{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.style.use('ggplot')\n", "import dateutil.parser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Processing time with `pandas`\n", "\n", "We've touched a little bit on time so far - mostly how tragic it is to parse - but pandas can do some neat things with it once you figure out how it works.\n", "\n", "Let's open up some data from [the Census bureau](https://www.census.gov/econ/currentdata/datasets/) - we're going to use **New Home Sales**. The data is formatted... oddly, so I've done the importing and joining for you below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
per_idxcat_idxdt_idxet_idxgeo_idxis_adjval
011501017200.0
11120109.0
211301011.0
311401022.0
411101042.0
\n", "
" ], "text/plain": [ " per_idx cat_idx dt_idx et_idx geo_idx is_adj val\n", "0 1 1 5 0 1 0 17200.0\n", "1 1 1 2 0 1 0 9.0\n", "2 1 1 3 0 1 0 11.0\n", "3 1 1 4 0 1 0 22.0\n", "4 1 1 1 0 1 0 42.0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='data')\n", "data_df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "categories_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='categories')\n", "data_types_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='data_types')\n", "error_types_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='error_types')\n", "geo_levels_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='geo_levels')\n", "periods_df = pd.read_excel(\"RESSALES-mf.xlsx\", sheetname='periods')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cat_idxcat_codecat_desccat_indent
01SOLDNew Single-family Houses Sold0
12ASOLDAnnual Rate for New Single-family Houses Sold0
\n", "
" ], "text/plain": [ " cat_idx cat_code cat_desc cat_indent\n", "0 1 SOLD New Single-family Houses Sold 0\n", "1 2 ASOLD Annual Rate for New Single-family Houses Sold 0" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "categories_df.head(2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# it auto-merges cat_idx in our original dataframe with cat_idx in categories_df\n", "# it auto-merges dt_idx in our original dataframe with dt_idx in data_types_df\n", "# it auto-merges geo_idx in our original dataframe with geo_idx in geo_levels_df\n", "# it auto-merges per_idx in our original dataframe with per_idx in periods_df\n", "df = data_df.merge(categories_df).merge(data_types_df).merge(geo_levels_df).merge(periods_df)\n", "# We only want to look at the total number of homes sold across entire the united states\n", "df = df[(df['cat_code'] == 'SOLD') & (df['geo_code'] == 'US') & (df['dt_code'] == 'TOTAL')]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 641\n", "Name: et_idx, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We don't merge error_types_df because all of the errors are the same\n", "df['et_idx'].value_counts()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
per_idxcat_idxdt_idxet_idxgeo_idxis_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_descper_name
411101042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-01-01
1421101035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-02-01
\n", "
" ], "text/plain": [ " per_idx cat_idx dt_idx et_idx geo_idx is_adj val cat_code \\\n", "4 1 1 1 0 1 0 42.0 SOLD \n", "14 2 1 1 0 1 0 35.0 SOLD \n", "\n", " cat_desc cat_indent dt_code dt_desc dt_unit \\\n", "4 New Single-family Houses Sold 0 TOTAL All Houses K \n", "14 New Single-family Houses Sold 0 TOTAL All Houses K \n", "\n", " geo_code geo_desc per_name \n", "4 US United States 1963-01-01 \n", "14 US United States 1963-02-01 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_descper_name
4042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-01-01
14035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-02-01
24044.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-03-01
34052.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-04-01
44058.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-05-01
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent dt_code \\\n", "4 0 42.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "14 0 35.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "24 0 44.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "34 0 52.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "44 0 58.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "\n", " dt_desc dt_unit geo_code geo_desc per_name \n", "4 All Houses K US United States 1963-01-01 \n", "14 All Houses K US United States 1963-02-01 \n", "24 All Houses K US United States 1963-03-01 \n", "34 All Houses K US United States 1963-04-01 \n", "44 All Houses K US United States 1963-05-01 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Now let's remove the join columns to keep things clean\n", "df = df.drop(['per_idx', 'cat_idx', 'dt_idx', 'et_idx', 'geo_idx'], axis=1)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Int64Index: 641 entries, 4 to 15199\n", "Data columns (total 11 columns):\n", "is_adj 641 non-null int64\n", "val 641 non-null float64\n", "cat_code 641 non-null object\n", "cat_desc 641 non-null object\n", "cat_indent 641 non-null int64\n", "dt_code 641 non-null object\n", "dt_desc 641 non-null object\n", "dt_unit 641 non-null object\n", "geo_code 641 non-null object\n", "geo_desc 641 non-null object\n", "per_name 641 non-null datetime64[ns]\n", "dtypes: datetime64[ns](1), float64(1), int64(2), object(7)\n", "memory usage: 60.1+ KB\n" ] } ], "source": [ "# At least we can see 'per_name' (period name) is already a datetime!\n", "df.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Changing the index to the datetime\n", "\n", "Normally the index of the column is just a number." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_descper_name
4042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-01-01
14035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-02-01
24044.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-03-01
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent dt_code \\\n", "4 0 42.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "14 0 35.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "24 0 44.0 SOLD New Single-family Houses Sold 0 TOTAL \n", "\n", " dt_desc dt_unit geo_code geo_desc per_name \n", "4 All Houses K US United States 1963-01-01 \n", "14 All Houses K US United States 1963-02-01 \n", "24 All Houses K US United States 1963-03-01 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It's the column on the far left - `0`, `1`, `2`, `3`, `4`... boring and useless! If we replace the index with the datetime, though, we can start to have some fun" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_descper_name
per_name
1963-01-01042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-01-01
1963-02-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States1963-02-01
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "1963-01-01 0 42.0 SOLD New Single-family Houses Sold 0 \n", "1963-02-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc per_name \n", "per_name \n", "1963-01-01 TOTAL All Houses K US United States 1963-01-01 \n", "1963-02-01 TOTAL All Houses K US United States 1963-02-01 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# First we move it over into the index column\n", "df.index = df['per_name']\n", "df.head(2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_desc
per_name
1963-01-01042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1963-02-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "1963-01-01 0 42.0 SOLD New Single-family Houses Sold 0 \n", "1963-02-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc \n", "per_name \n", "1963-01-01 TOTAL All Houses K US United States \n", "1963-02-01 TOTAL All Houses K US United States " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Then we delete the per_name column because we don't need it any more...\n", "del df['per_name']\n", "df.head(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Selecting specific(-ish) dates via the index\n", "\n", "Now that our index is a datetime, we can select date ranges much more easily." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_desc
per_name
1963-03-01044.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "1963-03-01 0 44.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc \n", "per_name \n", "1963-03-01 TOTAL All Houses K US United States " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Everything in March, 1963\n", "df['1963-3']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_desc
per_name
2010-01-01024.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-02-01027.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-03-01036.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-04-01041.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-05-01026.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-06-01028.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-07-01026.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-08-01023.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-09-01025.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-10-01023.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-11-01020.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2010-12-01023.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "2010-01-01 0 24.0 SOLD New Single-family Houses Sold 0 \n", "2010-02-01 0 27.0 SOLD New Single-family Houses Sold 0 \n", "2010-03-01 0 36.0 SOLD New Single-family Houses Sold 0 \n", "2010-04-01 0 41.0 SOLD New Single-family Houses Sold 0 \n", "2010-05-01 0 26.0 SOLD New Single-family Houses Sold 0 \n", "2010-06-01 0 28.0 SOLD New Single-family Houses Sold 0 \n", "2010-07-01 0 26.0 SOLD New Single-family Houses Sold 0 \n", "2010-08-01 0 23.0 SOLD New Single-family Houses Sold 0 \n", "2010-09-01 0 25.0 SOLD New Single-family Houses Sold 0 \n", "2010-10-01 0 23.0 SOLD New Single-family Houses Sold 0 \n", "2010-11-01 0 20.0 SOLD New Single-family Houses Sold 0 \n", "2010-12-01 0 23.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc \n", "per_name \n", "2010-01-01 TOTAL All Houses K US United States \n", "2010-02-01 TOTAL All Houses K US United States \n", "2010-03-01 TOTAL All Houses K US United States \n", "2010-04-01 TOTAL All Houses K US United States \n", "2010-05-01 TOTAL All Houses K US United States \n", "2010-06-01 TOTAL All Houses K US United States \n", "2010-07-01 TOTAL All Houses K US United States \n", "2010-08-01 TOTAL All Houses K US United States \n", "2010-09-01 TOTAL All Houses K US United States \n", "2010-10-01 TOTAL All Houses K US United States \n", "2010-11-01 TOTAL All Houses K US United States \n", "2010-12-01 TOTAL All Houses K US United States " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Everything in 2010\n", "df['2010']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List slices with datetimes\n", "\n", "We can also use **list slicing** with datetimes!\n", "\n", "Just for review, you can use `:` to only select certain parts of a list:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Make our list of fruits\n", "ranked_fruits = ('banana', 'orange', 'apple', 'blueberries', 'strawberries')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "('banana', 'orange')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Start from the beginning, get the first two\n", "ranked_fruits[:2]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "('apple', 'blueberries')" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Start from two, get up until the fourth element\n", "ranked_fruits[2:4]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "('blueberries', 'strawberries')" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Starting from the third element, get all the rest\n", "ranked_fruits[3:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instead of using boring ol' numbers, we can use **dates instead**." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_desc
