3Jm+t7iPQ5KOt6ePS7pxzj0AAD2Zd+iHpK/Y/obtW9u1vRGxKUkRcU7SVXPuMUi1Z8L0N3RN7gIS\nanIXULS5Mn1J10fEs7Z/XdIJ20/q5c/JZj5XWltb0/LysiRp9+7dWllZ0erqqqQLP3RDPb++vl5U\nPfQ37P4uDLK+zq93vL62uTzV+fNri9rv/Pn2XEHfj03T6NixY5L00rycR2/v07d9RNLzkm6VtBoR\nm7aXJD0UEdducX0yfaADMv3F7lv6XMqW6dt+je0r2tOvlXRQ0hOS7pe01l7tZkn37XQPAEC/5sn0\n90p62PZJSY9I+nxEnJB0VNI726jn7ZI+Mn+Zw1N7Jkx/Q9fkLiChJncBRdtxph8RT0la2WL9vyW9\nY56iAABp8Ld3gMKR6S9239LnUu736QMABoShn0jtmTD9DV2Tu4CEmtwFFI2hDwAjQqYPFI5Mf7H7\nlj6XyPQBAJ0x9BOpPROmv6FrcheQUJO7gKIx9AFgRMj0gcKR6S9239LnEpk+AKAzhn4itWfC9Dd0\nTe4CEmpyF1A0hj4AjAiZPlA4Mv3F7lv6XCLTBwB0xtBPpPZMmP6GrsldQEJN7gKKNu+/kQuMxtLS\nsjY3n85dBjAXMn2go3zZOpn+IvctfS6R6QMAOmPoJ1J7Jkx/Q9fkLiChZo7bXi7bC/9aWlruqfft\nkekDwEt+qhyx0ubmjtOaS0amD3REps++KfftOg/J9AEAnTH0E6k9E6a/oWtyF5BQk7uAojH0AWBE\nyPSBjsj02TflvmT6AIDeMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IGOyPTZN+W+ZPoAgN4x9BOp\nPROmv6FrcheQUJO7gKIx9AFgRMj0gY7I9Nk35b5k+gCA3jH0E6k9E6a/oWtyF5BQk7uAojH0AWBE\nyPSBjsj02TflvmT6AIDeMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IGOyPTZN+W+ZPoAgN4x9BOp\nPROmv6FrcheQUJO7gKIx9AFgRMj0gY7I9Nk35b5k+gCA3iUb+rZvsP3vtv/D9m2p9ilV7Zkw/Q1d\nk7uAhJrcBRQtydC3/QpJ/yjpjyT9lqT32n5jir1Ktb6+nruEpOhv6Grur+be5pfqkf51ks5ExNMR\n8TNJ90g6lGivIv34xz/OXUJS9Dd0NfdXc2/z25Xofq+W9MzU+e9r8osguVtu+aAeeuhri9jqF7z6\n1Zfpi1+8VwcOHFj43gDQVaqhn82DDz6oZ599TvarFrrviy/+QE899dRLQ39jY2Oh+y8a/Q3dRu4C\nEtrIXUDRkrxl0/YfSPqbiLihPX9YUkTE0anr8H5NANiBed6ymWrov1LSk5LeLulZSY9Jem9EnO59\nMwBAZ0ninYh40fYHJJ3Q5MXiuxj4AJBftk/kAgAWL8sncmv84JbtDdvfsn3S9mPt2h7bJ2w/afvL\ntq/MXWcXtu+yvWn78am1mb3Yvt32GdunbR/MU3V3M/o7Yvv7tr/Zft0wddnQ+ttn+6u2v2P7Cdsf\naterOIZb9PfBdn3wx9D25bYfbefId2z/fbve37GLiIV+afKL5j8l7Zf0Kk0+SfHGRdeRoK/vStpz\n0dpRSX/Vnr5N0kdy19mxl7dKWpH0+Ha9SHqTpJOaRIXL7bF17h520N8RSX+xxXWvHWB/S5JW2tNX\naPL62htrOYa/pL8qjqGk17T/faWkRyRd3+exy/FIv9YPblkvf+Z0SNLx9vRxSTcutKIdioiHJT13\n0fKsXt4l6Z6IeCEiNiSd0YI+k7FTM/qTJsfwYoc0vP7ORcR6e/p5Sacl7VMlx3BGf1e3Fw/+GEbE\n/7UnL9dkpjynHo9djqG/1Qe3rp5x3SEJSV+x/Q3bt7ZreyNiU5p8o0q6Klt187tqRi8XH8+zGu7x\n/IDtddufmHr6POj+bC9r8qzmEc3+fhxsj1P9PdouDf4Y2n6F7ZOSzklqIuKUejx2/JXN/lwfEb8r\n6Y8l/Zntt+nlf6O1plfNa+pFkj4u6TcjYkWTH7aPZq5nbravkPRZSR9uHxFX9f24RX9VHMOI+HlE\n/I4mz87eZntVPR67HEP/rKTfmDq/r10btIh4tv3vDyV9TpOnWJu290qS7SVJP8hX4dxm9XJW0uum\nrjfI4xkRP4w2JJX0T7rwFHmQ/dnepclA/HRE3NcuV3MMt+qvtmMYEf8j6QuSfl89HrscQ/8bkq6x\nvd/2ZZJuknR/hjp6Y/s17aMO2X6tpIOSntCkr7X2ajdLum/LOyiT9Yv56Kxe7pd0k+3LbB+QdI0m\nH8Yr3S/01/4gnfduSd9uTw+1v09KOhURH5taq+kYvqy/Go6h7V87H0vZ/hVJ79Tkhdr+jl2mV6dv\n0OQV9zOSDud+tbyHfg5o8i6kk5oM+8Pt+q9KeqDt9YSk3blr7djP3ZL+S9JPJX1P0i2S9szqRdLt\nmrxr4LSkg7nr32F/n5L0eHscP6dJhjrU/q6X9OLU9+Q325+5md+PQ+rxl/Q3+GMo6bfbfk5K+pak\nv2zXezt2fDgLAEaEF3IBYEQY+gAwIgx9ABgRhj4AjAhDHwBGhKEPACPC0AeAEWHoA8CI/D/juqZZ\niVzBBAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nba_df['WT'].hist()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That mostly looks clustered around one value. But what's that weird one? Let's grab a standard deviation for every point."
]
},
{
"cell_type": "code",
"execution_count": 350,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Age | \n",
" Team | \n",
" POS | \n",
" # | \n",
" 2013 $ | \n",
" Ht (In.) | \n",
" WT | \n",
" EXP | \n",
" 1st Year | \n",
" DOB | \n",
" School | \n",
" City | \n",
" State (Province, Territory, Etc..) | \n",
" Country | \n",
" Race | \n",
" HS Only | \n",
" wt_std | \n",
"
\n",
" \n",
" \n",
" \n",
" 40 | \n",
" Taylor, Jermaine | \n",
" 26 | \n",
" Cavaliers | \n",
" G | \n",
" 8 | \n",
" $780,871 | \n",
" 77 | \n",
" 20 | \n",
" 4 | \n",
" 2009 | \n",
" 12/8/1986 | \n",
" Central Florida | \n",
" Tavares, FL | \n",
" Florida | \n",
" US | \n",
" Black | \n",
" No | \n",
" 7.201 | \n",
"
\n",
" \n",
" 136 | \n",
" Brown, Kwame | \n",
" 31 | \n",
" 76ers | \n",
" C | \n",
" 54 | \n",
" $2,945,901 | \n",
" 83 | \n",
" 290 | \n",
" 12 | \n",
" 2001 | \n",
" 3/10/1982 | \n",
" Glynn Adademy (GA) | \n",
" Charleston, SC | \n",
" South Carolina | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.462 | \n",
"
\n",
" \n",
" 315 | \n",
" Pekovi?, Nikola | \n",
" 27 | \n",
" Timberwolves | \n",
" C | \n",
" 14 | \n",
" $12,000,000 | \n",
" 83 | \n",
" 290 | \n",
" 3 | \n",
" 2010 | \n",
" 1/3/1986 | \n",
" n/a | \n",
" Bijelo Polje | \n",
" n/a | \n",
" Yugoslavia | \n",
" White | \n",
" No | \n",
" 2.462 | \n",
"
\n",
" \n",
" 374 | \n",
" Jefferson, Al | \n",
" 28 | \n",
" Bobcats | \n",
" F/C | \n",
" 25 | \n",
" $13,500,000 | \n",
" 82 | \n",
" 289 | \n",
" 9 | \n",
" 2004 | \n",
" 1/4/1985 | \n",
" Prentiss HS (MS) | \n",
" Monticello, MS | \n",
" Mississippi | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.426 | \n",
"
\n",
" \n",
" 207 | \n",
" Davis, Glen | \n",
" 27 | \n",
" Magic | \n",
" F/C | \n",
" 11 | \n",
" $6,400,000 | \n",
" 81 | \n",
" 289 | \n",
" 6 | \n",
" 2007 | \n",
" 1/1/1986 | \n",
" LSU | \n",
" Baton Rouge, LA | \n",
" Louisiana | \n",
" US | \n",
" Black | \n",
" No | \n",
" 2.426 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Age Team POS # 2013 $ Ht (In.) WT \\\n",
"40 Taylor, Jermaine 26 Cavaliers G 8 $780,871 77 20 \n",
"136 Brown, Kwame 31 76ers C 54 $2,945,901 83 290 \n",
"315 Pekovi?, Nikola 27 Timberwolves C 14 $12,000,000 83 290 \n",
"374 Jefferson, Al 28 Bobcats F/C 25 $13,500,000 82 289 \n",
"207 Davis, Glen 27 Magic F/C 11 $6,400,000 81 289 \n",
"\n",
" EXP 1st Year DOB School City \\\n",
"40 4 2009 12/8/1986 Central Florida Tavares, FL \n",
"136 12 2001 3/10/1982 Glynn Adademy (GA) Charleston, SC \n",
"315 3 2010 1/3/1986 n/a Bijelo Polje \n",
"374 9 2004 1/4/1985 Prentiss HS (MS) Monticello, MS \n",
"207 6 2007 1/1/1986 LSU Baton Rouge, LA \n",
"\n",
" State (Province, Territory, Etc..) Country Race HS Only wt_std \n",
"40 Florida US Black No 7.201 \n",
"136 South Carolina US Black Yes 2.462 \n",
"315 n/a Yugoslavia White No 2.462 \n",
"374 Mississippi US Black Yes 2.426 \n",
"207 Louisiana US Black No 2.426 "
]
},
"execution_count": 350,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nba_df['wt_std'] = ((nba_df['WT'] - nba_df['WT'].mean()).apply(abs) / nba_df['WT'].std())\n",
"nba_df.sort_values(by='wt_std', ascending=False).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jermaine Taylor has a weight that's **7 standard deviations away**, which means we should probably look at it.\n",
"\n",
"Oh look, he weighs 20 pounds. Does he actually weigh 20 pounds? We could do some research, but **I'm thinking he doesn't**. \n",
"\n",
"How about we get rid of everyone that's a bad outlier? We only have one guy so far, but we might as well."
]
},
{
"cell_type": "code",
"execution_count": 351,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Only keep people with a standard deviation of less than three\n",
"cleaned_nba_df = nba_df[nba_df['wt_std'] < 3]"
]
},
{
"cell_type": "code",
"execution_count": 352,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Age | \n",
" Team | \n",
" POS | \n",
" # | \n",
" 2013 $ | \n",
" Ht (In.) | \n",
" WT | \n",
" EXP | \n",
" 1st Year | \n",
" DOB | \n",
" School | \n",
" City | \n",
" State (Province, Territory, Etc..) | \n",
" Country | \n",
" Race | \n",
" HS Only | \n",
" wt_std | \n",
"
\n",
" \n",
" \n",
" \n",
" 315 | \n",
" Pekovi?, Nikola | \n",
" 27 | \n",
" Timberwolves | \n",
" C | \n",
" 14 | \n",
" $12,000,000 | \n",
" 83 | \n",
" 290 | \n",
" 3 | \n",
" 2010 | \n",
" 1/3/1986 | \n",
" n/a | \n",
" Bijelo Polje | \n",
" n/a | \n",
" Yugoslavia | \n",
" White | \n",
" No | \n",
" 2.462 | \n",
"
\n",
" \n",
" 136 | \n",
" Brown, Kwame | \n",
" 31 | \n",
" 76ers | \n",
" C | \n",
" 54 | \n",
" $2,945,901 | \n",
" 83 | \n",
" 290 | \n",
" 12 | \n",
" 2001 | \n",
" 3/10/1982 | \n",
" Glynn Adademy (GA) | \n",
" Charleston, SC | \n",
" South Carolina | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.462 | \n",
"
\n",
" \n",
" 374 | \n",
" Jefferson, Al | \n",
" 28 | \n",
" Bobcats | \n",
" F/C | \n",
" 25 | \n",
" $13,500,000 | \n",
" 82 | \n",
" 289 | \n",
" 9 | \n",
" 2004 | \n",
" 1/4/1985 | \n",
" Prentiss HS (MS) | \n",
" Monticello, MS | \n",
" Mississippi | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.426 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Age Team POS # 2013 $ Ht (In.) WT \\\n",
"315 Pekovi?, Nikola 27 Timberwolves C 14 $12,000,000 83 290 \n",
"136 Brown, Kwame 31 76ers C 54 $2,945,901 83 290 \n",
"374 Jefferson, Al 28 Bobcats F/C 25 $13,500,000 82 289 \n",
"\n",
" EXP 1st Year DOB School City \\\n",
"315 3 2010 1/3/1986 n/a Bijelo Polje \n",
"136 12 2001 3/10/1982 Glynn Adademy (GA) Charleston, SC \n",
"374 9 2004 1/4/1985 Prentiss HS (MS) Monticello, MS \n",
"\n",
" State (Province, Territory, Etc..) Country Race HS Only wt_std \n",
"315 n/a Yugoslavia White No 2.462 \n",
"136 South Carolina US Black Yes 2.462 \n",
"374 Mississippi US Black Yes 2.426 "
]
},
"execution_count": 352,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cleaned_nba_df.sort_values(by='wt_std', ascending=False).head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we got rid of some people, we can also recalculate the standard deviation! Remember, standard deviation is a relationship to the **mean**, and **outliers move the mean**."
]
},
{
"cell_type": "code",
"execution_count": 353,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/ipykernel/__main__.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" if __name__ == '__main__':\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Name | \n",
" Age | \n",
" Team | \n",
" POS | \n",
" # | \n",
" 2013 $ | \n",
" Ht (In.) | \n",
" WT | \n",
" EXP | \n",
" 1st Year | \n",
" DOB | \n",
" School | \n",
" City | \n",
" State (Province, Territory, Etc..) | \n",
" Country | \n",
" Race | \n",
" HS Only | \n",
" wt_std | \n",
" new_wt_std | \n",
"
\n",
" \n",
" \n",
" \n",
" 315 | \n",
" Pekovi?, Nikola | \n",
" 27 | \n",
" Timberwolves | \n",
" C | \n",
" 14 | \n",
" $12,000,000 | \n",
" 83 | \n",
" 290 | \n",
" 3 | \n",
" 2010 | \n",
" 1/3/1986 | \n",
" n/a | \n",
" Bijelo Polje | \n",
" n/a | \n",
" Yugoslavia | \n",
" White | \n",
" No | \n",
" 2.462 | \n",
" 2.576 | \n",
"
\n",
" \n",
" 136 | \n",
" Brown, Kwame | \n",
" 31 | \n",
" 76ers | \n",
" C | \n",
" 54 | \n",
" $2,945,901 | \n",
" 83 | \n",
" 290 | \n",
" 12 | \n",
" 2001 | \n",
" 3/10/1982 | \n",
" Glynn Adademy (GA) | \n",
" Charleston, SC | \n",
" South Carolina | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.462 | \n",
" 2.576 | \n",
"
\n",
" \n",
" 207 | \n",
" Davis, Glen | \n",
" 27 | \n",
" Magic | \n",
" F/C | \n",
" 11 | \n",
" $6,400,000 | \n",
" 81 | \n",
" 289 | \n",
" 6 | \n",
" 2007 | \n",
" 1/1/1986 | \n",
" LSU | \n",
" Baton Rouge, LA | \n",
" Louisiana | \n",
" US | \n",
" Black | \n",
" No | \n",
" 2.426 | \n",
" 2.539 | \n",
"
\n",
" \n",
" 374 | \n",
" Jefferson, Al | \n",
" 28 | \n",
" Bobcats | \n",
" F/C | \n",
" 25 | \n",
" $13,500,000 | \n",
" 82 | \n",
" 289 | \n",
" 9 | \n",
" 2004 | \n",
" 1/4/1985 | \n",
" Prentiss HS (MS) | \n",
" Monticello, MS | \n",
" Mississippi | \n",
" US | \n",
" Black | \n",
" Yes | \n",
" 2.426 | \n",
" 2.539 | \n",
"
\n",
" \n",
" 205 | \n",
" Hamilton, Justin | \n",
" 23 | \n",
" Heat | \n",
" C | \n",
" 7 | \n",
" $490,180 | \n",
" 84 | \n",
" 155 | \n",
" 0 | \n",
" 2013 | \n",
" 4/1/1990 | \n",
" LSU | \n",
" Newport Beach, CA | \n",
" California | \n",
" US | \n",
" Black | \n",
" No | \n",
" 2.369 | \n",
" 2.508 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Name Age Team POS # 2013 $ Ht (In.) WT \\\n",
"315 Pekovi?, Nikola 27 Timberwolves C 14 $12,000,000 83 290 \n",
"136 Brown, Kwame 31 76ers C 54 $2,945,901 83 290 \n",
"207 Davis, Glen 27 Magic F/C 11 $6,400,000 81 289 \n",
"374 Jefferson, Al 28 Bobcats F/C 25 $13,500,000 82 289 \n",
"205 Hamilton, Justin 23 Heat C 7 $490,180 84 155 \n",
"\n",
" EXP 1st Year DOB School City \\\n",
"315 3 2010 1/3/1986 n/a Bijelo Polje \n",
"136 12 2001 3/10/1982 Glynn Adademy (GA) Charleston, SC \n",
"207 6 2007 1/1/1986 LSU Baton Rouge, LA \n",
"374 9 2004 1/4/1985 Prentiss HS (MS) Monticello, MS \n",
"205 0 2013 4/1/1990 LSU Newport Beach, CA \n",
"\n",
" State (Province, Territory, Etc..) Country Race HS Only wt_std \\\n",
"315 n/a Yugoslavia White No 2.462 \n",
"136 South Carolina US Black Yes 2.462 \n",
"207 Louisiana US Black No 2.426 \n",
"374 Mississippi US Black Yes 2.426 \n",
"205 California US Black No 2.369 \n",
"\n",
" new_wt_std \n",
"315 2.576 \n",
"136 2.576 \n",
"207 2.539 \n",
"374 2.539 \n",
"205 2.508 "
]
},
"execution_count": 353,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cleaned_nba_df['new_wt_std'] = ((cleaned_nba_df['WT'] - cleaned_nba_df['WT'].mean()).apply(abs) / cleaned_nba_df['WT'].std())\n",
"cleaned_nba_df.sort_values(by='new_wt_std', ascending=False).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So now it's a little bit crazier to be so far from the mean, but generally things are all legitimate and pleasant."