per_name
2001-01-01072.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-02-01085.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-03-01094.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-04-01084.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-05-01080.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-06-01079.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-07-01076.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-08-01074.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-09-01066.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-10-01066.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-11-01067.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2001-12-01066.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-01-01066.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-02-01084.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-03-01090.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-04-01086.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-05-01088.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-06-01084.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-07-01082.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-08-01090.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-09-01082.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-10-01077.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-11-01073.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2002-12-01070.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-01-01076.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-02-01082.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-03-01098.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-04-01091.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-05-010101.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2003-06-010107.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
.................................
2013-12-01031.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-01-01033.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-02-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-03-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-04-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-05-01043.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-06-01038.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-07-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-08-01036.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-09-01037.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-10-01038.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-11-01031.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2014-12-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-01-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-02-01045.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-03-01046.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-04-01048.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-05-01047.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-06-01044.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-07-01043.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-08-01041.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-09-01035.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-10-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-11-01036.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2015-12-01038.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2016-01-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2016-02-01045.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2016-03-01049.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2016-04-01057.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
2016-05-01051.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
\n", "

185 rows × 10 columns

\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "2001-01-01 0 72.0 SOLD New Single-family Houses Sold 0 \n", "2001-02-01 0 85.0 SOLD New Single-family Houses Sold 0 \n", "2001-03-01 0 94.0 SOLD New Single-family Houses Sold 0 \n", "2001-04-01 0 84.0 SOLD New Single-family Houses Sold 0 \n", "2001-05-01 0 80.0 SOLD New Single-family Houses Sold 0 \n", "2001-06-01 0 79.0 SOLD New Single-family Houses Sold 0 \n", "2001-07-01 0 76.0 SOLD New Single-family Houses Sold 0 \n", "2001-08-01 0 74.0 SOLD New Single-family Houses Sold 0 \n", "2001-09-01 0 66.0 SOLD New Single-family Houses Sold 0 \n", "2001-10-01 0 66.0 SOLD New Single-family Houses Sold 0 \n", "2001-11-01 0 67.0 SOLD New Single-family Houses Sold 0 \n", "2001-12-01 0 66.0 SOLD New Single-family Houses Sold 0 \n", "2002-01-01 0 66.0 SOLD New Single-family Houses Sold 0 \n", "2002-02-01 0 84.0 SOLD New Single-family Houses Sold 0 \n", "2002-03-01 0 90.0 SOLD New Single-family Houses Sold 0 \n", "2002-04-01 0 86.0 SOLD New Single-family Houses Sold 0 \n", "2002-05-01 0 88.0 SOLD New Single-family Houses Sold 0 \n", "2002-06-01 0 84.0 SOLD New Single-family Houses Sold 0 \n", "2002-07-01 0 82.0 SOLD New Single-family Houses Sold 0 \n", "2002-08-01 0 90.0 SOLD New Single-family Houses Sold 0 \n", "2002-09-01 0 82.0 SOLD New Single-family Houses Sold 0 \n", "2002-10-01 0 77.0 SOLD New Single-family Houses Sold 0 \n", "2002-11-01 0 73.0 SOLD New Single-family Houses Sold 0 \n", "2002-12-01 0 70.0 SOLD New Single-family Houses Sold 0 \n", "2003-01-01 0 76.0 SOLD New Single-family Houses Sold 0 \n", "2003-02-01 0 82.0 SOLD New Single-family Houses Sold 0 \n", "2003-03-01 0 98.0 SOLD New Single-family Houses Sold 0 \n", "2003-04-01 0 91.0 SOLD New Single-family Houses Sold 0 \n", "2003-05-01 0 101.0 SOLD New Single-family Houses Sold 0 \n", "2003-06-01 0 107.0 SOLD New Single-family Houses Sold 0 \n", "... ... ... ... ... ... \n", "2013-12-01 0 31.0 SOLD New Single-family Houses Sold 0 \n", "2014-01-01 0 33.0 SOLD New Single-family Houses Sold 0 \n", "2014-02-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "2014-03-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "2014-04-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "2014-05-01 0 43.0 SOLD New Single-family Houses Sold 0 \n", "2014-06-01 0 38.0 SOLD New Single-family Houses Sold 0 \n", "2014-07-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "2014-08-01 0 36.0 SOLD New Single-family Houses Sold 0 \n", "2014-09-01 0 37.0 SOLD New Single-family Houses Sold 0 \n", "2014-10-01 0 38.0 SOLD New Single-family Houses Sold 0 \n", "2014-11-01 0 31.0 SOLD New Single-family Houses Sold 0 \n", "2014-12-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "2015-01-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "2015-02-01 0 45.0 SOLD New Single-family Houses Sold 0 \n", "2015-03-01 0 46.0 SOLD New Single-family Houses Sold 0 \n", "2015-04-01 0 48.0 SOLD New Single-family Houses Sold 0 \n", "2015-05-01 0 47.0 SOLD New Single-family Houses Sold 0 \n", "2015-06-01 0 44.0 SOLD New Single-family Houses Sold 0 \n", "2015-07-01 0 43.0 SOLD New Single-family Houses Sold 0 \n", "2015-08-01 0 41.0 SOLD New Single-family Houses Sold 0 \n", "2015-09-01 0 35.0 SOLD New Single-family Houses Sold 0 \n", "2015-10-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "2015-11-01 0 36.0 SOLD New Single-family Houses Sold 0 \n", "2015-12-01 0 38.0 SOLD New Single-family Houses Sold 0 \n", "2016-01-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "2016-02-01 0 45.0 SOLD New Single-family Houses Sold 0 \n", "2016-03-01 0 49.0 SOLD New Single-family Houses Sold 0 \n", "2016-04-01 0 57.0 SOLD New Single-family Houses Sold 0 \n", "2016-05-01 0 51.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc \n", "per_name \n", "2001-01-01 TOTAL All Houses K US United States \n", "2001-02-01 TOTAL All Houses K US United States \n", "2001-03-01 TOTAL All Houses K US United States \n", "2001-04-01 TOTAL All Houses K US United States \n", "2001-05-01 TOTAL All Houses K US United States \n", "2001-06-01 TOTAL All Houses K US United States \n", "2001-07-01 TOTAL All Houses K US United States \n", "2001-08-01 TOTAL All Houses K US United States \n", "2001-09-01 TOTAL All Houses K US United States \n", "2001-10-01 TOTAL All Houses K US United States \n", "2001-11-01 TOTAL All Houses K US United States \n", "2001-12-01 TOTAL All Houses K US United States \n", "2002-01-01 TOTAL All Houses K US United States \n", "2002-02-01 TOTAL All Houses K US United States \n", "2002-03-01 TOTAL All Houses K US United States \n", "2002-04-01 TOTAL All Houses K US United States \n", "2002-05-01 TOTAL All Houses K US United States \n", "2002-06-01 TOTAL All Houses K US United States \n", "2002-07-01 TOTAL All Houses K US United States \n", "2002-08-01 TOTAL All Houses K US United States \n", "2002-09-01 TOTAL All Houses K US United States \n", "2002-10-01 TOTAL All Houses K US United States \n", "2002-11-01 TOTAL All Houses K US United States \n", "2002-12-01 TOTAL All Houses K US United States \n", "2003-01-01 TOTAL All Houses K US United States \n", "2003-02-01 TOTAL All Houses K US United States \n", "2003-03-01 TOTAL All Houses K US United States \n", "2003-04-01 TOTAL All Houses K US United States \n", "2003-05-01 TOTAL All Houses K US United States \n", "2003-06-01 TOTAL All Houses K US United States \n", "... ... ... ... ... ... \n", "2013-12-01 TOTAL All Houses K US United States \n", "2014-01-01 TOTAL All Houses K US United States \n", "2014-02-01 TOTAL All Houses K US United States \n", "2014-03-01 TOTAL All Houses K US United States \n", "2014-04-01 TOTAL All Houses K US United States \n", "2014-05-01 TOTAL All Houses K US United States \n", "2014-06-01 TOTAL All Houses K US United States \n", "2014-07-01 TOTAL All Houses K US United States \n", "2014-08-01 TOTAL All Houses K US United States \n", "2014-09-01 TOTAL All Houses K US United States \n", "2014-10-01 TOTAL All Houses K US United States \n", "2014-11-01 TOTAL All Houses K US United States \n", "2014-12-01 TOTAL All Houses K US United States \n", "2015-01-01 TOTAL All Houses K US United States \n", "2015-02-01 TOTAL All Houses K US United States \n", "2015-03-01 TOTAL All Houses K US United States \n", "2015-04-01 TOTAL All Houses K US United States \n", "2015-05-01 TOTAL All Houses K US United States \n", "2015-06-01 TOTAL All Houses K US United States \n", "2015-07-01 TOTAL All Houses K US United States \n", "2015-08-01 TOTAL All Houses K US United States \n", "2015-09-01 TOTAL All Houses K US United States \n", "2015-10-01 TOTAL All Houses K US United States \n", "2015-11-01 TOTAL All Houses K US United States \n", "2015-12-01 TOTAL All Houses K US United States \n", "2016-01-01 TOTAL All Houses K US United States \n", "2016-02-01 TOTAL All Houses K US United States \n", "2016-03-01 TOTAL All Houses K US United States \n", "2016-04-01 TOTAL All Houses K US United States \n", "2016-05-01 TOTAL All Houses K US United States \n", "\n", "[185 rows x 10 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Everything after 2001\n", "df[\"2001\":]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_codecat_desccat_indentdt_codedt_descdt_unitgeo_codegeo_desc