]
},
{
"cell_type": "code",
"execution_count": 354,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 354,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEthJREFUeJzt3V+MXGd5x/HfD0xCIVLsqo1XiqnXVUCEqmj7h6hSQF0J\ncKNe4IgLFOhFNlWuKH/Uqmqc3riqqgZHohJSxU0JtUFEacQFCRJ/TEKOUIqSoOIlAbupK7IhuPGC\naKCNKiESnl7McTw4O+zxznnnfc97vh9plZl3/rzPk7P77MxvZtaOCAEAxuEVuQsAACwOQx8ARoSh\nDwAjwtAHgBFh6APAiDD0AWBEth36tvfZ/qrt79h+wvaH2vU9tk/YftL2l21fOXWb222fsX3a9sGU\nDQAAuvN279O3vSRpKSLWbV8h6d8kHZJ0i6QfRcSdtm+TtCciDtt+k6TPSHqLpH2SHpD0+uADAQCQ\n3baP9CPiXESst6efl3Rak2F+SNLx9mrHJd3Ynn6XpHsi4oWI2JB0RtJ1PdcNANiBS8r0bS9LWpH0\niKS9EbEpTX4xSLqqvdrVkp6ZutnZdg0AkFnnod9GO5+V9OH2Ef/FcQ3xDQAUbleXK9nepcnA/3RE\n3Ncub9reGxGbbe7/g3b9rKTXTd18X7t28X3ySwIAdiAivNPbdn2k/0lJpyLiY1Nr90taa0/fLOm+\nqfWbbF9m+4CkayQ9ttWdRkS1X0eOHMleA/3R3xj7q7m3iPkfK2/7SN/29ZL+RNITtk9qEuP8taSj\nku61/aeSnpb0nnaQn7J9r6RTkn4m6f3RR6UDs7GxkbuEpOhv2Grur+be+rDt0I+If5X0yhkXv2PG\nbe6QdMccdQEowNLSsjY3n174vnv37te5cxsL33cMOmX6uHRra2u5S0iK/oata3+Tgb/4J+qbmzuO\nrKs/dvPa9sNZyTa2x5j6AINiW3nemOde8usa2VYs4IVcXKKmaXKXkBT9DVvN/dXcWx8Y+gAwIsQ7\nAGYi3ikP8Q4AoDOGfiK154r0N2w191dzb31g6APAiJDpA5iJTL88ZPoAgM4Y+onUnivS37DV3F/N\nvfWBoQ8AI0KmD2AmMv3ykOkDADpj6CdSe65If8NWc38199YHhj4AjAiZPoCZyPTLQ6YPAOiMoZ9I\n7bki/Q1bzf3V3FsfGPoAMCJk+gBmItMvD5k+AKAzhn4iteeK9DdsNfdXc299YOgDwIiQ6QOYiUy/\nPGT6AIDOGPqJ1J4r0t+w1dxfzb31gaEPACNCpg9gJjL98pDpAwA6Y+gnUnuuSH/DVnN/NffWB4Y+\nAIwImT6Amcj0y0OmDwDojKGfSO25Iv0NW8391dxbHxj6ADAiZPoAZiLTLw+ZPgCgM4Z+IrXnivQ3\nbDX3V3NvfWDoA8CIkOkDmIlMvzxk+gCAzhj6idSeK9LfsNXcX8299YGhDwAjQqYPYCYy/fKQ6QMA\nOmPoJ1J7rkh/w1ZzfzX31odth77tu2xv2n58au2I7e/b/mb7dcPUZbfbPmP7tO2DqQoHAFy6bTN9\n22+V9LykT0XEm9u1I5L+NyL+4aLrXivpbklvkbRP0gOSXr9VeE+mD5SPTL88yTP9iHhY0nNb7b3F\n2iFJ90TECxGxIemMpOt2WhwAoF/zZPofsL1u+xO2r2zXrpb0zNR1zrZro1N7rkh/w1ZzfzX31odd\nO7zdxyX9bUSE7b+T9FFJt17qnaytrWl5eVmStHv3bq2srGh1dVXShQM31PPr6+tF1UN/9LeT/i44\nf351QecnNZTy/yvn+aZpdOzYMUl6aV7Oo9P79G3vl/T585n+rMtsH5YUEXG0vexLko5ExKNb3I5M\nHygcmX55FvU+fWsqw7e9NHXZuyV9uz19v6SbbF9m+4CkayQ9ttPiAAD96vKWzbslfV3SG2x/z/Yt\nku60/bjtdUl/KOnPJSkiTkm6V9IpSV+Q9P6xPpx/+dPjutDfsNXcX8299WHbTD8i3rfF8j//kuvf\nIemOeYoCAKTB394BMBOZfnn42zsAgM4Y+onUnivS37DV3F/NvfWBoQ8AI0KmDxRuaWlZm5tPZ6yA\nTL8k82b6DH2gcPleTJUmH89h6JeEF3ILVXuuSH9D1+QuIJn6j918GPoAMCLEO0DhiHcwjXgHANAZ\nQz+R2nNF+hu6JncBydR/7ObD0AeAESHTBwpHpo9pZPoAgM4Y+onUnivS39A1uQtIpv5jNx+GPgCM\nCJk+UDgyfUwj0wcAdMbQT6T2XJH+hq7JXUAy9R+7+TD0AWBEyPSBwpHpY9q8mf6uPosBgH5c3v6y\nW6y9e/fr3LmNhe+7SMQ7idSeK9Lf0DW5C9jGTzV5hrGTr4d2fNu8/0LZYjD0AWBEyPSBwo010+e1\nhK3xPn0AQGcM/URqz4Tpb+ia3AUk1OQuoGgMfQAYETJ9oHBk+ovdt/S5RKYPAOiMoZ9I7Zkw/Q1d\nk7uAhJrcBRSNoQ8AI0KmDxSOTH+x+5Y+l8j0AQCdMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IHC\nkekvdt/S5xKZPgCgM4Z+IrVnwvQ3dE3uAhJqchdQNIY+AIwImT5QODL9xe5b+lwi0wcAdMbQT6T2\nTJj+hq7JXUBCTe4CisbQB4ARIdMHCkemv9h9S59LZPoAgM4Y+onUngnT39A1uQtIqMldQNG2Hfq2\n77K9afvxqbU9tk/YftL2l21fOXXZ7bbP2D5t+2CqwgEAl27bTN/2WyU9L+lTEfHmdu2opB9FxJ22\nb5O0JyIO236TpM9IeoukfZIekPT6rcJ7Mn2gGzL9xe5b+lxKnulHxMOSnrto+ZCk4+3p45JubE+/\nS9I9EfFCRGxIOiPpup0WBwDo104z/asiYlOSIuKcpKva9aslPTN1vbPt2ujUngnT39A1uQtIqMld\nQNF29XQ/O3o+tLa2puXlZUnS7t27tbKyotXVVUkXfuiGen59fb2oeuhv2P1dGGR9nV/veH1tc3mq\n8+fXFrXf+fPtuYK+H5um0bFjxyTppXk5j07v07e9X9LnpzL905JWI2LT9pKkhyLiWtuHJUVEHG2v\n9yVJRyLi0S3uk0wf6IBMf7H7lj6XFvU+fbdf590vaa09fbOk+6bWb7J9me0Dkq6R9NhOiwMA9KvL\nWzbvlvR1SW+w/T3bt0j6iKR32n5S0tvb84qIU5LulXRK0hckvX+sD+drz4Tpb+ia3AUk1OQuoGjb\nZvoR8b4ZF71jxvXvkHTHPEUBANLgb+8AhSPTX+y+pc8l/vYOAKAzhn4itWfC9Dd0Te4CEmpyF1A0\nhj4AjAiZPlA4Mv3F7lv6XCLTBwB0xtBPpPZMmP6GrsldQEJN7gKKxtAHgBEh0wcKR6a/2H1Ln0tk\n+gCAzhj6idSeCdPf0DW5C0ioyV1A0Rj6ADAiZPpA4cj0F7tv6XOJTB8A0BlDP5HaM2H6G7omdwEJ\nNbkLKBpDHwBGhEwfKByZ/mL3LX0ukekDADpj6CdSeyZMf0PX5C4goSZ3AUVj6APAiJDpA4Uj01/s\nvqXPJTJ9AEBnDP1Eas+E6W/omtwFJNTkLqBoDH0AGBEyfaBwZPqL3bf0uUSmDwDojKGfSO2ZMP0N\nXZO7gISa3AUUjaEPACNCpg8Ujkx/sfuWPpfI9AEAnTH0E6k9E6a/oWtyF5BQk7uAojH0AWBEyPSB\nwpHpL3bf0ucSmT4AoDOGfiK1Z8L0N3RN7gISanIXUDSGPgCMCJk+UDgy/cXuW/pcItMHAHTG0E+k\n9kyY/oauyV1AQk3uAorG0AeAESHTBwpHpr/YfUufS2T6AIDOGPqJ1J4J09/QNbkLSKjJXUDRGPoA\nMCJk+kDhyPQXu2/pc4lMHwDQGUM/kdozYfobuiZ3AQk1uQso2q55bmx7Q9JPJP1c0s8i4jrbeyT9\ni6T9kjYkvScifjJnnQCAHsyV6dv+rqTfi4jnptaOSvpRRNxp+zZJeyLi8Ba3JdMHOiDTX+y+pc+l\n3Jm+t7iPQ5KOt6ePS7pxzj0AAD2Zd+iHpK/Y/obtW9u1vRGxKUkRcU7SVXPuMUi1Z8L0N3RN7gIS\nanIXULS5Mn1J10fEs7Z/XdIJ20/q5c/JZj5XWltb0/LysiRp9+7dWllZ0erqqqQLP3RDPb++vl5U\nPfQ37P4uDLK+zq93vL62uTzV+fNri9rv/Pn2XEHfj03T6NixY5L00rycR2/v07d9RNLzkm6VtBoR\nm7aXJD0UEdducX0yfaADMv3F7lv6XMqW6dt+je0r2tOvlXRQ0hOS7pe01l7tZkn37XQPAEC/5sn0\n90p62PZJSY9I+nxEnJB0VNI726jn7ZI+Mn+Zw1N7Jkx/Q9fkLiChJncBRdtxph8RT0la2WL9vyW9\nY56iAABp8Ld3gMKR6S9239LnUu736QMABoShn0jtmTD9DV2Tu4CEmtwFFI2hDwAjQqYPFI5Mf7H7\nlj6XyPQBAJ0x9BOpPROmv6FrcheQUJO7gKIx9AFgRMj0gcKR6S9239LnEpk+AKAzhn4itWfC9Dd0\nTe4CEmpyF1A0hj4AjAiZPlA4Mv3F7lv6XCLTBwB0xtBPpPZMmP6GrsldQEJN7gKKNu+/kQuMxtLS\nsjY3n85dBjAXMn2go3zZOpn+IvctfS6R6QMAOmPoJ1J7Jkx/Q9fkLiChZo7bXi7bC/9aWlruqfft\nkekDwEt+qhyx0ubmjtOaS0amD3REps++KfftOg/J9AEAnTH0E6k9E6a/oWtyF5BQk7uAojH0AWBE\nyPSBjsj02TflvmT6AIDeMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IGOyPTZN+W+ZPoAgN4x9BOp\nPROmv6FrcheQUJO7gKIx9AFgRMj0gY7I9Nk35b5k+gCA3jH0E6k9E6a/oWtyF5BQk7uAojH0AWBE\nyPSBjsj02TflvmT6AIDeMfQTqT0Tpr+ha3IXkFCTu4CiMfQBYETI9IGOyPTZN+W+ZPoAgN4x9BOp\nPROmv6FrcheQUJO7gKIx9AFgRMj0gY7I9Nk35b5k+gCA3iUb+rZvsP3vtv/D9m2p9ilV7Zkw/Q1d\nk7uAhJrcBRQtydC3/QpJ/yjpjyT9lqT32n5jir1Ktb6+nruEpOhv6Grur+be5pfqkf51ks5ExNMR\n8TNJ90g6lGivIv34xz/OXUJS9Dd0NfdXc2/z25Xofq+W9MzU+e9r8osguVtu+aAeeuhri9jqF7z6\n1Zfpi1+8VwcOHFj43gDQVaqhn82DDz6oZ599TvarFrrviy/+QE899dRLQ39jY2Oh+y8a/Q3dRu4C\nEtrIXUDRkrxl0/YfSPqbiLihPX9YUkTE0anr8H5NANiBed6ymWrov1LSk5LeLulZSY9Jem9EnO59\nMwBAZ0ninYh40fYHJJ3Q5MXiuxj4AJBftk/kAgAWL8sncmv84JbtDdvfsn3S9mPt2h7bJ2w/afvL\ntq/MXWcXtu+yvWn78am1mb3Yvt32GdunbR/MU3V3M/o7Yvv7tr/Zft0wddnQ+ttn+6u2v2P7Cdsf\naterOIZb9PfBdn3wx9D25bYfbefId2z/fbve37GLiIV+afKL5j8l7Zf0Kk0+SfHGRdeRoK/vStpz\n0dpRSX/Vnr5N0kdy19mxl7dKWpH0+Ha9SHqTpJOaRIXL7bF17h520N8RSX+xxXWvHWB/S5JW2tNX\naPL62htrOYa/pL8qjqGk17T/faWkRyRd3+exy/FIv9YPblkvf+Z0SNLx9vRxSTcutKIdioiHJT13\n0fKsXt4l6Z6IeCEiNiSd0YI+k7FTM/qTJsfwYoc0vP7ORcR6e/p5Sacl7VMlx3BGf1e3Fw/+GEbE\n/7UnL9dkpjynHo9djqG/1Qe3rp5x3SEJSV+x/Q3bt7ZreyNiU5p8o0q6Klt187tqRi8XH8+zGu7x\n/IDtddufmHr6POj+bC9r8qzmEc3+fhxsj1P9PdouDf4Y2n6F7ZOSzklqIuKUejx2/JXN/lwfEb8r\n6Y8l/Zntt+nlf6O1plfNa+pFkj4u6TcjYkWTH7aPZq5nbravkPRZSR9uHxFX9f24RX9VHMOI+HlE\n/I4mz87eZntVPR67HEP/rKTfmDq/r10btIh4tv3vDyV9TpOnWJu290qS7SVJP8hX4dxm9XJW0uum\nrjfI4xkRP4w2JJX0T7rwFHmQ/dnepclA/HRE3NcuV3MMt+qvtmMYEf8j6QuSfl89HrscQ/8bkq6x\nvd/2ZZJuknR/hjp6Y/s17aMO2X6tpIOSntCkr7X2ajdLum/LOyiT9Yv56Kxe7pd0k+3LbB+QdI0m\nH8Yr3S/01/4gnfduSd9uTw+1v09KOhURH5taq+kYvqy/Go6h7V87H0vZ/hVJ79Tkhdr+jl2mV6dv\n0OQV9zOSDud+tbyHfg5o8i6kk5oM+8Pt+q9KeqDt9YSk3blr7djP3ZL+S9JPJX1P0i2S9szqRdLt\nmrxr4LSkg7nr32F/n5L0eHscP6dJhjrU/q6X9OLU9+Q325+5md+PQ+rxl/Q3+GMo6bfbfk5K+pak\nv2zXezt2fDgLAEaEF3IBYEQY+gAwIgx9ABgRhj4AjAhDHwBGhKEPACPC0AeAEWHoA8CI/D/juqZZ\niVzBBAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Histogram of weights with uncleaned data\n",
"nba_df['WT'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 355,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 355,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGIdJREFUeJzt3X+MZWV9x/H3F0YQ/MEsGHZSFhi0kV+tjlVAo603RRFs\nAyRNNmprnJK2SbUC2uLu4h+0/+guRiWt9Y9WyqxWRFBbNDFlu9l9akz4obIDG3ZZMXWWdeuOUZBi\nbICFb/+4Z9jL5c6eZ+ace5/z3PN5JTfc59x75/vhzDzfufO9M3fN3RERkXY4JnUAEREZHTV9EZEW\nUdMXEWkRNX0RkRZR0xcRaRE1fRGRFilt+mZ2s5ktmtmDPcduNLO9ZjZvZl83s1f23LbJzB4pbr9k\nWMFFRGTlYp7p3wK8q+/YNuB8d58BHgE2AZjZecB64FzgMuDzZmb1xRURkSpKm767fxd4vO/Ydnd/\nrljeA6wrrl8O3Obuh919ge43hAvriysiIlXUMdO/Cvh2cf004EDPbQeLYyIi0gCVmr6ZfRx4xt2/\nUlMeEREZoonVPtDMZoF3A7/fc/ggcHrPel1xbNDj9aY/IiKr4O6rfq009pm+FZfuwuxS4Drgcnd/\nqud+3wTeY2bHmdlZwG8C9y33Qd298ZcbbrgheQblVM6cc+aQMaecVZU+0zezW4EOcIqZPQrcAFwP\nHAf8Z/HLOfe4+wfdfY+Z3Q7sAZ4BPuh1pExoYWEhdYQoylkv5axPDhkhn5xVlTZ9d3/fgMO3HOX+\nnwQ+WSWUiIgMh/4it8Ts7GzqCFGUs17KWZ8cMkI+OauyVNMXM8t98iMiMnJmho/ghdzWCiGkjhBF\nOeulnPXJISPkk7MqNX0RkRbReEdEJCMa74iISDQ1/RK5zPmUs17KWZ8cMkI+OatS0xcRaRHN9EVE\nMqKZvoiIRFPTL5HLnE8566Wc9ckhI+STsyo1fRGRFtFMX0QkI5rpi4hINDX9ErnM+ZSzXspZnxwy\nQj45q1LTFxFpEc30RUQyopm+iIhEU9MvkcucTznrpZz1ySEj5JOzKjV9EZEW0UxfRCQjmumLiEg0\nNf0Sucz5lLNeylmfHDJCPjmrUtMXEWkRzfRFRDKimb7IiExNTWNmI7tMTU2n/l+WMaSmXyKXOZ9y\n1mtQzsXF/YCP7NKtt/KcTZNDRsgnZ1Vq+iIiLVI60zezm4E/BBbd/XXFsTXAV4EzgQVgvbs/Udy2\nCbgKOAxc4+7blvm4mulLVsyM7rPwkVVEe0T6jWKmfwvwrr5jG4Ht7n42sAPYVIQ5D1gPnAtcBnze\nujtFREQaoLTpu/t3gcf7Dl8BbC2ubwWuLK5fDtzm7ofdfQF4BLiwnqhp5DLnU856KWd9csgI+eSs\narUz/VPdfRHA3Q8BpxbHTwMO9NzvYHFMREQaIOr39M3sTOBbPTP9x9z95J7bf+Hup5jZPwB3u/ut\nxfEvAN92928M+Jia6UtWNNOXJqg6059Y5eMWzWytuy+a2RTws+L4QeD0nvutK44NNDs7y/T0NACT\nk5PMzMzQ6XSAIz9qaa11k9ZHLK07Q15TKa/W+a9DCMzNzQE83y8rcffSCzAN7O5ZbwE2FNc3AJuL\n6+cBu4DjgLOAH1H8NDHgY3oOdu7cmTpCFOWs16CcgIOP8FK+R3I4nzlkdM8nZ/F1EdW7B11Kn+mb\n2a10n36cYmaPAjcAm4E7zOwqYD/d39jB3feY2e3AHuAZ4INFSBERaQC9945IJM30pQn03jsiIhJN\nTb/Ei1/AayblrJdy1ieHjJBPzqrU9EVEWkQzfZFImulLE2imLyIi0dT0S+Qy51POeilnfXLICPnk\nrEpNX0SkRTTTF4mkmb40gWb6IiISTU2/RC5zvjbmHPU/VN5EOXzec8gI+eSsSk1fsjXcf6h854Bj\nIvnTTF+ylWLGrpm+pKaZvoiIRFPTL5HLnE856xZSB4iSw/nMISPkk7MqNX0RkRbRTF+ypZm+tJFm\n+iIiEk1Nv0Qucz7lrFtIHSBKDuczh4yQT86q1PRFRFpEM33Jlmb60kaa6YuISDQ1/RK5zPmUs24h\ndYAoOZzPHDJCPjmrUtMXEWkRzfQlW5rpSxtppi8iItHU9EvkMudTzrqF1AGi5HA+c8gI+eSsSk1f\nRKRFNNOXbGmmL22kmb6IiESr1PTNbJOZPWRmD5rZl83sODNbY2bbzGyfmd1lZifVFTaFXOZ8ylm3\nkDpAlBzOZw4ZIZ+cVa266ZvZmcCfA29w99cBE8B7gY3Adnc/G9gBbKojqIiIVLfqmb6ZrQHuBt4C\nPAl8A/h74HPA29190cymgODu5wx4vGb6Uolm+tJGyWb67v448GngUeAg8IS7bwfWuvticZ9DwKmr\nrSEiIvWaWO0DzezVwEeAM4EngDvM7I958VOhZZ+qzM7OMj09DcDk5CQzMzN0Oh3gyHwt9XrpWFPy\nLLe+6aabGnn+hn0+j1had2pa3wTMDLh9WPWWWxerjL8++7OmzrPcen5+nmuvvbYxeZbWIQTm5uYA\nnu+Xlbj7qi7AeuCfe9bvB/4R2Ev32T7AFLB3mcd7Dnbu3Jk6QpQ25gQcfEiXnQOODbPeoEv5Hsnh\n855DRvd8chZfF6vu3VVm+q8H/hW4AHgKuAX4HnAG8Ji7bzGzDcAad9844PG+2toioJm+tFPVmX6l\nP84ys+uAWeBZYBfwZ8ArgNuB04H9wHp3/+WAx6rpSyVq+tJGSf84y90/5e7nu/vr3P0D7v6Muz/m\n7u9w97Pd/ZJBDT8nL54dN5Ny1i2kDhAlh/OZQ0bIJ2dV+otcEZEW0XvvSLY03pE20nvviIhINDX9\nErnM+ZSzbiF1gCg5nM8cMkI+OatS0x9TU1PTmNnILlNT06n/l0Ukgmb6YyrFvHvUn0/N9KWNNNMX\nEZFoavolcpnzKWfdQuoAUXI4nzlkhHxyVqWmLyLSIprpjynN9IdSceT1tEekn2b6IiISTU2/RC5z\nPuWsW0gdIEoO5zOHjJBPzqrU9EVEWkQz/TGlmf5QKo68nvaI9NNMX0RqMeq/4tZfcqehpl8ilzmf\nctYtpA4Qpc7zubi4n+5PMnVfdi57W7dmM+TztVmNmr6ISItopj+mNNMfSsWR1xvlOR39+QS9brFy\nmumLiEg0Nf0Sucz50uc8fuQvAg5XGPLHr0f6z3uMkDpAlDzOZXVq+lKTp6j6ot7KLyKyUprpj6nx\nn3enqKmZ/hCqaqa/Qprpi4hINDX9ErnM+XLJmct8N5eceXzeQ+oAUfI4l9Wp6YuItIhm+mNKM/3x\nqKeZvvTTTF9ERKKp6ZfIZc6XS85c5ru55Mzj8x5SB4iSx7msrlLTN7OTzOwOM9trZg+Z2UVmtsbM\ntpnZPjO7y8xOqiusiIhUU2mmb2ZzwH+5+y1mNgG8DLge+IW732hmG4A17r5xwGM10x8izfTHo55m\n+tKv6kx/1U3fzF4J7HL31/Qdfxh4u7svmtkUENz9nAGPV9MfIjX98ainpi/9Ur6QexbwczO7xczu\nN7N/MrMTgbXuvgjg7oeAUyvUSC6XOV8uOXOZ7+aSM4/Pe0gdIEoe57K6iYqP/R3gQ+7+fTP7LLCR\nFz9VWPbb+OzsLNPT0wBMTk4yMzNDp9MBjnwCUq+XNCXPcuv5+fkXrIvUQKfnOkNcx9aj5PaVruv+\neEvr+RHXW25drEb09dnzEWvKX7amUt461/Pz843Zz73rEAJzc3MAz/fLKqqMd9YCd7v7q4v12+g2\n/dcAnZ7xzk53P3fA4zXeGSKNd8ajnsY70i/ZeKcY4Rwws9cWhy4GHgK+CcwWxz4A3LnaGiIiUq+q\nv6d/NfBlM5sHXg98AtgCvNPM9tH9RrC5Yo2kcpnz5ZIzl/luLjnz+LyH1AGi5HEuq6sy08fdHwAu\nGHDTO6p8XBERGQ69986Y0kx/POpppi/9qs70Kz3TF5FhOn4E/yyktI3ee6dELnO+XHLmMt9tRs6Y\nf4Iyh39+MgzxY9cnnz1UjZq+iEiLaKY/pjTTV73m1+vWVB9YGb2fvoiIRFPTL5HLnC+XnLnMd5Wz\nTiF1gCj57KFq1PRFRFpEM/0xpZm+6jW/Xrem+sDKaKYvIiLR1PRL5DLnyyVnLvNd5axTSB0gSj57\nqBo1fRGRFtFMf0xppq96za/Xrak+sDKa6YuISDQ1/RK5zPlyyZnLfFc56xRSB4iSzx6qRk1fRKRF\nNNMfU5rpq17z63Vrqg+sjGb6IiISTU2/RC5zvlxy5jLfVc46hdQBouSzh6pR0xcRaRHN9MeUZvqq\n1/x63ZrqAyujmb6IiERT0y+Ry5wvl5y5zHeVs04hdYAo+eyhatT0RURaRDP9MaWZvuo1v163pvrA\nymimLyIi0dT0S+Qy58slZy7zXeWsU0gdIEo+e6gaNX0RkRapPNM3s2OA7wM/cffLzWwN8FXgTGAB\nWO/uTwx4nGb6Q6SZvuo1v163pvrAyjRhpn8NsKdnvRHY7u5nAzuATTXUEBGRGlRq+ma2Dng38IWe\nw1cAW4vrW4Erq9RILZc5Xy45c5nvKmedQuoAUfLZQ9VUfab/WeA6Xvgz4Vp3XwRw90PAqRVriIhI\nTSZW+0Az+wNg0d3nzaxzlLsuO7CbnZ1lenoagMnJSWZmZuh0uh9q6buu1nHrpWO96+4zrE7PdYa4\nHnW9pTUlt692vXRsVPWWW49DvU5pvdT7p/9ZflPydDodQgjMzc0BPN8vq1j1C7lm9gngT4DDwAnA\nK4B/A94EdNx90cymgJ3ufu6Ax+uF3CHSC7mq1/x63ZrqAyuT7IVcd7/e3c9w91cD7wF2uPv7gW8B\ns8XdPgDcudoaTZDLnC+XnLnMd5WzTiF1gCj57KFqhvF7+puBd5rZPuDiYi0iIg2g994ZUxrvqF7z\n63Vrqg+sTBN+T19ERDKhpl8ilzlfLjlzme8qZ51C6gBR8tlD1ajpi4i0iGb6Y0ozfdVrfr1uTfWB\nldFMX0REoqnpl8hlzpdLzlzmu8pZp5A6QJR89lA1avoiIi2imf6Y0kxf9Zpfr1tTfWBlNNMXEZFo\navolcpnz5ZIzl/muctYppA4QJZ89VI2avohIi2imP6Y001e95tfr1lQfWBnN9EVEJJqafolc5ny5\n5MxlvqucdQqpA0TJZw9Vo6YvItIimumPKc30Va/59bo11QdWRjN9ERGJpqZfIpc5Xy45c5nvKmed\nQuoAUfLZQ9VMpA7QFlNT0ywu7k8dQ0RaTjP9ERn/Gbtm+qq3uppt6gN10ExfRESiqemXyGfOF1IH\niBRSB4gUUgeIFFIHiBBSB4iSz16vRk1fRKRFNNMfEc30x6Gm6g2jZpv6QB000xcRkWhq+iXymfOF\n1AEihdQBIoXUASKF1AEihNQBouSz16tR0xcRaRHN9EdEM/1xqKl6w6jZpj5Qh2QzfTNbZ2Y7zOwh\nM9ttZlcXx9eY2TYz22dmd5nZSautISIi9aoy3jkMfNTdzwfeAnzIzM4BNgLb3f1sYAewqXrMdPKZ\n84XUASKF1AEihdQBIoXUASKE1AGi5LPXq1l103f3Q+4+X1z/FbAXWAdcAWwt7rYVuLJqSBERqUct\nM30zm6b77fy3gAPuvqbntsfc/eQBj9FMf7gVx7xeipqqV7+XAk+NrNratWdy6NDCyOoNQ9WZfuV3\n2TSzlwNfA65x91+ZWf9XTXs6u4is0FOMskUsLq66V46NSk3fzCboNvwvufudxeFFM1vr7otmNgX8\nbLnHz87OMj09DcDk5CQzMzN0Oh3gyHwt9XrpWNWP1xWATs91alzfBMz0rIddr38dW2/pWF31Kbl9\ntev+8znsesuty+otHRtVvdWsez/2KOodbV2sBuzX+fl5rr322mVvT7UOITA3NwfwfL+sotJ4x8y+\nCPzc3T/ac2wL8Ji7bzGzDcAad9844LFZjHdCCH2Ne3WGP94JvLABN3U0EHhhzlHUXI3Ai3M28ZwG\nmn8+A8tnHP05Xa7v1LXXh63qeGfVTd/M3gp8B9hN97PmwPXAfcDtwOnAfmC9u/9ywOOzaPp10Ux/\nHGqqXv418/+7gGRNvyo1/aFXHPN6KWqqXv411fT1Ngwl8vnd3ZA6QKSQOkCkkDpApJA6QISQOkCU\nfPZ6NWr6IiItovHOiGi8Mw41VS//mhrv6Jm+iEiLqOmXyGfOF1IHiBRSB4gUUgeIFFIHiBBSB4iS\nz16vRk1fRKRFNNMfEc30x6Gm6uVfUzN9PdMXEWkRNf0S+cz5QuoAkULqAJFC6gCRQuoAEULqAFHy\n2evVqOmLiLSIZvojopn+ONRUvfxraqavZ/oiIi2ipl8inzlfSB0gUkgdIFJIHSBSSB0gQkgdIEo+\ne70aNX0RkRbRTH9ENNMfh5qql39NzfT1TF9EpEXU9EvkM+cLqQNECqkDRAqpA0QKqQNECKkDRMln\nr1ejpi8i0iKa6Y+IZvrjUFP18q/5UuCpkVVbu/ZMDh1aqPVj6t/IzYSa/jjUVL38a+b/wrFeyB2y\nfOZ8IXWASCF1gEghdYBIIXWACCF1gEghdYCRUNMXEWkRjXdGROOdcaipevnX1HhHz/RFRFpkInWA\nFJ588kkWFxej7nvvvfdy0UUXDTlRHQLQSZwhRkA56xRofs5A8zNCPjmraWXTv+SSP+KBB/Zw7LEv\nLb3v4cP/x8TECZXqPf30zys9XkSkLq2c6Z999oX88IefAy4cSb2JiY9x+PCnGPfZpebBqtf8mprp\na6YvItIiQ2v6ZnapmT1sZj80sw3DqjN8IXWASCF1gEghdYBIIXWASCF1gAghdYBIIXWAkRhK0zez\