per_name
1990-06-01050.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-07-01046.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-08-01046.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-09-01038.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-10-01037.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-11-01034.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1990-12-01029.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-01-01030.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-02-01040.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-03-01051.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-04-01050.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-05-01047.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-06-01047.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-07-01043.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-08-01046.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-09-01037.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-10-01041.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-11-01039.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1991-12-01036.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-01-01048.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-02-01055.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-03-01056.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-04-01053.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-05-01052.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-06-01053.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-07-01052.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-08-01056.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-09-01051.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-10-01048.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-11-01042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1992-12-01042.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-01-01044.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-02-01050.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-03-01060.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-04-01066.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-05-01058.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-06-01059.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-07-01055.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-08-01057.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-09-01057.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-10-01056.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-11-01053.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1993-12-01051.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-01-01046.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-02-01058.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-03-01074.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-04-01065.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-05-01065.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-06-01055.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-07-01052.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-08-01059.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-09-01054.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-10-01057.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-11-01045.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1994-12-01040.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1995-01-01047.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1995-02-01047.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
1995-03-01060.0SOLDNew Single-family Houses Sold0TOTALAll HousesKUSUnited States
\n", "
" ], "text/plain": [ " is_adj val cat_code cat_desc cat_indent \\\n", "per_name \n", "1990-06-01 0 50.0 SOLD New Single-family Houses Sold 0 \n", "1990-07-01 0 46.0 SOLD New Single-family Houses Sold 0 \n", "1990-08-01 0 46.0 SOLD New Single-family Houses Sold 0 \n", "1990-09-01 0 38.0 SOLD New Single-family Houses Sold 0 \n", "1990-10-01 0 37.0 SOLD New Single-family Houses Sold 0 \n", "1990-11-01 0 34.0 SOLD New Single-family Houses Sold 0 \n", "1990-12-01 0 29.0 SOLD New Single-family Houses Sold 0 \n", "1991-01-01 0 30.0 SOLD New Single-family Houses Sold 0 \n", "1991-02-01 0 40.0 SOLD New Single-family Houses Sold 0 \n", "1991-03-01 0 51.0 SOLD New Single-family Houses Sold 0 \n", "1991-04-01 0 50.0 SOLD New Single-family Houses Sold 0 \n", "1991-05-01 0 47.0 SOLD New Single-family Houses Sold 0 \n", "1991-06-01 0 47.0 SOLD New Single-family Houses Sold 0 \n", "1991-07-01 0 43.0 SOLD New Single-family Houses Sold 0 \n", "1991-08-01 0 46.0 SOLD New Single-family Houses Sold 0 \n", "1991-09-01 0 37.0 SOLD New Single-family Houses Sold 0 \n", "1991-10-01 0 41.0 SOLD New Single-family Houses Sold 0 \n", "1991-11-01 0 39.0 SOLD New Single-family Houses Sold 0 \n", "1991-12-01 0 36.0 SOLD New Single-family Houses Sold 0 \n", "1992-01-01 0 48.0 SOLD New Single-family Houses Sold 0 \n", "1992-02-01 0 55.0 SOLD New Single-family Houses Sold 0 \n", "1992-03-01 0 56.0 SOLD New Single-family Houses Sold 0 \n", "1992-04-01 0 53.0 SOLD New Single-family Houses Sold 0 \n", "1992-05-01 0 52.0 SOLD New Single-family Houses Sold 0 \n", "1992-06-01 0 53.0 SOLD New Single-family Houses Sold 0 \n", "1992-07-01 0 52.0 SOLD New Single-family Houses Sold 0 \n", "1992-08-01 0 56.0 SOLD New Single-family Houses Sold 0 \n", "1992-09-01 0 51.0 SOLD New Single-family Houses Sold 0 \n", "1992-10-01 0 48.0 SOLD New Single-family Houses Sold 0 \n", "1992-11-01 0 42.0 SOLD New Single-family Houses Sold 0 \n", "1992-12-01 0 42.0 SOLD New Single-family Houses Sold 0 \n", "1993-01-01 0 44.0 SOLD New Single-family Houses Sold 0 \n", "1993-02-01 0 50.0 SOLD New Single-family Houses Sold 0 \n", "1993-03-01 0 60.0 SOLD New Single-family Houses Sold 0 \n", "1993-04-01 0 66.0 SOLD New Single-family Houses Sold 0 \n", "1993-05-01 0 58.0 SOLD New Single-family Houses Sold 0 \n", "1993-06-01 0 59.0 SOLD New Single-family Houses Sold 0 \n", "1993-07-01 0 55.0 SOLD New Single-family Houses Sold 0 \n", "1993-08-01 0 57.0 SOLD New Single-family Houses Sold 0 \n", "1993-09-01 0 57.0 SOLD New Single-family Houses Sold 0 \n", "1993-10-01 0 56.0 SOLD New Single-family Houses Sold 0 \n", "1993-11-01 0 53.0 SOLD New Single-family Houses Sold 0 \n", "1993-12-01 0 51.0 SOLD New Single-family Houses Sold 0 \n", "1994-01-01 0 46.0 SOLD New Single-family Houses Sold 0 \n", "1994-02-01 0 58.0 SOLD New Single-family Houses Sold 0 \n", "1994-03-01 0 74.0 SOLD New Single-family Houses Sold 0 \n", "1994-04-01 0 65.0 SOLD New Single-family Houses Sold 0 \n", "1994-05-01 0 65.0 SOLD New Single-family Houses Sold 0 \n", "1994-06-01 0 55.0 SOLD New Single-family Houses Sold 0 \n", "1994-07-01 0 52.0 SOLD New Single-family Houses Sold 0 \n", "1994-08-01 0 59.0 SOLD New Single-family Houses Sold 0 \n", "1994-09-01 0 54.0 SOLD New Single-family Houses Sold 0 \n", "1994-10-01 0 57.0 SOLD New Single-family Houses Sold 0 \n", "1994-11-01 0 45.0 SOLD New Single-family Houses Sold 0 \n", "1994-12-01 0 40.0 SOLD New Single-family Houses Sold 0 \n", "1995-01-01 0 47.0 SOLD New Single-family Houses Sold 0 \n", "1995-02-01 0 47.0 SOLD New Single-family Houses Sold 0 \n", "1995-03-01 0 60.0 SOLD New Single-family Houses Sold 0 \n", "\n", " dt_code dt_desc dt_unit geo_code geo_desc \n", "per_name \n", "1990-06-01 TOTAL All Houses K US United States \n", "1990-07-01 TOTAL All Houses K US United States \n", "1990-08-01 TOTAL All Houses K US United States \n", "1990-09-01 TOTAL All Houses K US United States \n", "1990-10-01 TOTAL All Houses K US United States \n", "1990-11-01 TOTAL All Houses K US United States \n", "1990-12-01 TOTAL All Houses K US United States \n", "1991-01-01 TOTAL All Houses K US United States \n", "1991-02-01 TOTAL All Houses K US United States \n", "1991-03-01 TOTAL All Houses K US United States \n", "1991-04-01 TOTAL All Houses K US United States \n", "1991-05-01 TOTAL All Houses K US United States \n", "1991-06-01 TOTAL All Houses K US United States \n", "1991-07-01 TOTAL All Houses K US United States \n", "1991-08-01 TOTAL All Houses K US United States \n", "1991-09-01 TOTAL All Houses K US United States \n", "1991-10-01 TOTAL All Houses K US United States \n", "1991-11-01 TOTAL All Houses K US United States \n", "1991-12-01 TOTAL All Houses K US United States \n", "1992-01-01 TOTAL All Houses K US United States \n", "1992-02-01 TOTAL All Houses K US United States \n", "1992-03-01 TOTAL All Houses K US United States \n", "1992-04-01 TOTAL All Houses K US United States \n", "1992-05-01 TOTAL All Houses K US United States \n", "1992-06-01 TOTAL All Houses K US United States \n", "1992-07-01 TOTAL All Houses K US United States \n", "1992-08-01 TOTAL All Houses K US United States \n", "1992-09-01 TOTAL All Houses K US United States \n", "1992-10-01 TOTAL All Houses K US United States \n", "1992-11-01 TOTAL All Houses K US United States \n", "1992-12-01 TOTAL All Houses K US United States \n", "1993-01-01 TOTAL All Houses K US United States \n", "1993-02-01 TOTAL All Houses K US United States \n", "1993-03-01 TOTAL All Houses K US United States \n", "1993-04-01 TOTAL All Houses K US United States \n", "1993-05-01 TOTAL All Houses K US United States \n", "1993-06-01 TOTAL All Houses K US United States \n", "1993-07-01 TOTAL All Houses K US United States \n", "1993-08-01 TOTAL All Houses K US United States \n", "1993-09-01 TOTAL All Houses K US United States \n", "1993-10-01 TOTAL All Houses K US United States \n", "1993-11-01 TOTAL All Houses K US United States \n", "1993-12-01 TOTAL All Houses K US United States \n", "1994-01-01 TOTAL All Houses K US United States \n", "1994-02-01 TOTAL All Houses K US United States \n", "1994-03-01 TOTAL All Houses K US United States \n", "1994-04-01 TOTAL All Houses K US United States \n", "1994-05-01 TOTAL All Houses K US United States \n", "1994-06-01 TOTAL All Houses K US United States \n", "1994-07-01 TOTAL All Houses K US United States \n", "1994-08-01 TOTAL All Houses K US United States \n", "1994-09-01 TOTAL All Houses K US United States \n", "1994-10-01 TOTAL All Houses K US United States \n", "1994-11-01 TOTAL All Houses K US United States \n", "1994-12-01 TOTAL All Houses K US United States \n", "1995-01-01 TOTAL All Houses K US United States \n", "1995-02-01 TOTAL All Houses K US United States \n", "1995-03-01 TOTAL All Houses K US United States " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Everything between June 1990 and March 1995\n", "df[\"1990-06\":\"1995-03\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Info on our time series\n", "\n", "If you try to `.plot`, pandas will automatically use the index (the date) as the x axis for you." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYHFd59n2fqt57ejZpxpIsy4u8j2VjrBhsFlshAULA\nSJAMCYEvEBuITV4UOWzG2IHYJjhehDCxE9uBwGdCcN4gYXYSkBwbhCN59wjvq6xlRhpNT/f0WlXn\n/ePUqTp16vRM90zPTPfM+V2XLk1Xb6equ5966n42Qiml0Gg0Gs2Cw5jvBWg0Go1mdtAGXqPRaBYo\n2sBrNBrNAkUbeI1Go1mgaAOv0Wg0CxRt4DUajWaBMqWBv+222/CRj3wEn/zkJ0P3/eAHP8D73vc+\n5PN5b9vWrVvxiU98Aps2bcKjjz7a3NVqNBqNpm6mNPDr1q3DlVdeGdp++PBhPPbYY1i6dKm3be/e\nvdi5cyc2b96MK664AnfeeSfaPc1+aGhovpcwb+h9X3ws1v0GFua+T2ngTz31VKTT6dD2b37zm/jg\nBz8Y2LZ7926cf/75ME0T/f39WL58OZ599tnmrXYeWIgfer3ofV98LNb9Bhbmvk9Lg9+9ezeWLFmC\nVatWBbaPjo4GPPre3l6Mjo7ObIWY3wM/PDw8b+893184ve/zw2L9vgOLd99na78bNvCVSgVbt27F\n4ODgbKxHyXx+6CMjI/P23vNt5PS+zw+L9fsOLN59n639JvX0ohkZGcH111+PG2+8ES+//DKuueYa\nxONxUEoxOjqK3t5efOlLX8L27dsBAOvXrwcAXHfddRgcHMRJJ50Ues2hoaHATs3lCUOj0WgWEnff\nfbf398DAAAYGBgAAkXqeTCn1gqWrVq3CHXfc4d338Y9/HNdffz06Ojqwdu1afPWrX8U73/lOjI6O\n4sCBAzjxxBOVrykugrNv377G9moOyGQyyOVy872MeUHv++Lb98W630D77vuKFStqOshTGvgtW7Zg\nz549yOVyuPTSSzE4OIh169Z59xNCvL9XrlyJ8847D5s2bUIkEsEll1wSuF+j0Wg0c0ddEs1coT34\n1kLv++Lb98W630D77vuKFStq3qcrWTUajWaBog28RqPRLFDqCrJqNBpNK9HR0dH0+J5pmshkMk19\nzWZCKQ20hakHbeA1Gk3bQQhpS718Jkzn5KMlGo1Go1mgaAOv0Wg0CxRt4DUajWaBog28RqPRtAA7\nd+7E2rVrm/qa2sBrNBpNi9DszCBt4DUajWaBotMkNRqNponceuuteOSRR3D77bd7266++moArMni\nbbfdhv3792Pp0qW49NJL8YEPfGDW1qI9eI1Go2ki7373u7F9+3YUCgUAgOM4+OEPf4gNGzagr68P\n3/rWt/DUU0/h5ptvxhe+8AU88cQTs7YW7cFrNJoFh/2Ri5ryOuYd9zT8nKOPPhpr1qzBT37yE7z3\nve/F/fffj2QyibPPPjvwuNe97nW44IIL8L//+78444wzmrJeGW3gNRrNgmM6hrmZvPvd78a2bdvw\n3ve+F9u2bcOGDRsAAL/85S+xefNmPP/886CUolQq4bTTTpu1dWiJRqPRaJrMu971LuzcuRP79+/H\nT3/6U2zYsAGVSgUf/ehHcdlll+Hxxx/Hnj17sG7dOsxmx3Zt4DUajabJ9Pb24rzzzsPll1+OVatW\nYfXq1ahWq6hWq+jt7YVhGPjlL3+Je++9d1bXoQ28RqPRzALr16/H/fff78kz6XQaf/d3f4ePfexj\nGBgYwPe//3287W1vm9U16IlOU9CuU16agd73xbfv7bLf7bLOZlJrn/VEJ41Go1mEaAOv0WhaHuc3\nO+Ds+Ml8L6Pt0GmSGo2m5aHfvg0oFYEL/2C+l9JWaA9eo9G0PkSbqumgj5pGo2l9DG2qpoM+ahqN\npvXRBn5aaA1eo9G0PlKfdErptIZQT4ZpmrBtu6mv2Uymk9GuDbxGo2l9JA8+n883/S0WYm69vu7R\naDQtAz08DKryonWQdVroo6bRaFoG57OXgG7/UfgOrcFPiyklmttuuw0PPfQQurq6cOONNwIA7rrr\nLjz44IOIRCI46qijcNlllyGVSgEAtm7diu3bt8M0TXzoQx/CWWedNbt7oNFoFhYTCpmkybNKFwtT\nnhbXrVuHK6+8MrDtzDPPxE033YQbbrgBy5cvx7Zt2wAAe/fuxc6dO7F582ZcccUVuPPOO2e1FaZG\no1mAqGyGNvDTYkoDf+qppyKdTge2nXnmmTDcS6aTTjoJhw8fBgDs3r0b559/PkzTRH9/P5YvX45n\nn312Fpat0WgWLEoDryWa6TDjo7Z9+3ZvFNXo6CiWLl3q3dfb24vR0dGZvoVGo1lMUCe8TWvw02JG\nR+173/seTNPEG9/4xmatR6PRLHZUqq4r0Tg7fjy3a2lzpp0Hv2PHDjz88MO4+uqrvW29vb04dOiQ\nd/vw4cPo7e1VPn9oaAhDQ0Pe7cHBwaYXLjSDWCzWkuuaC/S+L759n+/9HgMQi0aQlNYwHo3CAUC/\n/U/IvOt9s/Le873vM+Huu+/2/h4YGMDAwACAOg08pTQQLH3kkUdwzz334Itf/CKi0ai3fe3atfjq\nV7+Kd77znRgdHcWBAwdw4oknKl9TXASnFYsMFmLxQ73ofV98+94K+10pl2FJa3AE+zNb62uFfZ8O\nmUwGg4ODyvumNPBbtmzBnj17kMvlcOmll2JwcBBbt26FZVm49tprAbBA6yWXXIKVK1fivPPOw6ZN\nmxCJRHDJJZeA6Oi3RqNpBEcHWZvFlAZ+48aNoW3r1q2r+fgNGzZ4Mwg1Go2mcRQGXgdZp4U+ahqN\nprWYIg+eWtU5XEx7ow28RqNpLRxFmqR496f/Yo4W0v5oA6/RaFoMhQcvGv1cdu6W0uZoA6/RaFoL\nlUTj2EA8MfdraXO0gddoNC0Ffek50FIhuNFxYHz2H9jfOuBaN/pIaTSa1uKFp0F/8N3gNtsGTBN4\n7XnAimPnZ11tiDbwGo2m9XDs8G3DhPGuP1X3qtEo0QZeo9G0HoYZvG3bTJqJxYFKeX7W1Ibomawa\njaYlCMyOMCXf03GYRGOY2sA3gPbgNRpNayBKL6bke9oWM+7ag28IbeA1Gk1rIOa6yxKNYzOjH4sD\n5ZKeFFcn2sBrNJrWwBYMvNyk0HYA0wCJRFjjMdua27W1KdrAazSa1oAKmTNyvxk3iwaAlmkaQBt4\njUbTGogefFUy8DwPHnBlGm3g60EbeI1G0xqIGvykHnxMe/B1og28RqNpDcTipmrF+5NSyow/b1EQ\niQKW1uDrQRt4jUbTGtTy4F3j7k2Hi0TCHr5GiTbwGo2mNXAcoHcpyEc/FdTgeQ48JxL1DDy1bdAX\nn5njhbYP2sBrNJrWwLEBYoBEosGpTY4QYAVcD55JNHTX/8C57m/meKHtgzbwGo1mXqD7XwF96Tl/\nA29HEI0GNHiWAy958LZ7AlAN6NZ46F40Go1mXnC+/BmgkId5xz3uBrehWDQWlGjEDBqAGfiqG2Q1\npYpXTQDtwWs0mvlBbvvrOKxKVdDYAQRz4AEm0bgePIloH3UytIHXaDTzgzxcmxtyWaKRPHgSiYJy\nD19uSqYJoA28RqOZH1wD7/zHN9ht6ua6y3nuvBc8JxIBvfMm0OF9noHXzcfUaAOv0WjmB9fA059v\n9W8bpqvBV4KPk4OsAOgLzwBwDbvOi1eiDbxGo5kfVBIN9+AnDbIyr53E4v5rVIQTgsZDG3iNRjM/\nqIKshqvBW1Khk+jBm8yDRzTKTgoAUNW9aVRoA6/RaFoDR/TgJ8uDdwOrkajfv0Z78Eq0gddoNK2B\nV+gUA6wqaPaIu12SaLgsQyko//vQwblda5swZY7RbbfdhoceeghdXV248cYbAQD5fB5f+cpXMDIy\ngv7+fmzatAmpVAoAsHXrVmzfvh2maeJDH/oQzjrrrNndA41GszDgrQpME3AcOJ/8c1YEJefB82lO\njuN58M7mq/2CKY3HlB78unXrcOWVVwa2bdu2DWvWrMGWLVswMDCArVtZFHzv3r3YuXMnNm/ejCuu\nuAJ33nmnTl/SaDSTw423bfvyiwt96VlfuuFw3d1xwoFaTYApDfypp56KdDod2LZ7925ccMEFAIAL\nL7wQu3bt8raff/75ME0T/f39WL58OZ599tlZWLZGo2lnAo5fJMb+t6xQ6wHn2svd7BqVB2/7xh4A\nFfvJawBMU4PPZrPo7u4GAHR3dyObzQIARkdHsXTpUu9xvb29GB0dbcIyNRrNgkIcmh11i5VsC0RV\nmSrnwfMiKNsOevCFiVlYaHvTlDpfIk9Ar4OhoSEMDQ15twcHB5HJZJqxnKYSi8Vacl1zgd73xbfv\nc7XftFhANpEESkUQM4JMJoNKNIpqIol0JoMx4bHJeAzlWBwd7romCFAFkIjHQMtRlFceC+fQMNKg\nMGew9nb+zO+++27v74GBAQwMDACYpoHv7u7G2NiY939XVxcA5rEfOnTIe9zhw4fR29urfA1xEZxc\nLjed5cwqmUymJdc1F+h9X3z7Plf7TXPjnt5OwX77Tj4HUCf0/sV8Dg6l3nbHlWuK+TxQKAAnnQFE\nn8HE8AGQjq5pr6ldP/NMJoPBwUHlfXVJNJTSgGZ2zjnnYMeOHQCAHTt2YO3atQCAtWvX4te//jUs\ny8Lw8DAOHDiAE088cYbL12g0Cw6rCkSiIB/8ONDJ5F6WLaPwOW0nEGQlgxcDx53ECqW4fJPuACby\nc7T49mFKD37Lli3Ys2cPcrkcLr30UgwODmL9+vXYvHkztm/fjr6+PmzatAkAsHLlSpx33nnYtGkT\nIpEILrnkkmnJNxqNZuFCLQvOpz8MLD0K5IRTQH/5Q3ZHDQMva/MkmQJZfgwz/G6GDUl1gE7koK1N\nkCkN/MaNG5Xbr7rqKuX2DRs2YMOGDTNblUajWbhYbtWpGWHeNw+42lW1B29Vg1k0AHsez6JRNSjT\nANCVrBqNZq4RKlGZgXfTG+WCJk61CpiSqTIMP4vGMIOvo/HQBl6j0cwtNjfwDvPYPQ/eChU6AWCe\nuezBG64Hz4uguEevCaANvEajmVvEVgOi521ZvkSzarX/+Go17Nm77QzYaxjuiUIbeBlt4DUazdzi\nCK0GAh68L9GYV232H18tKzx4w/fgiRHU8jUe2sBrNJq5xesl4wZIuWRTU6JRePD8ebyVsPbglWgD\nr9FoZgQ9PAI60UCBkNgsTPS8RYlGpFoJNhsDBA/eDbIa2oNXoQ28RqOZEc5nL4Zz65fqf4ItSzTq\nLBrywcvYH6ogK9fuxSCrrTtLymgDr9FoZk6+AQ/eCXvwlFJ3NJ/vwRtvfjvQv5xNa5I9e8MMVrKK\nWr7GQxt4jUYzcxqpWBeyaIhhsCCp44QMPABmyKuVSfLgbZ0HPwnawGs0mrmFG2Lq/m8aflWqIh2S\nWtWwBh+oZNVZNLXQBl6j0cychjx4QaIBPHmF2hZIJBp8rGkC5RIbsC1iGG4vGl3JOhnawGs0mibQ\ngIHnGnz/CvY/N86KiU4wTKBUZL1m5O3UEYKsEV3JqkAbeI1GM3MaaeNo28DxJ8P47D+w2zxAqtLg\nuQcfVXj2Xi8aLdHUQht4jUYzK9CHdsK+7m8AAM5/fhP0hafZHY4NpDMgyRS7HYmyYibF0G1m4Iv+\n3FaO24uGOjaIyfPgtQcvow28RqOZOQoNng49BLz4DPv75edADx1kd9iSFNO7FDg8MolEU1JING4W\nDR8GYkZAtQcfQht4zYLB/shFcHbdN9/LWKQoNBpRbqlU2D/Aby/An9m3HHRkf+00yXIRRJZoDBP0\nsV3AI78BDJN58dqDD6ENvGZh8fzT872CBQudbCSeKouGz1ydyLNc9mqZ3bYtELEy9ajlwPD+2hKN\nbYc9eNMAcln2eoU8OzEUCyylUuOhDbxmYVEuzvcKFizOlz8Neni4/ie4xtr56/cDlbLvwTtSvntP\nHzB6KCzdAP5thQfPIcuPYY976nHQf9kMjY828JqFRbk03ytYuJQKLGWxXhyhN0y14o/U42P2ONEo\nG8tXS6IBQh48cQ0/+einQY4/2TsR0AOv1r++RYA28JoFBdUGfvawquyfAKW09uPFz6IqavBBKYZE\nIqCWpRy6TWp58ISZLrLyWHabP07VbngRow28ZmHRiIepUUJfehZ07HD4jqrF0hlFuMFXad8lwcBX\nfA3eay/AMaPMe1e1C+aPk9Ik6agrFS1b6b6G+zzVTNdFjDbwmoWF9uBnjHPt5XDuui18h8KD92QX\nK5yiSMtFkHPfzG4UJ/zHOpKnHokIEo2swbuPkyWac98M468+D8KDu54HL3n6ixxt4DWgzz3JUs4W\nAtrANwWSSgduU97tMWTgJ/HgyyWQ834XyHSx255EYwU1+AivZK2RRQOEJBrS2QNy1rn+Bv562oMP\noAUrDZw7bgQOD8O84575XsrM0Vk0M4LywGhnd/AOXkSkkmjMSE0Dj0QCiMXd56rz4Nnzp5Bo5DRJ\nGU+i0SZNRHvwiwQ6OgLnJ/+pvnOqH087oTX4GeFp73Ls1DXsoTxzywISSd94i5SKQMw38LTCNXhJ\niom4Bn5SiWYK6YX3i9cefABt4BcLB/eBPrBDfd9UP552Qhe6zAhamGB/yFdC/LjKHrxtAekMUCr6\n3r94XzQKZDrd59bIg48IzcZkieZoniUzhWcujv3TeGgDv1iwbSB7RH3fQvLg9Q+8IexP/Cno6Ih3\n2/Oy5VhGrWwZywJiMSCeCF89ufnupHsJu12pkQdvRlkhFBCscAVABs5m/0/Vb57LQHz9AJztP4Zz\nx02TP2+Bow38YsGxgfw4yzeWWUiZB9rA1w0dOcCyW/Lj/kbXy6alGgY+5MG7GTGpDmBCmsvKW/n2\nLAm8dijfPRJhhlkhr5Al/TD+8T+m3BfStwzG5dcEpCJ6709A//feKZ+7kJlRRGLr1q247777YBgG\nVq1ahcsuuwylUglf+cpXMDIygv7+fmzatAmpVKpZ69VMF274cln/B8dZKBKNbjhVN9Rx4Hzuo+yG\nYLQp97If+Q2cu/8FxuDF7mNcx0D24O0qM9DpDFCQetW4I/jIwGtBf7bVvyqQtXYzwnLmTfX3kHDv\nfCrSHf5VAn+fRc60PfiRkRH84he/wD/8wz/gxhtvhG3buP/++7Ft2zasWbMGW7ZswcDAALZu3drM\n9WqmC592M66QaRaKRKMzKEJQlTYOAC8/x4qETj4jGCCtVJixBkCf2eNvryXRcG88rfLgXYnmtLNg\nXP911uoA8LNrOJEIUCnNPEAajQf3RXW1usiYtoFPJpOIRCIolUqwbRuVSgW9vb3YvXs3LrjgAgDA\nhRdeiF27Fkh+dZvjSTMKHZ7PwZy07Lwd0AY+hPONLcCeh0Pb6QtPg5x0OtPPRVmjWgY63KBoqsN/\nwmQavGmCpDPhbpNiMDWVBrwAbgmIJ/3HRSIApTM38LGYXy3L17bImfYvoqOjA+985ztx2WWXIR6P\n48wzz8SZZ56JbDaL7m6WQ9vd3Y1sNtu0xWpmgOvF0eyRcOdubtgrFSBe5+VwK8Lb01I6dVBusVCc\nUKeOFgvMU8+PB2WNSoUZYwBICkZ4siyaSFTtwduOH0yNJwCrCmpVQcslGHHBg+fSzExjQdGYlmgk\npm3gDx48iB/96Ee49dZbkUqlcPPNN+O++8LDFmr90IaGhjA0NOTdHhwcRCaTme5yZo1YLNaS62qU\ncjSCIoB4uYiEtD95UFgAOuDAEO5rt33PGgYogEwqBTLDplPttu+1yDkO4pEIYtK+FKkD0tUNOzeG\nqGl499vUQXTFMageeBURy0KHu70ajWACQJQAKeG1KtEoKvE4IiuOgXP4YOC+McdGpqvLG82XTXeg\nwzRQsKqI9/Qi6j6WplPIAjCi0RkdcxqNIFuteK+RdRxQAB3JZF3fh3b+zO+++27v74GBAQwMDACY\ngYF/7rnncMopp6Cjg13GnXvuuXjqqafQ3d2NsbEx7/+uri7l88VFcHK5nPKx80kmk2nJdTWK414e\nl4cPoCrtj+0Gv/L794IIl87ttu/UDbDmjhwGScwssN9u+14Lu1xCMTeOsrQvTm6cySTEgDWe9e6P\nFSZgxZMwNv4trO/e6R0DOs4ybaqFQuC4OPkcQAFn9elwbr8B9nuF97Ft5AoFEIt9LjSRQn74IJyJ\nPByHoiSvidIZHXPqOEClgvFsFsQwmCwZjSF3cD+IXJmroF0/80wmg8HBQeV909bgV6xYgWeeeQaV\nSgWUUjz++ONYuXIlzjnnHOzYsQMAsGPHDqxdu3a6b6FpJrYNdHSCqoKs1Sq7PM6Ozf26mgmXmmQZ\nYTHDm3jJlIpMNonKGnyFZVXJkkvNIKvbXuCY44HRYfZ8jiPlu6c6mA5fLrH3bjLEMJgO71XMVlmR\nFdf+FyHT9uCPO+44XHDBBfjsZz8LwzBw3HHH4fd+7/dQKpWwefNmbN++HX19fdi0aVMz16uZLrbN\n0iNVxU62BSzpBx1X6PPthOOwghdV2fxiRdUBEnAzWZKuQZQ0+Gic6fPD+0FfeAbk+JNYiwJCwsfW\nYtWnxDBY/5rxMfZdotTPg+ek0kAxz6pkxSBrM4kngHIJNJ5ga0t1sAydRcqMhMqLLroIF110UWBb\nR0cHrrrqqhktSjML2DbQvQQY2R++r1plk+1rVbq2C9RhP3DtwftUqzVa+bJAJ43GA5knngff0Qkc\nfzLo0IMgx5/EXufo40BfeT74QmIHyM4e9h1a0s+MOzGY4eck3UyakpQm6b15E7K44gl2ArE7WFZO\nIgmUy1M/b4GiK1kXC44NkukCVIOTbQukt0+dI99OaA8+jKVo8Qv4XrTkwdNKGYjFQAgBWbPWPzlY\nFsgJpwATedDDfmsDniYJAOjq8b9Dju03AHMhqTTrdTNLEg0Atk+lkt+ZMpZY1C2ktYFfLNgW68td\nyIfz3a0q89ja3dOh1DXw2oP3qFbU+eDci5Y0eFQr/vSkSMSvDLaqzLNfehSQHfUfb1temiPp7Abl\ncRy53wzAJJocS5smqpTIZnjwCbcnDm9cFo9rA69ZBNiudxuJhfOiq1UgmWp/z5dqDz7EZBp8PBEu\ndKqU/cpm0xQ8eDcQH0/A+eYtoMP72HZb8uDHXOMvd4wEmERz5FBt770ZnUBdDZ578CSeXNRzerWB\nXyzwH6KyIMUCkinQdvd8HYd5bJY28B6WWoP3JJpoPNCBEZUKM/qAPysVYE5AlBl47HsZePVltl1s\n8bv0KODQQXe7o/Tg6eghtf6ezjQnBhRPsn2z3AKseHxRB1m1gV8scI8q3RHW4a0q867a3TBSyjTX\ndj9RNQnq2Oykp/Tgy0A8DtLVA/rAvaAH9rLnVCsgvPmcafoG3vXgeZ0E5cZYmMJE+paD8iC+Iw3W\nBphEc+SwMoOGvOOP/QHaM4DEE8xj503Q4kkt0WgWAVwTTWeAsVH24+dYFkgy2daGkVLqGvhY20s0\n1Kqq2zo3StUPkIbgBvv01wAnngaMuy1FeJok4A/iEB7ved88mCpm0fQvB4b3+9sliYYkO4AxtURj\nvHU9zGtune6e+iQSwSCr1uA1iwLe9S+ZgvO1a0C/c7t/H/fg29kwUjctLxpre6nJufZyOF/525m/\nEL8iU3nwliCtxBKeTMM0eO7BR8IafMw1zjyYKmfRFCdYqqVc5AQwDz6fm70MGgBIpFj/Hb5/8UT7\nJw/MAG3gFws2S1sjbgCNt4KllLpzNcNBVufQwfYxlg4FDBLOCgFAC3nQ3HiNJ7Ygr74EvPDUtJ5K\ny2V/rmqNOar86s2bnhQTdOqq7MHzLBrXYLqVcF5FtF31s2gIcV+rrA6y8iZmiVkqcgL8YiteYcvz\n4hcp2sAvFhzXg+fpabx8mwdfFemF43/1J6DfumWOFzpNqMMqLaPR0H44d9wE5/IPzNPCpomqh3sd\n0G/fBudTH2Y3vPYCkkQjeu9gAzWowoMnpulLRbydBV9XVpBoREMejTOZRxVkTbO+VWQ2PfiuHnby\n4fsY0x68Zh6gTz42t29oW+wHF5UMPM82iEaBscOgr7wQXOeu++d2ndPFoSyoF42FgsXEHfqsHHzR\nqtjTNPDcewcC/WMopf53TjLwLNPENYLVGlk0VtXv2w4wL1n1WrwnuyrI2uE2HpzFATOks4fJR15Q\nOAGqPXjNXELLZTg3fX5uB2zYDvO0uAfPv/RWlXn2UZYf7/zgO95TyNKj2qenNrUBYrA8fzmW0LOU\n/V8szP26pgud5slIHFkoevD7XoFz0+fdx/iZLwB8WQXuyL6IkAfvfv7UqrLsGup78Ezeqwb7uPOe\n7KogKz8RzGash1fTBiQa7cFr5hLb/eHN5fxQLsXIFYS8QpFvF1IoCddM2wHPgw9LNAEvtB0gM/hZ\nitlR/Dg89Tjoj1m/cOrYCq877htB0YOPiEFW90qPyy5WFXTHT0Ar5aDkwmMgqiCry6wWHnX1sCZp\nTw/5QVadB6+ZU6r+pfNcQR0bxBQkGg5PJ+PbhSIoPuw4kFLZqlDqavAKD14st28HzBn8LG3JwPMp\nV//7P2xbqeRftXECHrxYyRpOkyQXvR/GFTewx/7bP7EURHEodqy2B++hmjDVLBJJ4JQ1bH+5gS9p\nA6+ZS7gBmkv5g+fBqzz4iODBv/oSnHtcmYZLSO3QT9vtXjipB98uaaCydj0FlFI4X/8KnF33B4Oz\nsiEH2OBrPmaPE0+AHngVzs+3uVk0fIReOE2SpNKs6RinUg4aeN6dUm4VLJKcvStDQgjI2jcC+XEQ\nU3vw2sDPB9wAzWUKIs+iUXnwvJ+3C+U6PDeMqg6UrQZ1/CBru3vwNaSNmkzkQHf+EvQX9wQlGqsK\nnHQ6DLGAqFhQSzSPPgC685eAYfrpk6aQJslbFfAlfvI61ryuUg7O8eUevCpNEoBxwzdg/MVfN7Z/\njZJMsSsLr9mY1uA1c8l8efCmEfDcKG8lW2PYMbUs9oOVe9e0Ik7tNEnfg2+TgHGDHjyG9wNHHwvs\nfTEYSLaqQCQGsmyl72UXC+ogq22zK7WYkOGikGg8VhzLjnk56MGzQrOKupskANK9xJvROlt4rx+J\n+r1pFikfT5r0AAAgAElEQVTawM8H3MDPpQdvS3nwfB2WFfbqxedkutvEg2dBVhKNgco9daw2C7I2\n6MHT4f0gK1axls9CmiStVr2+MsbNdwGnnqn04An3wAt5L+4CQGpVIMk6PB1Slmj4yLxJgqyzDpeA\nTN+Dn9OMtRZCG/j5gBsa98fj/OIHsK+6bHbfk+fB8x9pJMp+oCqdlv/4bQvo7AY9uBf2R4KTu1oO\nt1UBS5OUPXi1REOH98H+yEWgQw/P0SLrpFEP/tBB1skxnQkWNQleN4nHQdIZ0JJCounqBVYez4Kf\nYo56qF2w8Jyoe5wr0vCOqNuumaflzgdJt1I2GmVyk2m2T/ylyWgDPx9Ugz1C6G8fBdxufrOGWNAE\nsLLxSiXgmZl33APjM18Gjj2Rrcu2mdHYP8traxCq+rEGJBqpVUGtIGueSU+Ut7htFRr1fKsV5kW7\nlaL+9qBujmTKlWiCJ3Wy+lQYm77I/hYlmkgEqFZ8KU94LWIYzHAWJsIefLkEWinNn4FPuBLNkqPc\n24s3F14b+PlADrJGIrUf2yysKhCN+K1geXMx2TMzTN/jtS2Qjk6vNWwrXObSagXOZX+kuINOHmQl\nRlii4d5pq8UYGvXgXU2dpDPB7bJuzg28LLcAvucelTT4XBbOjZ/zWxWImMLVoPA69GdbQb+xZd4l\nGtK/nN2OLd5MGm3g5wEqBVmJLJHMBpY7Wi0SdXt0uNkOshEwI34mhm0BHRlg1J3B2QoatldZKQVM\npwqyJpLhxmnznCVELQv0yOHwHY16vjznXPbg5c82kWJpkpYVluV4/5mEEADlj3n1pRrBeHbCJ4QI\nr+MG5auV6VfjzhTezKxvGft/EefCawM/H8ge/JwYeNdT5znvMZavTC3LLyEHWKaN68FTy2aBu8PD\n7L5KC+iY3LDLHhl1m1vV8uDjCXXTLWDePHj60/+E8+kPh+9otJLVK8uXujRaaomG2tJnDvhDO0S5\nhX8vO3vUBl5xRUdOOAU47SyQ33kTyGmvaWw/mgQxTeDkM4Cl/WzDIs6FnwPLouFQSoGnhzwDRJ98\nFOSM1/rVhi8/D7LqhNl5c7ElQSTq9wyRf7iSRIN0xi90qpYBdIReek5xjTL9zQ7g9NewFEAg6MHL\nVxq2xXTYkOF3X+uZPaC5LEima5YXLyEOrxZxPXg6vN+XGSbDHbrBpzKBEFZ9XK0GJZeARBP86Xte\neES4euCPyXQCI/vDVxYqA3/aWTBPO2vqNc8y5qe+5N/gc1oXIdqDn0sOHYSz+Wogz6bn0J9tBS0V\nvR+Oc80sFoBwDTUqGHieJilr8J5E4wZZOa3gwXOj/J3bQX+21d/OWxWomo1ZFvNuVYa/IwMM7wPd\n9u1ZXriCKbpb0vt+Xt/ruEM3jPf8OYyPX+kP6pADo8mUm0WjyJziiLq5YQDHn+z1MApIMUD7ZKZo\nA6+ZDZxd9zEDzilMALYF+sRDwoOcuWk65rUkiLEffSzGOgeGNHjmwVNK3SCrYOBn6QdNX3wG9NWX\n6nuwILPQkQPCi4iVrIo0yUTYwFPL8nOmlx41naXPjFoG3nFA3vy2mjEP+sgDcP7nZ/4GHmQ9ehXI\na17nX8XIgVEviybswXOI4KUTQmD80YdZtlGNYjh09U66i62AN6d1EaIN/CxCb78BdOd2f0PRlTqe\ne9LfZttz4wlxQ77saBh/dikI7xki/9hNkxke3tslJUgys+TB09/sAH3w1/U9WNTR+YBnQOpFo5Bi\nFAYelgVy/CnAilXTW/hMqWXgbcuNGagNvPPt20D//3/0jZbc2Ev04OUga60sGo6c+ZJIsBhFrUyv\n7tY38KxbpjbwmtmAD0YAmAcva6q2xTzpWYQ6NpMwTBPENEEGzvazaGQvz3B7gNsW02N5leOxJ7oa\n/CxQLLDsDnHNw/vhqCQKWzB641lvElEwTbIaTOm0bdbSVm5VYFtAPA7y2vNmb98mo6YH7waFFSd+\neugg29eTB4Cnn2DbbCuYiRVxPfhaaZJyqwIRWWePJ5kHX6Pamaw8tubutQyJpDbwmlki5xt4WiyA\nrD4NxsYv+NKAbQHVCsh7/hwgxuy05nXT4kLpbNVKuNTcdDV43trgqKNhfOEWloI3Wx58cSI0jIO+\n9CzovT9V7wtnaT8w4hYpuUFWYppsbqgoe3kescKz58NO5iO+UNOD5wZe0Tvn8AjQvxykbxno2Kj/\neFMKjlqWutBJVckqEjLwiXD3SRfjS7eD/OlfTrKDLYL24KdHoVDAzTffjE2bNuHyyy/HM888g3w+\nj2uvvRYbN27Eddddh0KhsSk61Lbh3HnTTJY179g3Xgnnh98FANCs4MEX80AqzTJnuFG1LaBSBjnu\nRFZiPcOpQ5RSOLffEPRg5XQ5wO8ZUpZKzU2TlZm7/eMJISBHH6tOP2wWpWJ4v0tFNrhBztQQDXzf\ncmBkH/tbbE8rj+3jGrwq+MprAmrsm33DFaD7Xp7GTtVBrTxx2wbiydCwbADMQCdS7j4KLS9kD75a\nZVOYAh58ml1FVio1PXiikmj4a8qP7Vvm97FpZXSQdXp84xvfwNlnn43NmzfjhhtuwNFHH41t27Zh\nzZo12LJlCwYGBrB169apX0ikUgZ94N72mp8p89TjoLvdWaYV4dK/UPA9d97hjmvwsTjLWJlpTrZV\nBd11X1C/VeUw854h5WLQwPMsGsloiIOZm05hgmV3iJSKLGaRl46H0IGT9C8HHXZ1eC7RAOFiJ9ti\n+fzyScTNPvGOhYqnh0B/9d/T2Kmp4S0UQldtXt5+2MDT4gRIMh3MFnLTJD3iCfa9k7No4gmgfzno\nc7+t34PnjshcVFvPFvx4LEKmbeALhQKefPJJrFu3DgBgmiZSqRR2796NCy64AABw4YUXYteuXY29\nMP8Bt/sHwnOcxR9pscAukwHgdLcIxLaYRxWNsYDmTKsquacieixVxSU291pLJb/yD/CyaGDZQS+v\nhgdv/9OXfSM7XVQePL89vC+4PeDBL2ONtgA/Dx4Ip0raFtDVAyofW7vKqnujsdD3jVLqNVije1+c\nxk7VAf+MZHnIcWMGKg++WGRXeuJJjI9j5MQT7MStaC9ATj0TeOrxmgbbXH1q8PHco5/L8ZLNRnvw\njTM8PIxMJoNbb70Vn/nMZ/DP//zPKJfLyGaz6O7uBgB0d3cjm8029sL8i9TuHwj3PMWe765EAwDm\npVcAq04QPPhYc76I3FCJBkvuNwN4ujMtl4IzNXmhk2w0askYe18KBpKng0KD51c4dEQ6eYhB1mTK\nH/8me/Dlkn8VaNsgnd3hqyPX8yWxWKiBmbPvlZnsUX3wz1qV9aMIslJKgfy4L9GIHrwpefDlsvrK\njae9mmHJxbzjHsR/9w/Va21nh2sRG/hpX3c5joMXXngBF198MVavXo1//dd/xbZt20KPCxVHuAwN\nDWFoaMi7PTg4iEwmA6dcwDiAdMSEmckonzuXxGIxZBpYB6UU3iktGoNJHe/5E9UKor1LEHNv56Ix\nJONxTFQr6OjpRSGVRtw0EJ3Bftu5I8gBSEcj3vGzx2KYiMcD+1HOdMLe78C2qkj29CLi3kcpRZY6\nSCfiKESj3nOK6Q4QAiSktWUrJSRj0RmteaxUBIlEAusr2BaqmS7ExkaRFLZXolEUAMT/4I9gdnWj\n6jhIZzKoJuIoR6LoyGQwHk/A+Pc7EPvddyD2xt/HmG0jtWwFCqVC4D2KhgGSTsPs6kbZcdAh3Gfv\n/h/v7wgQuK9Z5KwqbAAdsSgM4fXHbAep3l4UHSew3soD96Jwz78h8b6LAdMEHc8imckgRx0kM53e\nZzjRkUHUAMrUQbKr29sOAKWODEoAEh1pxBX7pPq+jwEg1UpDv4NWotrdg7JtTfkZNvpbbyXuvvtu\n7++BgQEMDAwAmIGB7+3txZIlS7B69WoAwOtf/3ps27YN3d3dGBsb8/7v6lKXf4uL4ORyOVDX458Y\nPQyS7pzu8ppGJpNBLle/Lk7FS9mOTtjlsvd8ezwLm5go89vEQGE8C1qcQN6mcEwTTnYMpQbeL/T+\no0wamhgdBaoWSG8faHYMjmEG9sNxKDAxAVrIo+BQEPE9TRMTY2MAMbznOMQExrOoSmujhQKK4+PT\nXjO1WJCZFozg+nLjoMecgMreF2EFtudAzr0A1nv+P1Qf2wWnMMG+NxMTcBwHuVwOjhmBc+gg7OGD\n7FjbFgpmDE5uPPgehQIQT4BYNpxDwxg/NOJdzUReedF7nFUuNfQdqBfbbYCVf/4ZkDiT7qjjANRB\nwbLhlMsYf+kFkN6lbL1H2GdbNkzAATCRh5XLwa5UUCiXvc/QMSOwxo6AlkooVCqBz9ax2VVNybJR\nUexTre87LRVn5RjMBdR2vO/JZDT6W28VMpkMBgcHlfdNW6Lp7u7GkiVLsG8f00gff/xxrFy5Euec\ncw527NgBANixYwfWrl3b2Au3u0RjWX7/j+5eSaIRNHjAH6hQKgGJBAtkzrRvNb+ULpfgfOZi0Bee\nYVqslDXhjVYrSVk0AJNpKuWgrJMIX+ZSx2FNnGbSZTKfZQHQcimQMUNLRZDVp4C+/Hzw8WJhlnjp\nLcpQ0ShQyAPlIgtgOg7Q2QUU8lJ+vKvBx+LA3hfgfH2zf9dBQfuXm5Q1C/e4OTdfJaxJmLxlVeF8\n5i9AD7wKACAdrsMj99yR0yS5Bq+SaPjtRhvctXM/9Vi8vSWmGTCjLJoPf/jDuOWWW/CpT30KL730\nEt7znvdg/fr1ePzxx7Fx40Y88cQTWL9+fd2vRykFfXYPu9GggafPP9XQ42cNwQCR1acGjUMhH5wo\nb0bYtnicBbNqfBGpWPk6Fe7z6SjrAEmffIytSZkmWXHTJKUuhAabgENkoyG3XK2UmfY9k9mywweA\no1a41ZfCiaJUBDlpAMhlQXm7YiCYwy0cL1rIg6Tcy+toDJiYYOstl4FYgqULRmO+Zg/42Sf8hCwE\nYZ0DrwLdS9zHCe0RDuwNB2uni+rE6Aizc/n9XsaVu45cVtLgpTTJeJLtuyo9lk94aiQrxozMX+vf\nZhBfvHnwM8p9Ou644/D3f//3oe1XXXWV4tF1cGAv6Le+xv5ucFCu8/efgrH5Lt/LmS94X5A//jDI\nwGtBd//Kv69Y8IKsAJiOyoNmgNLA04k8nC9/GuYd99T3/vz5XGJ45XngmONrpEmWw2mSADMw8vg2\n1fBi11jSahXqSMvU0JH9IH3LQfe/4mcT8ddOpoBVq4FXXwZ6+9h2sZe5eLwm8n4/9EiUGaRyia2Z\n53J3dLLCM34VJebBAywQy9c1dhjGpZ8DHXoQ9OEHvO3OVZcBZ78e5mWfm+YeC1SrIL93Eeh/C58t\nN9aRqL9vvIOm+z95w+8DLzwFp1aaZCLB8t1VQzq4wW/EwMfjQKFNBpar0B58iyCki9UrVVBK4fz6\nF/zGbKyqMdwfqPHWDazNKs91ppRliySlgQr5nL9NFe3n2SQKmYA+tgu0EPQmeX8SuvdFoKuXTWNS\nXap7HnxZYeAjoBM5EKEPjbJhk9cLZSYe/H7WvoGfcDilIkvfTCSDvbztatCD52uYyPmdL/lJolwM\nSlBdPcGMH54H756e6MF9XlETLZeBE04GeeNbw/vH2yfPFKsK8s4/AQA43/830MMjwmjFmPc+9Ff/\nzYqebBvkdReALOkLNlWrKdGE02O9widFFk1NxKvOdiQWB8ZGQR9/cL5X0nScXfdNen9rGXjxh1Sv\nB1+cYOPBgHAXwflAlBDMqDCgosJ6wQg/OGKaLO0tWduD9yQFRYqic8s1oPf+LLiRP//ZPSBrzgHG\naxh4PnknEglKMQCTaCZyIOLJSNXPw1vbTDT4HDsRxqRc9DIz8CSeABWlIfH4xtUePA+U0nIpWKnb\n2Q0IlcWUa/D9y0DOfTPw8nNwNl/NAuW27U+/kk+uzZIrrKrX64f+8N9Bf/Vf/hVK1Jes6H0/B154\nJhxnmEqiqVbCEs00PHjjb66FcfWWae1iSxBjhWzOV7843ytpOvT2Gya9v7UMvGgoFB48PXQQzg//\nPbgx4JG1gIEXvalIxM/bLk6EPSEzwozsJBKNlx9eqxmWXCou5MGTN7wFyI6FS9YBZlBz42HvHWAS\nTT4HIspJ8URQvwb82zM57vzkI/eD8Tz4RPBkz0cPAu7xcp8jevD8xFRyJRo3xkC6euB8fTMoP6a2\nDRKJgBgmyOtZwR5SHewYxuMsxTcSCe9fA1XWtFyC8x/fYH8/tsvzuCjv2CkYZjr0sB/DkT+vRNL9\nbnEDXduDJ4kEqwxW9ZCZRpCV9C0DOeb4uh/fcsQU3/FFQmsZePFSXOHB01/+EPT7/xbcKPZ6aRUP\nnv94TMH7Uxn4SAQ0P+57yrF4eLQYN0ZStaNX3h6TDDz3snuXAqtPYyeGYoF5hCLRuFp/BwQPXliv\nyoOXg3/TgXvkQtCQOrbbBC3hav+iRBMOslJKQSfyIFyD5yfMcpE9l2vwZoS9Lu8tI14N8M+gI8NO\njvy4mNHw/jXSRmPoYdCfbwV1HDi33+h7XO7QDa9O5OQBVrXL1yQbYMcJFp9NFmTtXsIqfA0DRB7g\nPR0Nvs1pKKDcRoT6NCloKQMfuBRXRb3HwiPO6PgR/0ZLePCigWe91aljMz1VlDz4/fmc3ypA9Ejh\nen9bvsBuyBINr5SV97nMWg+QM9Yy45HpZh0IQx68e2JISBk0ANPg85JEo4gP0CZINN7VRUzw4Esl\nlvliGF72jvOtr4E+uss1jMzIEcN0U02rzIPnMYMUN/Al9p3yjLVrHPlVjvhZ8X1NuwZe7MGiGvBd\n7/4942aFFfIAFWokpHF65NSz2Im4XAx3/gTYPoont8nSJPuXA/teUfd8jyw+A79gqSN9t7U+ZdFr\nVxh45QT6bAsaeJ4myS/xbbu2RFMseAaIxONwAs3JhGCe3K+En9jk4zQ6AvLeD4G8/kJ2O5VmueYJ\n6eQinlRkDIN58AGJpnYWzcw8eC7RCEFWLs8AzPvOjzMd2nJL+MU1c1mrUvY99YRv4FEugnCJZsMH\nWfB5Qjg5cgPvPoe4Ofn+SSGi8OAb6MvC20Vnx1iXzsB+s/c2vvJtIJli7ZGPHFYbZtsKXh26Hjyf\nvBXw4Dvc4L5qndMJsmpakzpmGLSUBx8wVioP/vBweFvLafBSDxc30EqLhaDBBNjjSgXfk4tL7YJF\nwyJ/mONuQwQpN50O7wdZeRwIN5DxBGg+PJHHC6yqvFGTSTSBE1I8Hs6D93qpzESDF1IV+UmsLBh4\nUaJZ0ufq44KslHCPWaXMThJ8G8BOFIKxJpEoyNKj/Dx2Mb2Qe/CRiCTRuCMMxePUiAfPT9jjR4LP\nE3LUSTrDrka6ulnOv8q7tqzgelNp1k55130seC94/OzKrUudVaY9+IVDHTMMWsvAC0E8MSWPOjZL\nBzxyyMtZZtsddunLcQ0NpXR2BmfUg5yaxi/xlRKN68HzfVrSHzyJiZdg8ofpVawWg/s6sj84NSrO\nR67V8NhU3rdhhoOsEebJBnS/UtEfCDFdXA/eq6zlr+t58ElQfhLv6GIGW/Tgl/SxY1b1c+i9gHK5\n5L6WcEJIdwgevHC1lUqDfOAytk0YghK4CuM0osGXy0Aqza4+xewbVY56Zw8wOhL0xk0TOOO1ggfv\nylOZLpAL3g4ceJUFXGVq1YMsQg1+wVLHfIbWMvA1PHjnYxtAf/o94OQzAMG+OH/7V8GpP+6QB3rv\nT+B8bMNsr1aNarqOXWUSjcqDFz3PJf1AdhSUe8TiFUloWIV7MnvkAW9fabnMDEpG6P/DR67VMvCq\nq55oFMhnAwaetY0lQeNWKjJDMpMrJ1v04MMSDYkn/KCoY4OK+jiEnvCVin+i5MarWnUlMCHOkM74\nFauytMFbJVfKIOJJwYwGu1g2YuArZWD5MaDfvcNdsPuTU6Sukq4eNpKPr5+fWCJuuq1tBaWVVAdz\ncFTj9OTvGifaeBaNpkVpOw9+EomG7vgJyNmvYwMtuBd5YG/wMXzEmdhHZK6xJKNhmMDoIbcPjUKD\nB/xKStNkFZu8x7ltsVmorz0/NLfVm/YzckB4bzY4JHC5zocm15ipqQzUZLoBy4IhD1Q2zaC3Xioy\ngzmTXi1VUYNXePDxJNOlAW/6VcCD71vOiqWqFf9EyU+wsTh7bloYHJ7qAH3xaXb1J39W/Cpl5ACI\nmFrnXoV5V0qNXB1WyiBr1vrxFNPw9zsqed59y4D9e8NxATPCCt1ULZwL+fDruPupZJFKNMaW74Sv\noNud9tPgJwmyFidATl7Dvvy1Lk240ZvPvFfZKzxyCM5X/479wGWvysuIEH6gvX3AEbf3SrXq9SsP\nfZjVqt/bm6OatRlPTOHBh40z6WIl+0Q28HJGSbnI1tAsD56nSRYLfgwhkfRPKlbYwJMVq0Bffi7Y\nd2XVCcAJpwCJBOvJk/aPE1m1Gnh6CHj1pWBWCuAGVG3Qf78DzpgQ0BdnnAKNDWWplEDWnMPy7PtX\n+NsVPfrJUSuA/a/4stEffRjk3e/3rwLl9UbjoIUJ5ck7FO/x9mVxGnhlNlS703YePP8BRaLqIGvP\n0knnZ3qGZh7nRFLbCufdTuTCbQoAwdMUDHwi5QczeaGKaii0VQXkdsqyRwowD5g6jWnwnT0sVS8t\nnUAkLZqWiuwxMwmyeh68O4DkxWfY8eIasuh9u/JJ4PM9ZQ2bUESpl/NNOntgXnEDO7mNjvj58QDI\nsauB1aey75d0vIhpei0h7Kf9WQWgFHjpWfYZpDqYNy8ZeVrIe10fA1TKQDoD4+JNMK69DaCUXX2p\nqovd2AmPIRhveAuMd/6Jb5zkz3cmHvxik2gWooFvNw3ekyFiMc/AB3qwpDvYZbhk7MiffpQVd3ge\nvFv+PR9zXWUvy4UeHvG9Ug4P5EUFjzQh9HzhbX5jipmh1SrIsatBfudNwnsrJjfxbBDFmoxLPwvj\nkr8J70NnN9DVHc7FNiNBLdrV4OlMgqz8JNazFBjeB+e6v2HGlBso8SRjV8MefCrNJCUV8QSTx+QT\nFS8SUnnwbqFZ+pPX+dvHx+B87Vp2FRWLAf3LWDBbgP7objhXXRpegxyw5WMZVZ0ee5b66xDhLS/k\nKzTer0Y1EPv33w3yxx8ObzcMFpxdZAaejx6ct+SL2aBanrJPUEsZeB4kZVWWfF6lL00Qw3A9eHcb\n/+H8zptA1r7RN4Jco5cHOc8FlqSTcva+EJaOuOERPXjeKArw2/wqZobCqgJL+kA+8knAMNiJUOXB\n82Chygi89nwQPhtW3N7Vw7x4GVPKJimXZi7RuFIFOf01oA/tBADQXNY/NuJJ0ZNopOOoyuUH/OCq\n7M1GY+x95eNlml775Og554Vfj3e77Fse7AAJeN0uqdyITF5vZzdL7VVl0fArPPn748YGQqP5ojF2\nslBJNH3LWMM7BcYHLgtXuC4GFpgXTysVkIGzJ31Ma33KogdfKbsDJSTDJnbR44YxkWKl+Hw7N/TN\n6tvdCGK/EADGJ/6WlaGXiiFDRMT2thwx75sX4mS6WA9wEZ5eSIg/NV6pwbvZKLUkGhWnnAHj3X8W\n3s4HlHBKRXYikPPjG8