nY4DPAe8Czgfea2bnDKPW8M2nDhBJOeulnPXJISPkk7OaYT3TvxB4xN33u/szwG3AFUOqNWS/TB0g\nknLWSznrk0NGyCdnNcNq+qcBB3rWPymOiYhIQq38lc3jj38JL3vZRzn22DWl9/31r3dx4ok/qFTv\n6af3cPhwpQ8RYWHYBWqykDpApIXUASItpA4QYSF1gEgLqQOMxFB+ZdPM3gz8rbtfWqw3Au7uW3ru\n0573YBARqVHj3lrZzI4F9gEXAz8F7gPe6+57ay8mIiLRhjLecfdnzeyvgG10Xze4WQ1fRCS9ZH+R\nKyIiozfMP8662cwWzezBAbf9tZk9Z2Yn9xzbZGaPmNleM7tkWLlic5rZh4ssu81scxNzmtkFZnaf\nme0q/vumlDnNbJ2Z7TCzh4rzdnVxfI2ZbTOzfWZ2l5md1LCcHy6O31jkmDezr5vZKxuW8+q+2xux\nj46Wsyn76Chfmxc2bA8db2b3FnkeMrNPFMfr20PuPpQL8DZgBniw7/g64D+AHwMnF8fOBXbRHTdN\nAz+i+Clk2JdBOem+1d42YKJYv6qhOXcClxTXLwN2FtfPS5ETmAJmiusvp/u6zjnAFuBjxfENwOaG\n5nwHcExxfDPwySbmLNaN2UdHOZ+N2UcDMj5c5GjUHipqn1j891jgHuCtde6hoT3Td/fvAo8PuOmz\nwHV9x64AbnP3w+6+ADzCiN4NbZmcf0n3pB4u7rP0NplNy/lTYOk7/iRwsLh+eYqc7n7I3eeL678C\n9tJtTlcAW4u7bQWubGDO09x9u7s/V9ztniJ743IWNzdmHx0lZ2P20YCMDwO/QXcPTRZ3S76Hiny/\nLq4eT3ca8zg17qGRvuGamV0OHHD33X039f8x10HS/jHXa4HfM7N7zGynmb2xON60nBuBz5jZo8CN\nwKbiePKcZjZN9yeTe4C17r4I3c0HnFrcrUk57+276Srg28X1RuVs8j7qO5+N3Ed9GTcCn27SHjKz\nY8xsF3AICO6+hxr30MiavpmdAFwP3DCqmhVMAGvc/c3Ax4A7EudZzs3Ah939DOAjwL8kzgOAmb0c\n+BpwTfGsqv+3BRrx2wMDci4d/zjwjLt/JVm4Hr05gWdp6D4acD4bt48GZGzcHnL359z9DXR/0vxd\nM+tQ4x4a5TP919CdOT1gZj+m+z90v5mdSve70xk9913HkR+zUjgAfAPA3b8HPGtmp9C8nBe5+78D\nuPvXgAuK4weB03vuN7KcZjZBd1N9yd3vLA4vmtna4vYp4GcNzYmZzQLvBt7Xc/cm5WzkPlrmfDZq\nHy2TsXF7aIm7/y/dnzbfRJ17aMgvSEwDu5e57cd0nwXAkRcjjgPOYoQvmgzKCfwF8HfF9dcC+xua\n8wfA24vrFwPfS50T+CLwmb5jW4ANvvyLUE3JeSnwEHBK3/FG5ey7vRH7aJnz2ah9tEzGRu0h4FXA\nScX1E4DvFLlq20PDDH8r8D/AU8CjwJ/23f7fFL91UKw3FYH3UryaPqIv1hflpPtj6ZeA3cD3l74o\nGpjzjXTnkruAu4E3pMxJ97cMnqX7HrW7gPuLRnoysJ3ub3VsAyYbmPMyui+C7S/W9wOfb2DOS/vu\nk3wfHeXz/pKm7KOjZGzaHvrtItsu4AHgb4rjte0h/XGWiEiL6J9LFBFpETV9EZEWUdMXEWkRNX0R\nkRZR0xcRaRE1fRGRFlHTFxFpETV9EZEW+X8lwmdnfrOlpAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Histogram of weights with cleaned data\n",
"cleaned_nba_df['WT'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 356,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 356,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADmZJREFUeJzt3V+sHGd5x/HvL1ipSlFTA02MbApUIHBaoYCIEc1FtwIZ\nkKoY9SIFbqCAhIQoqH+k2Nyc46oqDRJIlapctFDkoqA0pWoDVZuYNKwQpCQtJCJgk1pqHYIVGxqH\nQMSN0zy92Em7MZOcXZ+zPjvvfj/SJrPvzuy+K9k/z3nmmfekqpAkDd8l2z0BSdLWMNAlqREGuiQ1\nwkCXpEYY6JLUCANdkhqxYaAn+Zkkdye5N8m3k/xJN74zydEkDyS5PcllU8ccSnIiyfEk+xf5BSRJ\nE5mlDz3Jc6vqJ0meA3wV+APgWuCRqvpYkuuBnVV1MMmVwE3A1cAe4A7gFWXDuyQt1Ewll6r6Sbf5\nM90xjwIHgCPd+BHgbd32tcDNVfVEVZ0ETgD7tmrCkqR+MwV6kkuS3AucBsZVdQy4oqrOAFTVaeDy\nbvfdwENTh5/qxiRJC7Rjlp2q6kngNUl+Hrg9yQg4v4RiSUWSttFMgf6UqvpRkn8CXgecSXJFVZ1J\nsgv4frfbKeDFU4ft6caeJon/AEjSBaiq9I1veFE0yQuBc1X1WJKfBW4HDgP7gbNVdcMzXBR9PZNS\nyxfpuSiaxOukWlrr6+usr69v9zSkn5LkGQN9ljP0FwFHkoRJzf0zVfUvXU39liTvAR4ErgOoqmNJ\nbgGOAeeAD5jckrR4GwZ6Vd0PvLZn/Czwpmc45qPARzc9O0nSzLxTVOoxGo22ewrS3Ga6sWghH2wN\nXZLm9mw1dM/QJakRc7UtSkM0uZ6/eP7Eqe3mGbqaV1VzP9bW5j9G2m7W0CVpQKyhS9IKMNAlqREG\nuiQ1wkCXpEYY6FIP1+XSENnlIvVIwD+eWkZ2uUjSCjDQJakRBrokNcJAl6RGGOhSj7W17Z6BND+7\nXCRpQOxykaQVYKBLUiMMdElqhIEuSY0w0KUeruWiIbLLRerhWi5aVna5SNIKMNAlqREGuiQ1wkCX\npEZsGOhJ9iS5M8m3k9yf5He78bUk30vyje7xlqljDiU5keR4kv2L/ALSIriWi4Zowy6XJLuAXVV1\nX5LnAV8HDgC/Dfy4qj5x3v57gc8CVwN7gDuAV5zf0mKXiyTNb1NdLlV1uqru67YfB44Du596755D\nDgA3V9UTVXUSOAHsu5CJS5JmN1cNPclLgauAu7uhDya5L8knk1zWje0GHpo67BT//w+AJGlBZg70\nrtzyOeDD3Zn6jcAvV9VVwGng44uZoiRpFjtm2SnJDiZh/pmquhWgqn4wtctfAl/otk8BL556bU83\n9lPWp+6vHo1GjEajGactSathPB4zHo9n2nemW/+T/DXw31X1+1Nju6rqdLf9e8DVVfXOJFcCNwGv\nZ1Jq+SJeFNXArK+7nouW07NdFJ2ly+Ua4MvA/UB1j48A72RST38SOAm8v6rOdMccAt4LnGNSojna\n874GupaWa7loWW0q0BfFQNcyM9C1rFycS5JWgIEuSY0w0CWpETO1LUrL5PnPh0cfXfznpLdKuXV2\n7oSzZxf7GVotXhTV4LRywbKV76GLy4uikrQCDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANd\nkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcLlczU4RWDBS9teDDX1X2krGOganFBNLDubGOfaWpZc\nJKkRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpERsGepI9Se5M8u0k9yf5UDe+\nM8nRJA8kuT3JZVPHHEpyIsnxJPsX+QUkSROpDe6hTrIL2FVV9yV5HvB14ADwO8AjVfWxJNcDO6vq\nYJIrgZuAq4E9wB3AK+q8D0py/pA0k4R2bv1v4Hvo4kpCVfWuZrThGXpVna6q+7rtx4HjTIL6AHCk\n2+0I8LZu+1rg5qp6oqpOAieAfZv6BpKkDc1VQ0/yUuAq4GvAFVV1BiahD1ze7bYbeGjqsFPdmCRp\ngWZebbErt3wO+HBVPZ7k/B8W5/7hcX19/f+2R6MRo9Fo3rfQikoDy+fu3LndM9AQjMdjxuPxTPtu\nWEMHSLID+Efgn6vqz7qx48Coqs50dfYvVdXeJAeBqqobuv1uA9aq6u7z3tMaupaW9W0tq03V0Dt/\nBRx7Ksw7nwfe3W2/C7h1avztSS5N8jLg5cA9c89akjSXWbpcrgG+DNzPpKxSwEeYhPQtwIuBB4Hr\nquqH3TGHgPcC55iUaI72vK9n6FpanqFrWT3bGfpMJZdFMNC1zAx0LautKLlIkpacgS71WFvb7hlI\n87PkIkkDYslFklaAgS5JjTDQJakRBrokNcJAl3pMLTMkDYZdLlIPbyzSsrLLRZJWgIEuSY0w0CWp\nEQa6JDXCQJd6uJaLhsguF0kaELtcJGkFGOiS1AgDXZIaYaBLUiMMdKmHa7loiOxykXq4louWlV0u\nkrQCDHRJaoSBLkmNMNAlqREGutTDtVw0RHa5SNKA2OUiSStgw0BP8qkkZ5J8c2psLcn3knyje7xl\n