E1dKRvmf9Zjx7yG4eJVxG2HU6TBIInSBF+cgt58G6jLvmKx4y4bZJreLcV\nZvyNC/8A9IF7pVJxd51C4J86jhtMFY59Vw+QPcKygSRpxfuM5Px1HuS1g4NbSCxeW6LRhFlgBl5M\nDa5Faxl4UYbgP0K5N4uoR7uGlESjfioZ4KcQbv+R8m2cf79j9i7VJA+erDkHpMsNVsqGyfPghe3C\nYA1aZWX8Xipg4H0ED5D3sJEDvPz1gNoavAKS6gA547XhOyLRUBYNWdLv5ZXTYsFrrFU3okzCjfno\nSFj/B5RBVgC1v+RyGwIXEomxVFTZIzZNZuBVeeWA288/BXLaWeG4CL+KEQvv3G6OordMOntYew23\npYQSWY7jw1Dc5mge/MqukZP3YsatSnYeuBfOnTex4Hw7I6YG16A1DTylfml8pQws6Ydxza3sPlGi\nSXeAfGgj+1ucgGNVgUwX6FNPhN6C2jboL37AvMTZoFQIB1O5kZUbe3HpQDRQiUSwBUAkwoJvsoEX\n0+x4ub7Cg/cyYWp5pY0ge/DlEis04sVmLz4D+vOtjb2meKLix6dSDgZXOZUSQIxwELuWROPmz4di\nCVF3mIZcs2BG2D5Jkodx9RYgEgU9cshvgyAWTPH9gNQbSSUndbkti4UulzJUNvBcopHlP/7j1h58\nffAroR9+F3T/XjbtrJ1RtT+RaDED7xrovmWuFu0W7nR2gyxbye6LCi11qxWQk05ztwvZNVWLeVkq\nuC4v5o/PEOee78DZuZ3dKOTDxokbrpAH7z4uoMELPV+4Ttu3DDg8HLzqCHnw5WBvFQ6vam2Glydo\n8JRSts7ePmAix27XyrWvAXWcoBd9/Mn+nbJuvqSf6dsqj6WmB2+yOgLV40uKpl5cg5cLkI45nmnn\nh4ZBEkJTskLYwAe6m1bK4fV29rC2BaVSsMJWROnBW8o0ScC9gtVMjRlhv/uJHMhrXjc/Eu40oKMj\nsLcoetlPKGyNRIsZ+DKMv/0qjI9/3g82ylkTHZ1szB3gGkD3B5RM+X1crCrLOVelEbmPCUkeM4D+\n4Dug3/82u5HPhTXfeI3GXjxXOaDBC10b3SAricbY/vH9Brwcee91y2V1Bo83V7QJkpTY375SYQYy\nkWTNySplr0pTNX1KibtebmSNj38eOPv17D5hfJ5x810g7/6zYN8ekRqXqcYVN8L4VHikJKJR9j2Q\njxWvsVDliKc7WEuElOjBS20yepb6TeD4Nlnu4d9TsaGZTMiDd6UxWYLTHnxjRKKgIweApUexNFzx\nCqyVefEZ4IkHfbvHmVDYGokWM/BVoLMLJB73tWhZc+0SpvJYQv+RdAZU7BKYTKmzO7iBv+tWOHfe\nFLqb5rKwv3Zt42vnczMncoG8awC+pyYHWY1wHnwgTVL0yKVpRIE0u4BEI3mfXP+tJWM0gtjfXmwI\nlpQkm7IAACAASURBVMqwL5s8JHoqxOEdYN00vQIdQeYimU4WUCyFvWsAICecqnx5kkqz75JMNOa1\n5Q3gtQhQeMTpDOjhYV+iSWWCBt62gGVHg+74iZ8Przrh8r76FcWwc45cVxCJsLbDTw8F5T9u2LUH\nXx+RCDsBpzPhE3QLQ7mc/HRQcg7MQKhBaxn4ilBuHk8AlVKo9wibq+l6SWKGgviBVStMm6rlwbs/\nbPrAvd5malmsAGV4P/Dck42vnXu2E3n24xeZpHrQ+OetIGJKYjwpTEoSDLabfeGttypMaYrF2dld\nJdHw91itNoINwXu1AMF2AvzY8+NdrDM91aqGYwPuJK+Qbh5xM1xUBv6t62H887Z692ISD14YpiET\nT7B5BK6BJek0qFjtalVBzn49q6A95Mp/qpgIn21bmsSDlzPHzAj7Xp5xDqvE5WgPvjHMCJA9ApLu\nCDqErY6rNlA5blhoNw/eEmZI1vLgOwVDJ6YJpTN+Ngf34FUVlqUCq34EgJX+GDLnusvhXPmXLAtC\nVUU75dpdz1Z12cQrLGWjBcGL54ij8YRydtLZHR5uwq9ejjoa9F82w9m5XTm9JvQe00XMVOKdJAE/\n4MiPd70GXpE6GhrszeH6uCrnm5DG8rojUU+DD75HbQ+exOLse8c96OXHgH7ndv8BPN2ztw/Oli+C\nPvgr9Qk3wWIstFwMNjTjnHUuyGvPl9YbAQp5ELGJHOBfTSi+VxoFkQj7fbebB7/vZeDE04PyH9CG\nGrxDvR8EiSdAK6VQaTrp6gEdH2ODkSH0NU93+NkcllXTg6fFAki6A8aVNwHUYW2IAdagbHSEtaat\nVrzXrxsuT6iCrI38ANOZ4H5wY9PZE5ZoeEn7+y4GefPbgLHDs1uhKA6/ENP8Yiwg7mV/jNQZ3zh0\nkOmhIrXkHbO2B98w0Riby1rTg1e8B8855w3A3roBIIYfb+Cfh/vZ08MjaomGD8QuqyUa868+D+Oi\nPw1ujETczDJJ4nOPP32pzdP95opIBDR7hH1GgkPYytBSEXjxWZC1bwj+/gF3ilk7efDRqO/l1vLg\nOzpZ0Y+c5J/q8LM5qlU2bq5aDc8tLLppjOkM8OpLcDa+n23nj8u6YwHr9OK916dgg45VqUsNGXjB\nsxAbUvEKSI7cyyQWd8vWZ8/AE9P02xJILX1ppeR58M5tX67r9ejIfpC+5YFt5MJ3gLzlXeEHmxFm\n/JuhN0en8uAVx5BXTXOJhpBggzTPwLs/uFRaGRPxguiTBVklRCkudN8fDoKct66u11n0uL95pDNA\nphPIjdU113Re2fsCsOIYVgsje/CqBoYSrWXgQyX7Jb883HuM24tGqhAksbifzWFV2fMNEs4eKRaY\nFyZ42WzqDmWGeb9biSi3K375OfWXgRdLnDwA/PYxti45q6MRA59KA6UCS4kUjbicdy1m0QBsf2fZ\nwHvtdJ98DHTvC94oPO+zqqP5UYBhaTgJAON33gTjTz6ifm+gOR58JMakuhoevLLqlxtXOcjJazIs\nCyQa8b+rPPNF1TqiXAwPIpkMLsUouqQa6z8A4/y31Pc6ixxy2lmuhNrB0l3jSd+ha1VKRWYTOqUY\nnGO7tmby5InWMvARlYGXPHjuNVVKfkCWk+lmgbBqhf3AIjG/vw1nIscOmOhlj4+xA9jVA/rKC2yb\nIBXQcgnO33+KTduRcP7jG8A554OccAro808pByaT17we5O3vresQEMP0x9AJRpykM76cBIRL4LmE\nMJuzNk2mYTo3fZ6lhXoFXG6aplXxWhjX1egtewSQWxJP9t5A0yQaMdgeeo9aQVYgaODFMYP8ZMwd\nCt7rRiXRlEvsKlTuBloL/p7NyIRaxJCzzwM5980gx5/CNqgKCFsNLuX1HQWMHPBlUNcuThV7ai0D\nr/Lgq5XgF5sPZxazODj9y5n+6w1yjoYDrePMqASMcPYIy1Lp6gEOuilurgdv73uFNZayLCa/CHB9\nzPjQJ5h0NHZYmZNNunthvPfP6z8OXB8U54/KmqEQZAXgH6NZ9uDpEw+xv23b39cYy3hCtQryht93\nT8J1NCBTDb2Y5L3Z/zM38IRLNLU0+Mk8eHF4uTikhMsxvBitWgW1LJBQ64g4O7mUCuz7Vg/awDcF\n0t0L4yOfZH33AXULkDmA/vZR0Ed3gebGw/c98puAc0RLJZB4AiTVARx9LPCM28Z6skI5gdYy8OKP\nPZ5kRkOuBuRek8LAk/7lLOJ86CAroRerW11odsxLSyQXvJ31Bne1LMLbtXYv8frBFG65BnTbXWx7\nQcoOeeoJ4LgT2eVeOsPmbspXFdPBbSkbSBFNS3nXsgYfnwMDb5rAvld8WcUbFi6cjKMxPy9/Cqit\nMIA139u9kmmGBu/FK6TX4umziiu1mhJNwIOPgLx1PbBspbqZGYSMpq7e+jN/+EllHuccLEi6ewOy\nx1zh3HwVnK9dA3rPvwW2U0rh/OOXgnOZy76UR1afCvrS8+72+mI4MzbwjuPgM5/5DK6//noAQD6f\nx7XXXouNGzfiuuuuQ0E2ipMRMPBuYUtZkmh4N8kaHjzduQNYthKko7O2B88nFr1+HQuuVt25qH3L\nvNfhEg1Z0s+2dS8JtR+mQw+BDLCmXCTdweShKZr/1EU6wypiRXlK1fskIsUggFnOoomyqxgeSPRq\nFtz2zlw2iiXqMvDKnug133sS77pR4gk2BEV2EPhVnaqNhcqDF/si8TTJdIblw1craomG07Ok/vWm\ntAc/KyTT9af0NolAHE820NxZEBv6idlWfcv9DLVycW4M/I9//GMcffTR3u1t27ZhzZo12LJlCwYG\nBrB1awPNp8SgaTwJWi6CVqUhy4YBmAYr7JENfGcPsPcFkOXHuK+nmP6UPeL3Oo+yvG5aqbCxeG6e\nMcl0+fnYjgPytg0gJ53OUusE6OgIyHJ339MZJtE0oeiEpNKgxQlJonG9ev4FUWXRALPvwbsTith7\nChJNyIOvIwtJ1b++FtywNsOD97J/wmmKxvX/AmPjF8LPicWZARffX2xdLX4egX7z4fUaf/1FGO//\ny/rX6wZXG2r5rJmaRGruZ0aIbb/ldGruwIl2RiiIC0hKpUkqoQVmZOAPHz6Mhx9+GG95ix/F3717\nNy644AIAwIUXXohdu3bV/4KyB18uM4Miyx7ROJDLhiYk8RQ27zI6EvTgqWOzg8gLRngbVtcwEXdo\nAxJJb0gyHRsFOecNwV43nHLJz2xId7iFOE3w4JPuF0/ofU6iMTawWZz2JFaBzpEGDwh97AMSTVnw\n4OuTaJRj62rB08FUw1QahZ80FRom6e0DWdIX3h6Ph7uE8owuQDLwUdAffhd48jHl50EGzgY5+ti6\nl+tJOa2e0tduJFNAsb62Gs6P7obzmx0zf0/x6lD2wAsKAy9INOgTJomV50CD/+Y3v4kPfvCDgYBl\nNptFdzeTQLq7u5HNZms9PYyswZeL4SArwDzHXDbswSckAy978BWWXUPEy33L8vsqn7kWxvVfB447\nEXjutwAAZ2yUefyqs72og6mmM00XfjKRM4jkYSBy1hHgxxFmA76WVLALJonH3Tx414PnJ+epsKy6\nPXLvM5vJ/FeOmN5ZLzGFgQ+kSQpyk/s9pg/+qqkn3AU1bq4FIMkUu1KuA7rtLnbSnil5QWaVU7h5\njC1g4AVPPdPpP2a2JZqHHnoIXV1dOO644yYtFlCV59d8bFQyWLxdsGw0ozUMPP8BckPv2HD+4+v+\n/XLWRoR78OwqgRAC0rsU5LTXgD75OCilrPKtswtIpkD/85usQpEjVtlyo9eMy+hEDQPvesbUcQDH\nkXqDu4+TCoeaCv+ieRq8JNFUynVJNHT/Xjj/dH3N3jmTMp02EjLc86njEtejozM0xpDEYv4cYbGo\nSTxpNTEm4g2O0TSHZIMSTROcN1qcALiELDdD5K1WSrKBF5oVur9/Wi4pJUaZaX/7nnzySezevRsP\nP/wwKpUKisUibrnlFnR3d2NsbMz7v6urS/n8oaEhDA35k+sHBwcRSSSRzjDjYfcuwUS1DCCKdE8v\nzIxfkjueSMAo5BFZcQwSwnZ7aR9yABI9vYhnMrA/9knkr/8cMu5jnEoJuVjcv21VkHNsxAkB7ehA\n0t1OzZXIFvLIJBLIGgY6e5egWC2jDCBFLUTcx41XK0j3LPHWNgbAtC3v9adLqbsHzvA+VCpldCxZ\nCsOVRMaTSaSjERjJBLKRKDo7/Txqu7sHOQCZE07ypaoZEovFAvtS7u5GEUCidwmKAJKdXYhlMrB6\nelG0LJDiBOL9y1BJdSBqGojVOA6lXz6M0oO/AunoRLq7O/DZTsYYANOx0THD40spRdYwEO/qCnx/\nROR9x2lrQL+wJdDrp5BKwzQJ4pkMsraFju4eGB0ZVDKd4D/RWCrtfa9mtOa7/kvZZ6jZhPZ7AWMt\n6UOhXPL2d7J9HwNgJlMzPjZl6sAeeA3IuW8CMYzA969cLqIIIO7Y3va8VUW8uxdRbmNicWTiMVRA\nYWc6kXK333333d7rDAwMYGBgAMAMDPz73/9+vP/9rMx/z549+MEPfoD/83/+D+666y7s2LED69ev\nx44dO7B27Vrl88VFcKxqBbkcbxhmwykWADuOiaoFkvMvbRwzCufIYdjERFXYTh12JVEiBiq5HGgs\nCVoq+q85Ngoaifi3SyXQSgXlfA5IpmB5781km9yhYZBEArlcDo6bTVMYG/PW4hQLmLDswNrsfM57\n/eniGCaQzQLlMvKVCojjvl8khonRw8xjjkQD70Pd1Nm8ZQMzfH9OJpMJvgefZe5KQyXbRjmXA7Ud\nOMUJIGfBiSZADQNWdgzlGuuwH38QiMVA8+OYKJUDx28qrMLEjI8vACCeRBkk8P0RkfddhUMMVHPj\n7LtWrSBfKoFQwLH8POaKbXvfq3agnv1eKFCHwpnIe/s71b7bZmTmv+2xURZ4JwYwkfO+f5RSOF/f\nApgmymNHvO12fhwOpSgJ75v90DtA3vHHQDSGXC6HTCaDwcFB5fs1PQ9+/fr1ePzxx7Fx40Y88cQT\nWL9+ff1PllOIvCBrnRINbwTl9ewWyv6B8CR7Xk5eDc42JJEIa3Mwkfcu4403vx047ayg9CA1QgPQ\nlLQrkkixVqbUkQY8uMFLuU0BWM908457Zvzek8IHeHtBVqG1c7nkp6Dyz64WRw4D/W72UaOSVjMk\nGoCtsRGJRoWYB18V+84I32Od+dK6JFN+51YB6jigqk6TzUhT5b2wolH2neGU2AhHsuGDns2ihTxL\n9hCzbfjciYd+DXLyGVO+XVOu+U4//XScfvrpAICOjg5cddVV03uhgIF3dVwCdZB1XJFFE4mw+3hD\nKLHsP50JNyjjc1yVmToxIC+9h5AdQilVD4CuM2gzKckUS+eMxYMxDHE033z0AOdaoDxLNh5n+mG5\nzO5Lpibv1Dc+Bpw0wBopNSA7kHXvAI47aZqLl0gkQBoJsqrIdAIjB8OdTQMZRDrzpWVJ+g6g2FKb\n/ux7oN/7VshhIs34zRULfnsOUYOfyAFpt4XK/ldAd24HfXx3uGMkz5E/8CprITwFrVXJKpToEsP0\nu/6pgqxlRaETwLx4UYMWS/zl/i2myd6z5lXCeMDAk1gclHumFda7PtRrXeERNAw38LIBiose/Dx4\nhjw4mUiyYyfmwRcm2OxcwwCWLmPVxAqobbPe5rxNcAP7Ybz/L5vXWCuerL/ZVw3IqWeB7nkkPLhE\nNPCFJpzwNbMCMU1mUPNBZ4TueUT9hGZ48CW32SGvleC4g4JYO/QsM+6FCbfnu1r3r6eqe/ajNg0Q\nysaJJZTFMCSeZH6RwsCTt7wr2GM8JU16Egw5IQQwI6DFAgz5JBKLg+ayMBJJ3wcT87srQg68i3Hp\nZ+ufRzoZiSSQG2MDrcV9c08wpJEK0GbizZaNseMoSjSAXyjWvxzO7vvVr5HLsi+sV6swP19B8oa3\nACvqz0VXcszxrBthLhusKj7zXNYY6r++3xY9xxc1fEKcMAOYty9gmSoJX+Jtwm+OFgswUinQYlHh\nwXewTK0jh1m7gr6jmKoxg+ydljLwocvZeIKNQpNTLbkmlQhnixjv+GPpsbIHLx2sSISdKVUSjazz\niwZe0QuCvPZ8NGW2TizhNvOSpSlBopkPD57vbzTupkO6efBcmuDxCEWXPvrEg+zjTaXZj4q/1jxp\n1Ma6P5zxaxBC2L6MjgQN/JI+kMGLYf/X99tmatCihc86Xilsy40xZ2V4PzuJl/yq9hnD25VXLdaQ\n7uXnWQpuwfXUu7qZdBmLAaOHgHSmoVRzmdYy8I7CwKsqIvkli0qikWDFDAVmeMWRgJyI218l5MHH\ngDyTaJQevFBl2nT468qvz4+HIsg6J3jDw2MggxcDclEVN3K9S4FcNtAszdnyRXbfOeezL7T7OTQ0\naq8V6exhtRGKE5Wx6Yus8ZimZSFdPaDZI55jRq0qq2496XR/wA5PrGh0ypuKAhsIREoFOFYV9Jq/\nBo49EeRNb2XJCxn3SuKMc4CHdgIrVilfxrh6S11v11K/LiIb2XhCbUQ9D76OLAgxMFqtgEQUHnxx\nomamTiDIKp5wGpjI0zC1DHzMbeo1X0FWLklFYjBef2E4LzvCjbYJLO0HRhQ6/PB+Js/MZlO0uaSr\nm11Oq1oSnH623/5C05p09gRnnY5nWfA8kQq2BQGCTcDqgD73JOjTTwQ3FnJsZoLYRqVSBvLjQKqD\n6erpDMjZ57H7VDNXV6wCOeb48HYFLfUrI3IDpkRSHbRMNWDg44LXLQdZAXags0fCY/ZicdDcuB8M\ndLd5X4ZZNfA8eKkw8BP5eZNoiGHA+PSXWV8WFaKR618BjOwDjpY8kEMHQY45YcEYeNIZlmg0bURX\nN3BEmOo0zpoRkkSSafCA3+6kQYnG+fk2wKrCFNMZ+aBsMcjqOMCRQ563blz2OTbUHQgFWI3r/kk5\n2asWreXBy2erWFw9h1LWfieDl9ED4TRJwD2TVsJnymiMaXGyBl8uuaX2X541iYbN+4wHumh6789n\nn86TQSEn1U7NErsdkr5lXue7QPCc5wE3o2lYK9DVA3p4WBv4dkX24LNuwJWPVgQ8T5s24MHTB38F\nPPRr4OknvClMtFp1x4km/RRtAHBs0OH9IO6cBXLygN/xVLJLpH8FSL1T0NBiBl6GxJPqCHIj3l9s\nCg+eH0D5QEZjwMFXYYidBd2rAfroA0BhYuZ51FOtWzbwbv9qWiqGagBaAtHIdXQCE26KYEVq2ZxM\nzUnZ/ZyQ6mBa7XxkNWlmDNfgOfTQMLtqj0uOIdCQBk9/+yjIm9/uTmHawzYW8kyGIUQy8E54PnEk\nwqpda6RI1ktLG3jE4+oJSb0NdEwMGHiFB8/PlPJ2d3KUuczvdU8SSdDCBDvwfH2zRSweztJJZ1iF\nXakAJFvQwIu6oOgB8ePPW/4mU6EU0LYlmQJy49qDb1c6e/xgKgAM72OGNp4E/b//yvLRq4pBHFNR\nmABOHgA5/TWgv32UbZvIBbvOeinXZZZu29vvPZ1fxXty9DRpcQOfVEs0x54I49b/W+dr1KHBq3BP\nLIZg4HHCKcCzv4WXztmAFtYwqgAzn+rEU61aCOPW/wT5vYv8DWJrY378eRe9RBLk+JPr/wxbGJJM\nAfnsvOXza2ZIV3dgbJ8nlbjOFf3to27XU7MxD34ix6Z7rTwO9MBetpHr7wDLQOOjIXNZoGdp+Ko2\nHl/gHnwiEc6scam7bDgm9CavlMJXBLXkHvcqgXT7o9VI9xI2au3FZ9mGuZZo+FzWYiEcFJ5nSDQa\nzNcVL3FdA0+OPZHddtNhm1L6Pd8kU+yHrz349iSdAcpFUKvKYkX7XgaOWiFUbaeYBx9PNpYmyStQ\nxZoQwYMnCcl5FZM5OLGFbuBjNdIkG3oNVpFKbZulQIkVa0BNLdj4w0GY/6+9Ow+K6trzAP49F+iF\nRmAa6SfIAE8tQG0GFWXihoqPjBqTqC/PyTIvmspgNKgpzaKOSyopHSupxCUaSUwRTUylYjKmLf9J\ndKxgCEIS0ZRxQBMQ6CjI0myCDxrpPvPH7b50Q6Ms3fb2+/yj3O7b3B/Lj9PnnvP7fXSqzzptNnEy\n+K8/W57kwi+fTNZ3Csh2BO+JUzQ2mFys5AlA/MMaOwbCU6vEj3u3UfRmCvfuyCXDwxiz9F/ogPnW\nTXE+/E+je96dK4PFm6MKxeCmaKw7UyOjAEOtVMDM7qZpSE+5b7Td7vsaMnnfhSeD5NE/leyf48GD\nhzdSZXIF+JVicN0x8NvNEMJ6JfiH5oIPpL2c9fmJyeCnLX1mnbGzrT+OpmiCQ8QbNR13PG6Kpg9r\nI27A0rTF8gvz5wRxlYCvsBa2oxG897I0/uiu+h1s/L+AMSYVkIPZPKwRPJMrgJAwcW7fdg4eAJs6\nC/z6NbDYMWL9pl7Y+BTxj80weHaC16YOf+u/NUm2Nos3U3p35UmeioBkxzXrHbLdvenKFmoOpmjE\naply8GYDBA+boumj9xy8JZaA/3rHjRflArb9f4l3UgQDHXfEEbx157HtAgGZXFyM0bsDEyxLH1sa\nwSJ7EjQ3mcTzrX/8x6eAl/xiPwcPQHj8mXtelvBk1jAD8/QpGmewzvOOCLXUK/+nez//fmzPd+EI\nnk1+CMxRadxgFdDY4PFTNH1W0biqrIO7Wd9J9Zr6I15EqRSnaOqqe9aiWwd9XUZxBK/oZwR/+SeY\nj+yzP9b5D7G2u2UKl2mngP/fJXEX6zDn1AfL9xO8dfrFbBZrTAz3C2x7vgsTvPDQPLCY+L4PyJXi\nHyqPn6JRALXV4KW/gFf+3nfTlo+w3sO51wYw4uEsdeFNtdXSWnQWOQrsySzxXag1wTt4x87ravoU\n1oOxVyOg8ZOAslLw5sZhL3scLN9P8OPGA39OEAtCKYOHXdxKOj8xGWzhX51wgYNkHUk4qe+qy1hK\nC5v3vg7+7QnHqwR8BPt7tvhLTLwSUwSDd9wRE7DtLlGb6q2svzn4hltAa3PPggKgTylxpgoBYuKA\nyz+D0QjeuZhMLtaIb2kcWO2agb7upDS7JZQPjLzn7r5H671JSzvFTRfiekL6v/nOzlx/ZJmi4b2X\nH0stMi0j+IZa8Koyu1OlchzWhReAwylJ6eefErzzsWAV0NLktHXrwua3wWYvcMprDZrcZn2uB2OB\ngWD/8aL4/8VPAmMT3XxFhPRDqRI3G8F+bwaTy8UVdnfvSoND/uM5+3PbboM9/jT4/57sWXnjoFcz\nS18A9vcXAUfTri7kFwkeimBxK7CTRvBsbFL/FRVdzFqfxxtGjGxWJhAYCDZ3Yd/WhoR4CmUw0Fgv\n7kq21XsEj54Ru8TYCTZ9vjgFaR3dOxrBh4ZDSF8woDZ7zuQfCV6pFFtfuXLn6YOiUHj86N2KBQRA\neOMg2HBXLhHiQixuHHjJJTAHJcPRZQRvv92zSqpPgu8Qd9zHjQOv+cNyzHNWjflJgrd843whwcsV\nHlem4F6YJtrdl0DIvSVMFPfJCL123cgt/Shut4BZq8o21kk9WjnnPX0hNFHiDVfArpOZu/lHgg+x\nNIOWe/ja8YGQK516s5gQf2eddze3ttg/oI4Uu3W1NAEjR0E4+KX47rndUlaguxsAE3cxa6J6pm+6\njB4zmPSLBC/Nl7uytMCDolB4/goaQrwNE8QSILaHVCGAECAm+dBwsexAaDjML68A7/yHOD1jSeTs\nT9HA5QswZT3m2n7Ng+QXCd6KGx20//M2ckrwhDjdiFDHxy0FwaQGO9aKqXW3xERurToZE99Tmbal\niRK8W1hro3gxFhULNjbJ3ZdBiE9hjyyH7C+P9j0++V+BxOSeA5YNTby+BujslDb0MSEALOMR8bHT\nX3tMdVHPuIoHxRcSfKIWLFF7/ycSQgZMyFiM4BEj0NbWZn/8iefsn2jNITcqxQJzNnPtwrJnYfpG\nbGLDb+pder0D5TcJnv3tOTBrRyFCCBkC4ZnVMH/7Nfg3/yP2dbMd3QNg//6f4Nd+hTBvoVuur7ch\nJ/jGxkYcPHgQra2tYIxh/vz5WLRoEdrb27Fv3z40NDRAo9Fgw4YNCA52/5yx8PBSd18CIcTLsamz\nIAQGwvz+f4sHeq1oE/7yGGDbutLNhpzgAwICsGLFCsTHx6OzsxObNm1CSkoK8vLykJycjMcffxwn\nT56ETqfDM8/cu+4xIYR4DZueEszDi+gN+SZreHg44uPjAQAKhQKjR49GY2MjiouLMWfOHADA3Llz\nceHCBadcKCGEeATbndmOejZ4EKesoqmvr4der0dCQgJaW1sRHi5u6w0PD0dra6szPgUhhHgGS9kC\n9tjTYFNnufli7m3YCb6zsxN79uzBypUroVD03b3F2LCb7hFCiMdgQTKx3+r0eR5f9G9YV2cymfDu\nu+8iPT0d06ZNAyCO2ltaWqR/w8LCHJ5bUlKCkpIS6ePly5cjOtoz65aMGPFgazh7Eord//hr3MAg\nYv8yz7UXMkhffvml9P+JEydi4kRLY3s+DAcOHOBHjx61O3bs2DGu0+k455zrdDr+2WefDedTcM45\nP378+LBfY6h27Njhts/tzrg5p9jdxV9/3jn339hdFfeQR/DXrl3DDz/8gNjYWLz22mtgjOGpp57C\nkiVLsHfvXuTl5SEyMhIbNmwY9l8n6a+RG0RGRrrtc7szboBidxd//XkH/Dd2V8U95ASflJSE48eP\nO3xs+/btQ74gR9z5TddoNG773O5OchS7e/jrzzvgv7G7Km7/qkUzBO5ONO5Esfsff40b8M3YGeec\nu/siCCGEOB+N4AkhxEdRgieEEB/l2av0XSAnJweXLl1CWFgY3nnnHQCAXq/HRx99BKPRiMjISKxf\nv17atGV9rKOjA4IgYPfu3QgMDERhYSF0Oh3MZjNSU1Px9NNPuzOsARlM7AUFBTh16hQYY+CcQ6/X\n4+2330ZcXJzPx3737l0cOnQIN27cgNlsRnp6OpYsWQIAPh97d3c3Dh8+jIqKCgiCgJUrV2LCETpN\nUwAACLJJREFUhAkAvC/2oRRE1Ol0yMvLQ0BAAFauXImUlBQA3he7xCWLLz3Y1atXeWVlJX/55Zel\nY5s3b+ZXr17lnHOel5fHv/jiC8455yaTib/yyitcr9dzzjlva2vjZrOZt7W18TVr1vC2tjbOOefv\nv/8+v3LlygOOZPAGE7stvV7P161bxznnfhF7Xl4e37dvH+ecc6PRyF988UXe0NDgF7F/++23/NCh\nQ5xzzltbW/mmTZs45975fW9ubuaVlZWcc847Ojr4+vXr+c2bN/mxY8f4yZMnOef2e3Vu3LjBX331\nVd7d3c3r6ur42rVrvfr3nXPO/W6KJikpCSqVyu5YbW0tkpLELknJycn46aefAACXL19GXFwcYmNj\nAQAhISFgjKGurg5RUVEICQkBAGi1WukcTzaY2G2dP38eM2bMAAC/iD08PBxGoxFmsxlGoxFBQUFQ\nKpU+HfvPP/8MALh58ya0WrGhTGhoKFQqFa5fv+6VsQ+2IGJxcTFmzJiBgIAAaDQaREVFoby83Ctj\nt/K7BO9ITEwMiouLAQBFRUVobGwEANy6JXZJ37VrFzZv3oxTp04BAEaNGoWamhoYDAaYTCZcuHBB\nOsfb9Be7rcLCQsyaJRZV8ofYJ02aBKVSiVWrViE7OxuPPvooVCqVT8duMBgAAHFxcSguLobZbEZ9\nfT0qKirQ2Njo9bEPpCBiU1MTRo4cKZ2jVqvR1NTk1bH73Ry8I2vWrMGRI0dw4sQJpKamItBSQMhk\nMuG3337D7t27IZPJ8Oabb2LMmDHQarXIysrC3r17IQgCEhISUFdX5+Yohqa/2K3Ky8uhUCgQExMD\nAFCpVD4fe35+Prq6unD48GG0t7djx44dSE5Ohkaj8fnYMzIyUF1djS1btmDkyJFITEyEIAhe/X0f\nbkFEb46dEjyA6OhobN26FYA4av/ll18AABERERg/frz01mzy5MmorKyEVqvFlClTMGXKFADA2bNn\nIQje+Waov9itzp8/j5kzZ9od8/XYf//9d6SlpUEQBISGhiIxMREVFRXQaDQ+H7sgCFixYoX0vO3b\ntyMqKgqAd37fB1MQUa1WS+9kAPEmrVqtBuCdsQN+OkXDOQe32d91+/ZtAIDZbMaJEyeQmZkJAEhJ\nScEff/yBrq4umEwmlJaWSiNZ6znt7e04c+YM5s+f/4CjGJqBxm59blFRkTT/3vscX409OjoaV65c\nASCO/srKyqRKp74ee1dXF4xGIwDg119/RUBAAEaPHm13jjfFnpOTg5iYGCxatEg6lpqainPnzgEA\nzp07h6lTpwIApk6disLCQnR3d6O+vh61tbUYN24cAO+MHfDDnaz79+9HaWkp2traEBYWhuXLl6Oj\nowOnT58GYwxpaWl2S6AKCgqg0+nAGMPkyZOl9oP79++HXq8HYwxPPPEEpk+f7q6QBmywsZeWluLz\nzz/Hzp07+7yOL8d+9+5d5OTkQK/XAwDmzZuHxYsXS6/jy7E3NDRg165dEAQBarUaq1evlualvS32\na9eu4fXXX0dsbCwYY1JBxHHjxmHv3r0wGAxSQUTrTWidTofvvvsOgYGBdsskvS12K79L8IQQ4i/8\ncoqGEEL8ASV4QgjxUZTgCSHER1GCJ4QQH0UJnhBCfBQleEII8VGU4AkhxEdRgieEEB9FCZ74JbPZ\n7O5LIMTlqNgY8TrZ2dnIzMxEfn4+WlpaMG3aNGRlZSEwMBAXL17E8ePH0dDQgJiYGGRlZUn1/LOz\ns/Hwww+joKAANTU1OHbsWL9Fo7Kzs7FgwQLk5+fDYDAgJSUFa9euRWBgIO7cuYMDBw6gvLwcZrMZ\nCQkJWLVqlVSY6o033kBiYiJKSkqg1+uh1Wql6o0XL17E6NGjsXHjRqkEQHV1NY4cOYKKigqplIC3\nbIUnno1G8MQrFRQUYNu2bThw4ABqampw4sQJVFVV4YMPPsALL7yAjz/+GJmZmXjrrbfQ3d0tnVdY\nWIgtW7bg6NGj960I+OOPP2Lr1q04ePAg9Hq9VKCKc46MjAzk5OTg0KFDkMvlyM3NtTu3qKgI69at\nw4cffoja2lps27YNGRkZOHLkCKKjo/HVV18BAIxGI3bu3InZs2cjNzcXL730EnJzc1FdXe3cLxjx\nS5TgiVdasGAB1Go1VCoVli1bhoKCApw9exaZmZkYO3YsGGNIT09HUFAQysrKpPMWLlwItVqNoKCg\n+36OhQsXIjw8HCqVCqmpqaiqqgIgdvZKS0tDUFAQFAoFli5diqtXr9qdO3fuXGg0GiiVSkyaNAmj\nRo2CVquFIAiYPn269FoXL16ERqPBnDlzwBhDfHw80tLSUFRU5LSvFfFfNEVDvFJERIT0/8jISDQ3\nN8NgMOD777/HN998Iz3W3d2N5uZmh+fdj7XrDwDI5XK0tLQAEEvqHj16FJcvX8adO3fAOUdnZyc4\n51LzCGuNcQCQyWR9Pu7s7AQAGAwGlJWV4bnnnpMeN5vNmD179oCvk5D+UIInXsm2ZZrBYIBarUZE\nRASWLVuGpUuX9nve/br3DMSpU6dw69Yt7N69G6GhoaiqqsKmTZvsEvxARUREYOLEiVLzDUKciaZo\niFc6ffo0mpqa0N7ejq+//hozZszA/PnzcebMGZSXlwMQm3VcunRJGi07S2dnJ2QyGZRKJdrb26X5\n9KFITU1FTU0N8vPzYTKZ0N3djevXr9McPHEKGsETrzRz5kzs3LkTzc3NmDZtGpYtWwaZTIbVq1cj\nNzcXtbW1kMlkSEpKwoQJEwAMbvR+r+c+8sgjeO+99/D8889DrVZj8eLFUgPrwVIoFNi2bRs++eQT\nfPrpp+CcIz4+Hs8+++yQXo8QW9Twg3id7OxsrFmzBlqt1t2XQohHoykaQgjxUTRFQ7yOM26UGgwG\nbNy40e61rDdJ9+zZM6jVNoR4KpqiIYQQH0VTNIQQ4qMowRNCiI+iBE8IIT6KEjwhhPgoSvCEEOKj\nKMETQoiP+n9OaoM60hnlYgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot(y='val')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hmmm, looks like something might have happened at some point. Maybe we want to see some numbers instead of a graph? To do aggregate statistics on time series in pandas we use a method called `.resample()`, and we're going to tell it **to group the data by year.**" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cat_indentis_adjval
per_name
1963-12-310046.0
1964-12-310048.5
1965-12-310048.5
1966-12-310040.0
1967-12-310043.5
1968-12-310042.0
1969-12-310039.5
1970-12-310042.5
1971-12-310055.0
1972-12-310062.0
1973-12-310054.5
1974-12-310044.5
1975-12-310046.0
1976-12-310055.0
1977-12-310069.5
1978-12-310069.0
1979-12-310061.5
1980-12-310044.0
1981-12-310036.5
1982-12-310035.0
1983-12-310050.5
1984-12-310054.0
1985-12-310057.5
1986-12-310058.0
1987-12-310055.5
1988-12-310057.0
1989-12-310055.0
1990-12-310046.0
1991-12-310042.0
1992-12-310052.0
1993-12-310056.5
1994-12-310056.0
1995-12-310056.0
1996-12-310065.5
1997-12-310069.0
1998-12-310075.0
1999-12-310077.0
2000-12-310072.0
2001-12-310075.0
2002-12-310083.0
2003-12-310090.5
2004-12-3100101.5
2005-12-3100109.5
2006-12-310088.0
2007-12-310067.0
2008-12-310043.5
2009-12-310031.5
2010-12-310025.5
2011-12-310025.0
2012-12-310030.5
2013-12-310034.5
2014-12-310036.5
2015-12-310042.0
2016-12-310049.0
\n", "
" ], "text/plain": [ " cat_indent is_adj val\n", "per_name \n", "1963-12-31 0 0 46.0\n", "1964-12-31 0 0 48.5\n", "1965-12-31 0 0 48.5\n", "1966-12-31 0 0 40.0\n", "1967-12-31 0 0 43.5\n", "1968-12-31 0 0 42.0\n", "1969-12-31 0 0 39.5\n", "1970-12-31 0 0 42.5\n", "1971-12-31 0 0 55.0\n", "1972-12-31 0 0 62.0\n", "1973-12-31 0 0 54.5\n", "1974-12-31 0 0 44.5\n", "1975-12-31 0 0 46.0\n", "1976-12-31 0 0 55.0\n", "1977-12-31 0 0 69.5\n", "1978-12-31 0 0 69.0\n", "1979-12-31 0 0 61.5\n", "1980-12-31 0 0 44.0\n", "1981-12-31 0 0 36.5\n", "1982-12-31 0 0 35.0\n", "1983-12-31 0 0 50.5\n", "1984-12-31 0 0 54.0\n", "1985-12-31 0 0 57.5\n", "1986-12-31 0 0 58.0\n", "1987-12-31 0 0 55.5\n", "1988-12-31 0 0 57.0\n", "1989-12-31 0 0 55.0\n", "1990-12-31 0 0 46.0\n", "1991-12-31 0 0 42.0\n", "1992-12-31 0 0 52.0\n", "1993-12-31 0 0 56.5\n", "1994-12-31 0 0 56.0\n", "1995-12-31 0 0 56.0\n", "1996-12-31 0 0 65.5\n", "1997-12-31 0 0 69.0\n", "1998-12-31 0 0 75.0\n", "1999-12-31 0 0 77.0\n", "2000-12-31 0 0 72.0\n", "2001-12-31 0 0 75.0\n", "2002-12-31 0 0 83.0\n", "2003-12-31 0 0 90.5\n", "2004-12-31 0 0 101.5\n", "2005-12-31 0 0 109.5\n", "2006-12-31 0 0 88.0\n", "2007-12-31 0 0 67.0\n", "2008-12-31 0 0 43.5\n", "2009-12-31 0 0 31.5\n", "2010-12-31 0 0 25.5\n", "2011-12-31 0 0 25.0\n", "2012-12-31 0 0 30.5\n", "2013-12-31 0 0 34.5\n", "2014-12-31 0 0 36.5\n", "2015-12-31 0 0 42.0\n", "2016-12-31 0 0 49.0" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# http://stackoverflow.com/a/17001474 gives us a list of what we can pass to 'resample'\n", "df.resample('A').median()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That still looks like too much data! What about every decade?" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cat_indentis_adjval
per_name
1963-12-310046.0
1968-12-310044.0
1973-12-310047.5
1978-12-310055.0
1983-12-310044.0
1988-12-310056.5
1993-12-310050.5
1998-12-310064.0
2003-12-310078.0
2008-12-310083.5
2013-12-310030.0
2018-12-310039.0
\n", "
" ], "text/plain": [ " cat_indent is_adj val\n", "per_name \n", "1963-12-31 0 0 46.0\n", "1968-12-31 0 0 44.0\n", "1973-12-31 0 0 47.5\n", "1978-12-31 0 0 55.0\n", "1983-12-31 0 0 44.0\n", "1988-12-31 0 0 56.5\n", "1993-12-31 0 0 50.5\n", "1998-12-31 0 0 64.0\n", "2003-12-31 0 0 78.0\n", "2008-12-31 0 0 83.5\n", "2013-12-31 0 0 30.0\n", "2018-12-31 0 0 39.0" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# If 'A' is every year, 10A is every 5 years\n", "df.resample('5A').median()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYHNV1/v/eqt6X2aQZtLOKbRCrghE2BuLE8UKIBGbs\nkPgXE3BssI0ibxhjnDiAY8IiyzgmsYgd54djW9iWDF5xHAljG2OJxcAogMBsQsuMZjQ93dNrVd3v\nH7du1a2q2zPd07N0z9zP8+jRdHV39b3VXadOvefccwillEKhUCgUcw5ttgegUCgUiulBGXiFQqGY\noygDr1AoFHMUZeAVCoVijqIMvEKhUMxRlIFXKBSKOcqEBv7uu+/G+9//fnz84x8PPPfAAw/g3e9+\nN3K5nLNt69atuPbaa7Fhwwb8/ve/n9rRKhQKhaJmJjTwF154IW644YbA9qGhITz11FNYuHChs23v\n3r145JFHsHHjRlx//fW455570Opp9v39/bM9hFlDzX3+MV/nDczNuU9o4E888UQkk8nA9m984xt4\n73vf69m2a9cunHvuudB1HT09PVi8eDFeeOGFqRvtLDAXv/RaUXOff8zXeQNzc+6T0uB37dqFBQsW\nYMWKFZ7tw8PDHo++q6sLw8PDjY0Qs3vgBwYGZu2zZ/sHp+Y+O8zX3zswf+c+XfOu28CXy2Vs3boV\nfX190zEeKbP5pQ8ODs7aZ8+2kVNznx3m6+8dmL9zn655k1pq0QwODuLWW2/F7bffjldffRU33XQT\notEoKKUYHh5GV1cXPv/5z2P79u0AgLVr1wIAbrnlFvT19WHlypWBffb393smNZMXDIVCoZhLbNmy\nxfm7t7cXvb29AIBQLW+mlDrB0hUrVmDz5s3Ocx/60Idw6623IpVKYfXq1fjSl76Eiy66CMPDwzhw\n4ACOO+446T7FQXD27dtX36xmgHQ6jWw2O9vDmBXU3Off3OfrvIHWnfuSJUuqOsgTGvhNmzZh9+7d\nyGazuPrqq9HX14cLL7zQeZ4Q4vy9bNkyrFmzBhs2bEAoFMJVV13leV6hUCgUM0dNEs1MoTz45kLN\nff7Nfb7OG2jduS9ZsqTqc2olq0KhUMxRlIFXKBSKOUpNQdbZJJVKzaqOr+s60un0rH3+TEMp9ZSe\nUCgUrUvTG3hCSEvqYq3KfLqYKRRzHSXRKBQKxRxFGXiFQqGYoygDr1AoFHMUZeBbkGXLluGVV16R\nPrdlyxasW7duhkekUCiaEWXgG+QNb3gDjjnmGBw+fNiz/a1vfSuWLVuG119/vaH9v+td78K3v/1t\nz7aJsorU6mGFQgEoA98whBAsX74cP/jBD5xtzz77LIrF4rQZ2iZafKxQKJoYZeCngEsvvRT33Xef\n8/i+++7DZZdd5jzOZrO49tprceqpp+Kcc87Bpk2bnOe4pHLTTTeht7cX5557Lnbs2AEAuPXWW/G7\n3/0ON9xwA0444QTceOONzvt++ctf4k1vehN6e3ulHbcA4IYbbsA//dM/ebZdccUVuOeee6Zi2gqF\noslRBn4KOPPMM5HL5fDCCy/Asizcf//9uOSSS5znb7jhBoyNjeHRRx/Fd7/7XXz3u9/Fd77zHef5\nJ598EitXrsQzzzyDD37wg/jYxz4GALjuuutw9tln45ZbbsFzzz2Hm266yXnPL37xC/z0pz/Fgw8+\niAceeAAPPfRQYFyXXXaZ585ieHgYv/rVrzxjUygUc5emX+hUC+b7L56S/eib75/0e7kXv2bNGqxc\nuRKLFi0CABiGgQceeAA///nPEY/HsWzZMnzgAx/Ad7/7Xbz73e8GACxduhTvec97ADCj/OlPfxqH\nDh3ydMfy8+EPfxipVAqpVArnnnsu+vv7cf7553tec/rpp6OtrQ0PP/wwzjvvPNx///1Ys2YNurq6\nJj1PhULROswJA9+IYZ4qLr30UlxyySV47bXX8K53vcvZPjw8DMMwsHTpUmfbsmXLcODAAedxT0+P\n83c8HgcAjI2NjWvgu7u7Pe8ZGxurOq7vf//7OO+88/C9730PV111Vf2TUygULYmSaKaIpUuXYvny\n5di+fTve/va3O9sXLFiAcDjsyabZu3ev4+FPRKOB2ksvvRQPPvggdu/ejRdffBFve9vbGtqfQqFo\nHZSBn0LuvPNObNmyxfHCKaXQdR3vfOc7ceutt2JsbAx79+7F5s2bPV7+eHR3d1fNea+FxYsXY9Wq\nVbj22mvxjne8A9FodNL7UigUrYUy8A0ietgrVqzAqlWrAs/dfPPNiMViWLNmDS655BJccskljv4+\n0T6vvPJK/PCHP0Rvby8++9