6rVDSU4kOZ5k/6ImLkl6ulnO0D8NvLln/BNV9drucRtAkr3AdcBe4K3AjUl6fzSQJG2tDQO9qr4C\nPNrzUl9QHwBurqonquokcALYt6kZSpJmspka+geT3Jfkk0ku68Z2Aw9N7XOqG5MGxbVcNEQ7LvC4\nG4E/qqpK8sfAx4H3zfsm61N/a0ajEaPR6AKnI22tw4cNdS2H8XjMeDyead+Z2haTvAT4QlW9+tle\nS3IQqKq6oXvtNmCtqu7uOc62RS0tF+fSstqKtsUwVTNPsmvqtd8CvtVtfx54e5JLk7wMeDlwz/xT\nliTNa8OSS5LPAiPgBUm+C6wBv5HkKuBJ4CTwfoCqOpbkFuAYcA74gKfhknRxeKeo1MOSi5aVd4pK\nc3ItFw2RZ+iSNCCeoUvSCjDQJakRBrokNcJAl6RGGOhSD2/71xDZ5SL1sA9dy8ouF0laAQa6JDXC\nQJekRhjoktQIA13q4VouGiK7XCRpQOxykaQVYKBLUiMMdElqhIEuSY0w0KUeruWiIbLLRerhWi5a\nVna5SNIKMNAlqREGuiQ1wkCXpEYY6FIP13LRENnlIkkDYpeLJK0AA12SGrFhoCf5VJIzSb45NbYz\nydEkDyS5PcllU68dSnIiyfEk+xc1cUnS081yhv5p4M3njR0E7qiqVwJ3AocAklwJXAfsBd4K3Jik\nt9YjSdpaGwZ6VX0FePS84QPAkW77CPC2bvta4OaqeqKqTgIngH1bM1Xp4nEtFw3RhdbQL6+qMwBV\ndRq4vBvfDTw0td+pbkwalMOHt3sG0vx2bNH7XFD/4frUadBoNGI0Gm3RdCSpDePxmPF4PNO+M/Wh\nJ3kJ8IWqenX3/DgwqqozSXYBX6qqvUkOAlVVN3T73QasVdXdPe9pH7qWlqstalltRR96usdTPg+8\nu9t+F3Dr1Pjbk1ya5GXAy4F75p6xJGluG5ZcknwWGAEvSPJdYA34U+Bvk7wHeJBJZwtVdSzJLcAx\n4BzwAU/DJeni8NZ/qcf6up0uWk7PVnIx0CVpQFzLRZJWgIEuSY0w0CWpEQa6JDXCQJd62OGiIbLL\nRerhnaJaVna5SNIKMNAlqREGuiQ1wkCXpEYY6FKPtbXtnoE0P7tcJGlA7HKRpBVgoEtSIwx0SWqE\ngS5JjTDQpR6u5aIhsstF6uFaLlpWdrlI0gow0CWpEQa6JDXCQJekRhjoUg/XctEQ2eUiSQNil4sk\nrQADXZIaYaBLUiN2bObgJCeBx4AngXNVtS/JTuBvgJcAJ4HrquqxTc5TkrSBzZ6hPwmMquo1VbWv\nGzsI3FFVrwTuBA5t8jOki861XDREm+pySfJfwOuq6pGpse8Av15VZ5LsAsZV9aqeY+1y0dJyLRct\nq0V2uRTwxST/luR93dgVVXUGoKpOA5dv8jMkSTPYVA0duKaqHk7yi8DRJA8wCflpnudI0kWwqUCv\nqoe7//8gyT8A+4AzSa6YKrl8/5mOX58qVI5GI0aj0WamI0nNGY/HjMfjmfa94Bp6kucCl1TV40l+\nDjgKHAbeCJytqhuSXA/srKqDPcdbQ9fSsoauZfVsNfTNnKFfAfx9kure56aqOprk34FbkrwHeBC4\nbhOfIW0L13LRELmWiyQNiGu5SNIKMNAlqREGuiQ1wkCXpEYY6FIP13LRENnlIvWwD13Lyi4XSVoB\nBrokNcJAl6RGGOiS1AgDXerhWi4aIrtcJGlA7HKRpBVgoEtSIwx0SWqEgS5JjTDQpR6u5aIhsstF\n6uFaLlpWi/qdotIgJL1/9mc4br79PUHRdjPQ1TyDVqvCGrokNcJAl6RGGOiS1AgDXZIaYaBLUiMM\ndElqhIEuSY0w0CWpEQsL9CRvSfKdJP+R5PpFfY4kaWIhgZ7kEuDPgTcDvwK8I8mrFvFZ0iKMx+Pt\nnoI0t0Wdoe8DTlTVg1V1DrgZOLCgz5K2nIGuIVpUoO8GHpp6/r1uTJK0IF4UlaRGLGq1xVPAL009\n39ONPc2FLmsqXQyHDx/e7ilIc1nIL7hI8hzgAeCNwMPAPcA7qur4ln+YJAlY0Bl6Vf1Pkg8CR5mU\ndT5lmEvSYm3br6CTJG0tL4pqJSX5RJIPTT2/LclfTD3/uySPJflGkkeS/GeSe5Mc3Z4ZSxsz0LWq\nvgr8GkAmV+dfyOQmuKe8CHhTVb0WuBX4w6p6TVXtv+gzlWZkoGtV3UUX6EyC/FvAj5NcluRSYC9w\nb/e67VgaBH9JtFZSVT2c5FySPUyC/S4mN7+9AfgR8M2qemI75yjNy0DXKrsLuIZJoH+cyf0S1wCP\nMSnJSINiyUWr7Kmyy68yKbl8jckZ+hu616RBMdC1yu4CfhM4WxOPAr+Aga6BMtC1yu4HXgD863lj\nP6yqs1Nj3qyhQfDGIklqhGfoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEb8L1O1\nXjmX3cJ9AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Box-and-whisker plot of weights with uncleaned data\n",
"nba_df['WT'].plot(kind='box', whis='range')"
]
},
{
"cell_type": "code",
"execution_count": 357,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 357,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEZ5JREFUeJzt3W2MXFd9x/Hvr7WMqCKIAYGpF0hoEskpVOEh5iEVDE9u\nkYpDJZQiIVEeRCUsJZGgQBxeePOmJKiA0kq8qERQqEKtEFoIEQmOG6aIhzgt2M2SNWilYrAs4hZi\noBYC2eTfF3MN02WSnVl7vTtnvx/J8d1zz71zrpT8cvd/zz2TqkKSNP1+Z7UHIEk6Owx0SWqEgS5J\njTDQJakRBrokNcJAl6RGLBnoSZ6QZH+SA0keSvI3XfumJHuTfDfJl5I8eeiYXUkWkhxKsn0lL0CS\nNJBx5qEn+b2q+nmS3wW+BrwX2AH8uKo+nOQDwKaqui7JpcBtwOXADLAPuLic8C5JK2qskktV/bzb\nfEJ3zHHgSuDWrv1W4I3d9g5gT1WdqqrDwAKw7WwNWJI02liBnuR3khwAHgb6VTUPPKOqjgFU1cPA\n07vuW4AjQ4cf7dokSStowzidqupR4AVJngR8KUkPWFxCsaQiSatorEA/rap+luSLwIuBY0meUVXH\nkmwG/rvrdhR41tBhM13b/5PE/wFI0jJUVUa1L/lQNMnTgJNV9dMkTwS+BNwAbAceqaqbHuOh6EsY\nlFruZcRD0SQ+J9WaNTs7y+zs7GoPQ/otSR4z0Me5Q38mcGuSMKi5/2NV/WtXU789yTuA7wNXAVTV\nfJLbgXngJLDT5JaklbdkoFfVHPDCEe2PAK99jGM+BHzojEcnSRqbb4pKI/R6vdUegjSxsV4sWpEP\ntoYuSRN7vBq6d+iS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRky02qI0jQbLEK08\nX5TTajPQ1TyDVuuFJRdJaoSBLo3gUuiaRi7OJY2QgP96ai1ycS5JWgcMdElqhIEuSY0w0CWpEUsG\nepKZJPcleSjJXJJruvZtSR5IcqD7+8VDx+xKspDkUJLtK3kB0krYvXu1RyBNbslZLkk2A5ur6mCS\n84D/AP4c+Djwoaram+T1wPur6lVJLgVuAy4HZoB9wMWLp7Q4y0WSJndGs1yq6uGqOthtnwC+A/w+\n8EPg/K7b+cDRbnsHsKeqTlXVYWAB2HZGVyBJWtJEr/4nuQC4DNjPIKi/luRvgQAv77ptAb4xdNjR\nrk2StILGDvSu3HIHcG1VnUjyL8DVVfW5JG8CbgFeN8mHzw69jtfr9ej1epMcLknN6/f79Pv9sfqO\n9aZokg3AXcDdVXVz1/azqnrSUJ+fVNX5Sa4Dqqpu6trvAXZX1f5F57SGLkkTOhtvit4CzJ8O885C\nkld2H/AaBiUYgDuBNyfZmORC4CLggeUNXVodruWiaTTOLJcrgK8Ac0B1f64H/ofBTJeNwC+AnVV1\noDtmF/BO4CSDEs3eEef1Dl1rlmu5aK16vDt0F+eSRjDQtVa5OJckrQMGuiQ1wkCXpEYY6NIIruWi\naeRDUUmaIj4UlaR1wECXpEYY6JLUCANdkhphoEsjuJaLppGzXKQRfPVfa5WzXCRpHTDQJakRBrok\nNcJAl6RGGOjSCK7lomnkLBdJmiLOcpGkdcBAl6RGLBnoSWaS3JfkoSRzSa4Z2nd1kkNd+41D7buS\nLHT7tq/U4CVJv7FhjD6ngPdU1cEk5wHfTLIX2Ay8AXh+VZ1K8jSAJFuBq4CtwAywL8nFFswlaWUt\neYdeVQ9X1cFu+wRwCNgCvBu4sapOdft+1B1yJbCnqk5V1WFgAdi2AmOXVoxruWgaTVRDT3IBcBmw\nH7gEeEWS+5N8OcmLum5bgCNDhx3t2qSpccMNqz0CaXLjlFwA6MotdwDXVtWJJBuATVX10iSXA58B\nnjvJh88O3Qb1ej16vd4kh0tS8/r9Pv1+f6y+Y81D78L7LuDuqrq5a/sicFNV/Vv38wLwUuBdAFV1\nY9d+D7C7qvYvOqdlda1ZrraotepszEO/BZg/HeadzwGv7j7gEmBjVf0YuBP4iyQbk1wIXAQ8sOzR\nS5LGsmTJJckVwFuAuSQHgAKuBz4J3JJkDvgl8FaAqppPcjswD5wEdnorLkkrz1f/pRFmZ53porXp\n8UouBrokTRHXcpGkdcBAl6RGGOiS1AgDXZIaYaBLIzjDRdPIWS7SCL4pqrXKWS6StA4Y6JLUCANd\nkhphoEtSIwx0aYTdu1d7BNLknOUiSVPEWS6StA4Y6JLUCANdkhphoEtSIwx0aQTXctE0cpaLNIJr\nuWitOqNZLklmktyX5KEkc0muWbT/vUkeTfKUobZdSRaSHEqy/cwvQZK0lA1j9DkFvKeqDiY5D/hm\nkr1V9Z0kM8DrgO+f7pxkK3AVsBWYAfYludjbcUlaWUveoVfVw1V1sNs+ARwCtnS7Pwa8b9EhVwJ7\nqupUVR0GFoBtZ23EkqSRJnoomuQC4DJgf5IdwJGqmlvUbQtwZOjno/zmfwCSpBUyTskFgK7ccgdw\nLfAr4HoG5ZZlmx2aStDr9ej1emdyOq0TT3kKHD++8p+TkY+dzp5Nm+CRR1b2MzT9+v0+/X5/rL5j\nzXJJsgG4C7i7qm5O8jxgH/BzIAxq5UcZlFbeAVBVN3bH3gPsrqr9i85pWV3L0soMlFauQ+fW481y\nGTfQPwX8qKre8xj7vwe8sKqOJ7kUuA14CYNSy73Abz0UNdC1XK0EYSvXoXPr8QJ9yZJLkiuAtwBz\nSQ4ABVxfVfcMdSsGd+pU1XyS24F54CSw0+SWpJXni0WaOq3c2bZyHTq3XD5XktYBA12SGmGgS1Ij\nDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJA\nl6RGGOiS1AgDXZIaYaBLUiOWDPQkM0nuS/JQkrkkV3ftH05yKMnBJJ9N8qShY3YlWej2b1/JC5Ak\nDSz5JdFJNgObq+pgkvOAbwJXAjPAfVX1aJIbgaqqXUkuBW4DLu/67AMuXvyN0H5JtJarlS9XbuU6\ndG6d0ZdEV9XDVXWw2z4BHAK2VNW+qnq063Y/g/AG2AHsqapTVXUYWAC2neE1SJKWMFENPckFwGXA\n/kW73gF8sdveAhwZ2ne0a5MkraAN43bsyi13ANd2d+qn2z8InKyqf5r0w2dnZ3+93ev16PV6k55C\n61ARGPkL53SpoX9Kj6Xf79Pv98fqu2QNHSDJBuAu4O6qunmo/W3Au4BXV9Uvu7brGNTTb+p+vgfY\nXVX7F53TGrqWpZXacyvXoXPrjGronVuA+UVh/qfA+4Adp8O8cyfw5iQbk1wIXAQ8sLyhS5LGtWTJ\nJckVwFuAuSQHGPyO+EHg74CNwL1JAO6vqp1VNZ/kdmAeOAns9FZcklbeWCWXFflgSy5aplZKFa1c\nh86ts1FykSStcQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY\n6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGLBnoSWaS3JfkoSRzSa7p2jcl2Zvk\nu0m+lOTJQ8fsSrKQ5FCS7St5AZKkgSW/JDrJZmBzVR1Mch7wTeBK4O3Aj6vqw0k+AGyqquuSXArc\nBlwOzAD7gIsXfyO0XxKt5Wrly5VbuQ6dW2f0JdFV9XBVHey2TwCHGAT1lcCtXbdbgTd22zuAPVV1\nqqoOAwvAtjO6AknSkiaqoSe5ALgMuB94RlUdg0HoA0/vum0BjgwddrRrkyStoA3jduzKLXcA11bV\niSSLf1mc+JfH2dnZX2/3ej16vd6kp9A6lZG/cE6XTZtWewSaBv1+n36/P1bfJWvoAEk2AHcBd1fV\nzV3bIaBXVce6OvuXq2prkuuAqqqbun73ALurav+ic1pD15plfVtr1RnV0Du3APOnw7xzJ/C2bvsv\ngc8Ptb85ycYkFwIXAQ9MPGpJ0kTGmeVyBfAVYI5BWaWA6xmE9O3As4DvA1dV1U+6Y3YB7wROMijR\n7B1xXu/QtWZ5h6616vHu0McquawEA11rmYGutepslFwkSWucgS6NsHv3ao9AmpwlF0maIpZcJGkd\nMNAlqREGuiQ1wkCXpEYY6NIIQ8sMSVPDWS7SCL5YpLXKWS6StA4Y6JLUCANdkhphoEtSIwx0aQTX\nctE0cpaLJE0RZ7lI0jpgoEtSIwx0SWqEgS5JjVgy0JN8IsmxJA8OtV2e5IEkB7q/Xzy0b1eShSSH\nkmxfqYFLK8m1XDSNlpzlkuSPgRPAp6rqj7q2LwMfqqq9SV4PvL+qXpXkUuA24HJgBtgHXDxqOouz\nXLSWuZaL1qozmuVSVV8Fji9q/iHw5G77fOBot70D2FNVp6rqMLAAbFvOoCVJk9mwzOOuA76W5CNA\ngJd37VuAbwz1O9q1SZJW2HID/RPA1VX1uSRvAm4BXjfpSWaHCpW9Xo9er7fM4UhSm/r9Pv1+f6y+\nY70pmuQ5wBeGaug/q6onDe3/SVWdn+Q6oKrqpq79HmB3Ve0fcU5r6FqzrKFrrTobb4qm+3PaQpJX\ndid/DYNaOcCdwJuTbExyIXAR8MDyhi2tHtdy0TQaZ5bLp4Ee8FTgGLAbeBD4OLAR+AWws6oOdP13\nAe8ETgLXVtXexzivd+iSNKHHu0N3cS5JmiIuziVJ64CBLkmNMNAlqREGujSCa7loGvlQVBrBeeha\nq3woKknrgIEuSY0w0CWpEQa6JDXCQJdGcC0XTSNnuUjSFHGWiyStAwa6JDXCQJekRhjoktQIA10a\nwbVcNI2c5SKN4FouWquc5SJJ68CSgZ7kE0mOJXlwUfvVSQ4lmUty41D7riQL3b7tKzFoSdJv2zBG\nn08Cfw986nRDkh7wBuD5VXUqydO69q3AVcBWYAbYl+RiayuStPKWvEOvqq8Cxxc1vxu4sapOdX1+\n1LVfCeypqlNVdRhYALadveFKkh7LcmvolwCvSHJ/ki8neVHXvgU4MtTvaNcmTRXXctE0Gqfk8ljH\nbaqqlya5HPgM8NyzNyxpdTltUdNouYF+BPhngKr69yS/SvJUBnfkzx7qN9O1jTQ79F9Nr9ej1+st\ncziS1KZ+v0+/3x+r71jz0JNcAHyhqp7f/fxXwJaq2p3kEuDeqnpOkkuB24CXMCi13AuMfCjqPHRJ\nmtzjzUNf8g49yaeBHvDUJD8AdgO3AJ9MMgf8EngrQFXNJ7kdmAdOAjtNbUk6N3xTVJKmiG+KShPy\noaimkXfo0giu5aK1yjt0SVoHljttUZoaycibmTGOm6y/v3FqtRnoap5Bq/XCkoskNcJAl6RGGOiS\n1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJasSSgZ7k\nE0mOJXlwxL73Jnk0yVOG2nYlWUhyKMn2sz1gSdJo49yhfxL4k8WNSWaA1wHfH2rbClwFbAVeD3w8\ny/12AWkV9fv91R6CNLElA72qvgocH7HrY8D7FrVdCeypqlNVdRhYALad6SClc81A1zRaVg09yQ7g\nSFXNLdq1BTgy9PPRrk2StMIm/gq6JE8ErmdQbpEkrRHL+U7RPwAuAP6zq4/PAN9Kso3BHfmzh/rO\ndG0jWV7XWnbDDTes9hCkiYwb6On+UFXfBjb/ekfyPeCFVXU8yZ3AbUk+yqDUchHwwKgTVpVpLkln\n0TjTFj8NfB24JMkPkrx9UZfiN2E/D9wOzANfBHaWX7kuSedEzFtJaoNvimpdSvLRJNcM/XxPkn8Y\n+vmzSX6a5FtJfpzkv5IcSLJ3dUYsLc1A13r1NeDlAN3D/acBfzi0/5nAa6vqhcDngb+uqhdUlW8/\na80y0LVefZ0u0BkE+beB/03y5CQbGbztfKDb7wN8TYXlTFuUpl5V/TDJyW4Ji5czCPgtwMuAnwEP\nVtWp1RyjNCkDXevZ14ErGAT6Rxi8N3EF8FMGJRlpqlhy0Xp2uuzyPAYll/sZ3KG/rNsnTRUDXevZ\n14E/Ax6pgePA+RjomlIGutazOeCpwDcWtf2kqh4ZavNlDU0FXyySpEZ4hy5JjTDQJakRBrokNcJA\nl6RGGOiS1AgDXZIaYaBLUiMMdElqxP8BI9RaEauMsnEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Box-and-whisker plot of weights with cleaned data\n",
"cleaned_nba_df['WT'].plot(kind='box', whis='range')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See how pleasant that is? So pleasant."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}