nPBp6vhcsuuwzPPfdczRcVhUIxN2j6jk6t2mWlmfjd736Hj3zkI3j0\n0UcnfK14vOfzsZ+vc5+v8wZad+6qo9M8plKpYPPmzbj88stneygKhWKGUQZ+DvPCCy/g5JNPxqFD\nh1T2jKKlsX67A9aOn8z2MFqOOZEmqZBz3HHHYc+ePbM9DIWiYeg37waKBeCCt0/8YoWD8uAVCkXz\nQ5SpmgzqqCkUiuZHU6ZqMqijplAomh9l4CdF02vwlNJZbQSt6zpM05y1z59pmihrVqFwUT0OJkXT\nG/hcLjern9+qubEKxZxCefCTQh01hULRNNChAVDZHbMKsk4KddQUCkXTYH3qKtDtPwo+oTz4STGh\nRHP33Xfj8ccfR3t7O26//XYAwL333ovHHnsMoVAIRxxxBK655hokEgkAwNatW7F9+3bouo73ve99\nOO2006Z3BgqFYm4xJpFElQY/KSa8LF544YWBlnCnnnoq7rjjDtx2221YvHgxtm3bBoCVwX3kkUew\nceNGXH/99bjnnntU0E6hUNSHzGYoAz8pJjTwJ554IpLJpGfbqaeeCs2+ZVq5ciWGhoYAALt27cK5\n554LXdfR09ODxYsX44UXXpiGYSsUijmL1MAriWYyNHzUtm/fjjPOOAMA614kdiHq6urC8PBwox+h\nUCjmE9QKblMa/KRo6Kh9//vfh67reNOb3jRV41EoFPMdmaprSzTWjh/P7FhanEnnwe/YsQNPPPGE\n04QCYB77oUOHnMdDQ0NVGzz39/ejv7/fedzX1zerC5qqEYlEmnJcM4Ga+/yb+2zPewRAJBxC3DeG\n0XAYFgD6zX9D+s+rN8tphNmeeyNs2bLF+bu3txe9vb0AajTwlFJPsPTJJ5/E/fffj8997nMIh8PO\n9tWrV+NLX/oSLrroIgwPD+PAgQM47rjjpPsUB8FpxgVF83mhk5r7/Jt7M8y7XCrB8I3BEuzPdI2v\nGeY+GdLpNPr6+qTPTWjgN23ahN27dyObzeLqq69GX18ftm7dCsMwcPPNNwNggdarrroKy5Ytw5o1\na7BhwwaEQiFcddVVDTeNVigU8wxLBVmnigkN/Pr16wPbLrzwwqqvX7duHdatW9fYqBQKxTxGYuBV\nkHVSqKOmUCiaiwny4KlRmcHBtDbKwCsUiubCkqRJik9/8m9naCCtjzLwCoWiyZB48KLRz2Zmbigt\njjLwCoWiuZBJNJYJRGMzP5YWRxl4hULRVNBXXgQt5r0bLQvap/6F/a0CrjWjjpRCoWguXnoe9IHv\neLeZJqDrwJlrgCVHzs64WhBl4BUKRfNhmcHHmg7tz/9SXqtGIUUZeIVC0XxouvexaTJpJhIFyqXZ\nGVML0vQ9WRUKxfzA0ztC9/melsUkGk1XBr4OlAevUCiaA1F60X2+p2kw4648+LpQBl6hUDQHYq67\nX6KxTGb0I1GgVFSd4mpEGXiFQtEcmIKB9xcpNC1A10BCIVZ4zDRmdmwtijLwCoWiOaBC5oy/3oyd\nRQNAyTR1oAy8QqFoDkQPvuIz8DwPHrBlGmXga0EZeIVC0RyIGvy4HnxEefA1ogy8QqFoDsTFTZWy\n8yellBl/XqIgFAYMpcHXgjLwCoWiOajmwdvG3ekOFwoFPXyFFGXgFQpFc2BZQNdCkL/7hFeD5znw\nnFDYMfDUNEFf3jPDA20dlIFXKBTNgWUCRAMJhb1dmywhwArYHjyTaOjOX8K65WMzPNDWQRl4hUIx\nK9D9r4G+8qK7gZcjCIc9GjzLgfd58KZ9AZA16FY4qFo0CoViVrC+cB2Qz0HffL+9wS4oFo54JRox\ngwZgBr5iB1l134pXhQflwSsUitnBX/bXstgqVUFjB+DNgQeYRGN78CSkfNTxUAZeoVDMDv7m2tyQ\n+yUanwdPQmFQ7uH7i5IpPCgDr1AoZgfbwFv3fZ09pnauuz/PndeC54RCoPfcATqwzzHwqviYHGXg\nFQrF7GAbePrgVvexptsafNn7On+QFQB9aQ8A27CrvHgpysArFIrZQSbRcA9+3CAr89pJJOruoyxc\nEBQOysArFIrZQRZk1WwN3vAtdBI9eJ158AiH2UUBACqqNo0MZeAVCkVzYIke/Hh58HZgNRR269co\nD16KMvAKhaI5cBY6RQCjApo5bG/3STRclqEUlP996ODMjrVFmDDH6O6778bjjz+O9vZ23H777QCA\nXC6HL37xixgcHERPTw82bNiARCIBANi6dSu2b98OXdfxvve9D6eddtr0zkChUMwNeKkCXQcsC9bH\n/4YtgvLnwfNuTpblePDWxs+6C6YUDhN68BdeeCFuuOEGz7Zt27Zh1apV2LRpE3p7e7F1K4uC7927\nF4888gg2btyI66+/Hvfcc49KX1IoFOPDjbdpuvKLDX3lBVe64XDd3bKCgVqFhwkN/IknnohkMunZ\ntmvXLpx//vkAgAsuuAA7d+50tp977rnQdR09PT1YvHgxXnjhhWkYtkKhaGU8jl8owv43jEDpAevm\nj9rZNTIP3nSNPQAq1pNXAJikBp/JZNDR0QEA6OjoQCaTAQAMDw9j4cKFzuu6urowPDw8BcNUKBRz\nCrFpdtherGQaILKVqf48eL4IyjS9Hnx+bBoG2tpMyTpf4u+AXgP9/f3o7+93Hvf19SGdTk/FcKaU\nSCTSlOOaCdTc59/cZ2retJBHJhYHigUQPYR0Oo1yOIxKLI5kOo0R4bXxaASlSBQpe1xjBKgAiEUj\noKUwSsuOhHVoAElQ6A2MvZW/8y1btjh/9/b2ore3F8AkDXxHRwdGRkac/9vb2wEwj/3QoUPO64aG\nhtDV1SXdhzgITjabncxwppV0Ot2U45oJ1Nzn39xnat40O+ro7RTs3LdyWYBagc8v5LKwKHW2W7Zc\nU8jlgHweWHkKEN6DsYEDIKn2SY+pVb/zdDqNvr4+6XM1STSUUo9mdtZZZ2HHjh0AgB07dmD16tUA\ngNWrV+M3v/kNDMPAwMAADhw4gOOOO67B4SsUijmHUQFCYZD3fghoY3Ivy5aR+Jym5Qmykr4rgaNW\nsoVSXL5JpoCx3AwNvnWY0IPftGkTdu/ejWw2i6uvvhp9fX1Yu3YtNm7ciO3bt6O7uxsbNmwAACxb\ntgxr1qzBhg0bEAqFcNVVV01KvlEoFHMXahiwPnkFsPAIkGNOAP3fH7Inqhh4vzZP4gmQxcuZ4bcz\nbEgiBTqWhbI2XiY08OvXr5duv/HGG6Xb161bh3Xr1jU2KoVCMXcx7FWneoh53zzgalbkHrxR8WbR\nAOx9PItGVqBMAUCtZFUoFDONsBKVGXg7vdG/oIlTqQC6z1RpmptFo+ne/SgclIFXKBQzi8kNvMU8\ndseDNwILnQAwz9zvwWu2B88XQXGPXuFBGXiFQjGziKUGRM/bMFyJZsWx7usrlaBnb5czYPvQ7AuF\nMvB+lIFXKBQziyWUGvB48K5Eo9+40X19pSTx4DXXgyeaV8tXOCgDr1AoZhanlowdIOWSTVWJRuLB\n8/fxUsLKg5eiDLxCoWgIOjQIOlbHAiGxWJjoeYsSjUil7C02BggevB1k1ZQHL0MZeIVC0RDWp66E\n9ZXP1/4G0y/RyLNoyHuvYX/IgqxcuxeDrKaqLOlHGXiFQtE4uTo8eCvowVNK7dZ8rgevvfltQM9i\n1q3J79lrunclq6jlKxyUgVcoFI1Tz4p1IYuGaBoLklpWwMADYIa8Uh4nD95UefDjoAy8QqGYWbgh\npvb/uuauSpWkQ1KjEtTgPStZVRZNNZSBVygUjVOXBy9INIAjr1DTAAmFva/VdaBUZA22RTTNrkWj\nVrKOhzLwCoViCqjDwHMNvmcJ+58bZ0lHJ2g6UCywWjP+7dQSgqwhtZJVgjLwCoWiceop42iawNHH\nQ/vUv7DHPEAq0+C5Bx+WePZOLRol0VRDGXiFQjEt0McfgXnLxwAA1ve+AfrS8+wJywSSaZB4gj0O\nhdliJknTbWbgC27fVo5di4ZaJojO8+CVB+9HGXiFQtE4Eg2e9j8OvLyH/f3qi6CHDrInTJ8U07UQ\nGBocR6IpSiQaO4uGNwPRQ6DKgw+gDLxizmC+/2JYOx+e7WHMUyQajSi3lMvsH+CWF+Dv7F4MOri/\neppkqQDil2g0HfSpncCTvwU0nXnxyoMPoAy8Ym7xh+dnewRzFjpeSzxZFg3vuTqWY7nslRJ7bBog\n4srUIxYDA/urSzSmGfTgdQ3IZtj+8jl2YSjkWUqlwkEZeMXcolSY7RHMWawvfBJ0aKD2N9jG2vr7\ny4FyyfXgLV++e2c3MHwoKN0A7mOJB88hi5ez1z33NOh/bITCRRl4xdyiVJztEcxdinmWslgrllAb\nplJ2W+rxNnuccJi15asm0QABD57Yhp/83SdBjj7euRDQA6/XPr55gDLwijkFVQZ++jAq7J8ApbT6\n68XvoiJq8F4phoRCoIYhbbpNqnnwhJkusuxI9pi/TlZueB6jDLxiblGPh6mQQl95AXRkKPhExWDp\njCLc4Mu076Jg4MuuBu+UF+DoYea9y8oF89f50iTpsC0VLVpm78N+n6yn6zxGGXjF3EJ58A1j3fxR\nWPfeHXxC4sE7sosRTFGkpQLI2W9mDwpj7mstn6ceCgkSjV+Dt1/nl2jOfjO0D38GhAd3HQ/e5+nP\nc5SBV4C++CxLOZsLKAM/JZBE0vOY8mqPAQM/jgdfKoKs+WMg3c4eOxKN4dXgQ3wla5UsGiAg0ZC2\nTpDTznY38P0pD96DEqwUsDbfDgwNQN98/2wPpXFUFk1DUB4YbevwPsEXEckkGj1U1cAjFgMiUfu9\n8jx49v4JJBp/mqQfR6JRJk1EefDzBDo8COsn35M/OdHJ00ooDb4hHO3dHzu1DXsgz9wwgFjcNd4i\nxQIQcQ08LXMN3ifFhGwDP65EM4H0wuvFKw/egzLw84WD+0Af3SF/bqKTp5VQC10agubH2B/+OyF+\nXP0evGkAyTRQLLjev/hcOAyk2+z3VsmDDwnFxvwSzVKeJTOBZy62/VM4KAM/XzBNIHNY/txc8uDV\nCV4X5rV/CTo86Dx2vGx/LKNatoxhAJEIEI0F757sfHfSsYA9LlfJg9fDbCEU4F3hCoD0nsH+n6je\nPJeB+PgBWNt/DGvzHeO/b46jDPx8wTKB3CjLN/YzlzIPlIGvGTp4gGW35EbdjbaXTYtVDHzAg7cz\nYhIpYMzXl5WX8u1c4Nl3IN89FGKGWSKvkAU90P71vgnnQroXQfvoTR6piD70E9DfPTThe+cyDUUk\ntm7diocffhiapmHFihW45pprUCwW8cUvfhGDg4Po6enBhg0bkEgkpmq8isnCDV82455wnLki0aiC\nUzVDLQvWp/+OPRCMNuVe9pO/hbXlP6D1XWm/xnYM/B68WWEGOpkG8r5aNXYLPtJ7JujPtrp3BX6t\nXQ+xnHld/jsk3DufiGTKvUvgnzPPmbQHPzg4iF/84hf4l3/5F9x+++0wTRO/+tWvsG3bNqxatQqb\nNm1Cb28vtm7dOpXjVUwW3u1mVCLTzBWJRmVQBKAybRwAXn2RLRI6/hRvgLRcZsYaAN2z291eTaLh\n3nhS5sHbEs1Jp0G79Wus1AHgZtdwQiGgXGw8QBqOeuciu1udZ0zawMfjcYRCIRSLRZimiXK5jK6u\nLuzatQvnn38+AOCCCy7Azp1zJL+6xXGkGYkOz/tgjrvsvBVQBj6A9fVNwO4nAtvpS8+DrDyZ6eei\nrFEpASk7KJpIuW8YT4PXdZBkOlhtUgymJpKAE8AtAtG4+7pQCKC0cQMfibirZfnY5jmTPiNSqRQu\nuugiXHPNNYhGozj11FNx6qmnIpPJoKOD5dB2dHQgk8lM2WAVDWB7cTRzOFi5mxv2chmI1ng73Izw\n8rSUThyUmy8UxuSpo4U889Rzo15Zo1xmxhgA4oIRHi+LJhSWe/Cm5QZTozHAqIAaFdBSEVpU8OC5\nNNNoLCgcURKNj0kb+IMHD+JHP/oRvvKVryCRSODOO+/Eww8Hmy1UO9H6+/vR39/vPO7r60M6nZ7s\ncKaNSCTSlOOql1I4hAKAaKmAmG8+OVAYAFKwoAnPtdrcM5oGCiCdSIA0WHSq1eZejaxlIRoKIeKb\nS4FaIO0dMLMjCOua87xJLYSXLEflwOsIGQZS9vZKOIQxAGECJIR9lcNhlKNRhJYshzV00PPciGUi\n3d7utObLJFNI6RryRgXRzi6E7dfSZAIZAFo43NAxp+EQMpWys4+MZYECSMXjNf0eWvk737Jli/N3\nb28vent7ATRg4F988UWccMIJSKXYbdzZZ5+N5557Dh0dHRgZGXH+b29vl75fHAQnm81KXzubpNPp\nphxXvVj27XFp4AAqvvmYdvArt38viHDr3Gpzp3aANXt4CCTWWGC/1eZeDbNURCE7ipJvLlZ2lMkk\nRIMxmnGej+THYETj0Nb/A4zv3OMcAzrKMm0q+bznuFi5LEAB69iTYX31NpiXCp9jmsjm8yAG+15o\nLIHcwEFYYzlYFkXRPyZKGzrm1LKAchmjmQyIpjFZMhxB9uB+EP/KXAmt+p2n02n09fVJn5u0Br9k\nyRLs2bMH5XIZlFI8/fTTWLZsGc466yzs2LEDALBjxw6sXr16sh+hmEpME0i1gcqCrJUKuz3OjMz8\nuKYSLjX5ZYT5DC/i5adYYLJJ2K/Bl1lWlV9yqRpktcsLLD8aGB5g7+dYvnz3RIrp8KUi++wphmga\n0+GdFbMVtsiKa//zkEl78EcddRTOP/98fOpTn4KmaTjqqKPwJ3/yJygWi9i4cSO2b9+O7u5ubNiw\nYSrHq5gspsnSI2WLnUwDWNADOirR51sJy2ILXmTL5ucrsgqQgJ3JErcNok+DD0eZPj+wH/SlPSBH\nr2QlCggJHluDrT4lmsbq14yOsN8SpW4ePCeRBAo5tkpWDLJOJdEYUCqCRmNsbIkUy9CZpzQkVF58\n8cW4+OKLPdtSqRRuvPHGhgalmAZME+hYAAzuDz5XqbDO9tVWurYK1GInuPLgXSqVKqV8WaCThqOe\nzBPHg0+1AUcfD9r/GMjRK9l+lh4F+tofvDsSK0C2dbLf0IIeZtyJxgw/J25n0hR9aZLOh09BFlc0\nxi4gZopl5cTiQKk08fvmKGol63zBMkHS7YCscbJpgHR1y3PkWwnlwQcxJCV+AdeL9nnwtFwCIhEQ\nQkBWrXYvDoYBcswJwFgOdMgtbcDTJAEA7Z3ub8gy3QJgNiSRZLVupkmiAcDmVCy6lSkjsXldQloZ\n+PmCabC63PlcMN/dqDCPrdU9HUptA688eIdKWZ4Pzr1onwaPStntnhQKuSuDjQrz7BceAWSG3deb\nhpPmSNo6QHkcx19vBmASTZalTRNZSuRUePAxuyYOL1wWjSoDr5gHmLZ3G4oE86IrFSCeaH3PlyoP\nPsB4Gnw0FlzoVC65K5t1XfDg7UB8NAbrG3eBDuxj202fBz9iG39/xUiASTSHD1X33qeiEqitwXMP\nnkTj87pPrzLw8wV+IkoXpBhAPAHa6p6vZTGPzVAG3sGQa/CORBOOeiowolxmRh9we6UCzAkIMwOP\nfa8Cr7/KtoslfhceARw6aG+3pB48HT4k19+T6amJAUXjbG6GvQArGp3XQVZl4OcL3KNKpoI6vFFh\n3lWrG0ZKmeba6heqKYJaJrvoST34EhCNgrR3gj76EOiBvew9lTIILz6n666Btz14vk6CcmMsdGEi\n3YtBeRDf8jXWBphEc3hImkFD3nGZ20C7AUg0xjx2XgQtGlcSjWIewDXRZBoYGWYnP8cwQOLxljaM\nlFLbwEdaXqKhRkVe1rleKm6ANAA32CefDhx3EjBqlxThaZKA24hDeL3jffNgqphF07MYGNjvbvdJ\nNCSeAkbkEo321rXQb/rKZGfqEot5g6xKg1fMC3jVv3gC1pdvAv3WV93nuAffyoaR2ml54UjLS03W\nzR+F9cV/aHxH/I5M5sEbgrQSiTkyDdPguQcfCmrwEds482CqP4umMMZSLf2LnADmweey05dBAwCx\nBKu/w+cXjbV+8kADKAM/XzBZ2hqxA2i8FCyl1O6rGQyyWocOto6xtCigkWBWCACaz4FmR6u8sQl5\n/RXgpecm9VZaKrl9Vav0UeV3b073pIigU1f8HjzPorENpr0SzlkRbVbcLBpC7H2V5EFWXsQsNk2L\nnAB3sRVfYcvz4ucpysDPFyzbg+fpaXz5Ng++StILRz/8HtD/umuGBzpJqMVWWobDgXlYm++A9dG/\nnqWBTRJZDfcaoN+8G9YnrmAPnPICPolG9N7BGmpQiQdPdN2Ving5Cz6ujCDRiIY8HGUyjyzImmR1\nq8h0evDtneziw+cYUR68Yhagzz41sx9oGuyEC/sMPM82CIeBkSHQ117yjnPnr2Z2nJPFoiyoF44E\ngsXEbvosbXzRrJiTNPDcewc89WMope5vzmfgWaaJbQQrVbJojIpbtx1gXrJsX7wmuyzImrILD05j\ngxnS1snkIycoHANVHrxiJqGlEqw7PjOzDTZMi3la3IPnP3qjwjz7MMuPtx74lvMWsvCI1qmpTU2A\naCzP3x9L6FzI/i/kZ35ck4VO8mIktiwUPfh9r8G64zP2a9zMFwCurAK7ZV9IyIO3v39qVFh2DXU9\neCbvVbx13HlNdlmQlV8IpjPWw1fTeiQa5cErZhLTPvFmsn8ol2L8Kwj5CkW+XUihJFwzbQUcDz4o\n0Xi80FaANHBaitlR/Dg89zToj1m9cGqZEq876hpB0YMPiUFW+06Pyy5GBXTHT0DLJa/kwmMgsiCr\nzbQuPGpArsnkAAAgAElEQVTvZEXSnu93g6wqD14xo1TcW+eZglomiC5INByeTsa3C4ugeLNjT0pl\ns0KprcFLPHhxuX0roDdwWpo+A8+7XP3ul2xbsejetXE8Hry4kjWYJkkuvhza9bex1/73v7EURLEp\ndqS6B+8g6zA1VcTiwAmr2Hy5gS8qA6+YSbgBmkn5g+fByzz4kODBv/4KrPttmYZLSK1QT9uuXjiu\nB98qaaB+7XoCKKWwvvZFWDt/5Q3O+g05wBpf8zZ7nGgM9MDrsB7cZmfR8BZ6wTRJkkiyomOccslr\n4Hl1Sn+pYJH49N0ZEkJAVr8JyI2C6MqDVwZ+NuAGaCZTEHkWjcyD5/W8bSjX4blhlFWgbDao5QZZ\nW92DryJtVGUsC/rI/4L+4n6vRGNUgJUnQxMXEBXyconm94+CPvK/gKa76ZO6kCbJSxXwIX78Fla8\nrlzy9vHlHrwsTRKAdtvXof3t39c3v3qJJ9idhVNsTGnwiplktjx4XfN4bpSXkq3S7JgaBjth/bVr\nmhGrepqk68G3SMC4Tg8eA/uBpUcCe1/2BpKNChCKgCxa5nrZhbw8yGqa7E4tImS4SCQahyVHsmNe\n8nrwbKFZWV5NEgDpWOD0aJ0unP2Hwm5tmnmKMvCzATfwM+nBm748eD4Owwh69eJ70h0t4sGzICsJ\nR0D9NXWMFguy1unB04H9IEtWsJLPQpokrVScujLanfcCJ54q9eAJ98DzOSfuAsBXqsAn6/B0SL9E\nw1vmjRNknXa4BKS7HvyMZqw1EcrAzwbc0Ngnj/WLB2DeeM30fibPg+cnaSjMTlCZTstPftMA2jpA\nD+6F+X5v566mwy5VwNIk/R68XKKhA/tgvv9i0P4nZmiQNVKvB3/oIKvkmEx7FzUJXjeJRkGSadCi\nRKJp7wKWHc2Cn2KOeqBcsPCesH2cy77mHWG7XDNPy50N4vZK2XCYyU263jrxlylGGfjZoOKtEUL/\n7/eAXc1v2hAXNAFs2Xi57PHM9M33Q7vuC8CRx7FxmSYzGvuneWx1QmUnq0ei8ZUqqBZkzTHpifIS\nt81CvZ5vpcy8aHulqLvdq5sjnrAlGu9FnRx7IrQNn2N/ixJNKARUyq6UJ+yLaBoznPmxoAdfKoKW\ni7Nn4GO2RLPgCPvx/M2FVwZ+NvAHWUOh6q+dKowKEA65pWB5cTG/Z6bprsdrGiCpNqc0bDPc5tJK\nGdY175I8QccPshItKNFw77TZYgz1evC2pk6Sae92v27ODbxfbgFczz3s0+CzGVi3f9otVSCiC3eD\nwn7oz7aCfn3TrEs0pGcxexyZv5k0ysDPAtQXZCV+iWQ6MOzWaqGwXaPDznbwGwE95GZimAaQSgPD\ndg/OZtCwnZWVvoDpREHWWDxYOG2Ws4SoYYAeHgo+Ua/ny3PO/R68/7uNJViapGEEZTlefyYmBED5\na15/pUownl3wCSHCfuygfKU8+dW4jcKLmXUvYv/P41x4ZeBnA78HPyMG3vbUec57hOUrU8Nwl5AD\nLNPG9uCpYbLA3dAAe67cBDomN+x+j4zaxa2qefDRmLzoFjBrHjz96fdgffKK4BP1rmR1luX7qjQa\ncomGmr7vHHCbdohyC/9dtnXKDbzkjo4ccwJw0mkgf3QeyEmn1zePKYLoOnD8KcDCHrZhHufCz4Bl\nUXAopcDz/Y4Bos/+HuSUM93Vhq/+AWTFMdPz4WJJglDYrRniP3F9Eg2SaXehU6UEIBXY9YxiG2X6\n2x3AyaezFEDA68H77zRMg+mwAcNv72vPbtBsBiTdPs2D9yE2rxaxPXg6sN+VGcbDbrrBuzKBELb6\nuFLxSi4eicZ76jteeEi4e+CvSbcBg/uDdxYyA3/SadBPOm3iMU8z+ic+7z7gfVrnIcqDn0kOHYS1\n8bNAjnXPoT/bClosOCeOddM0LgDhGmpYMPA8TdKvwTsSjR1k5TSDB8+N8re+Cvqzre52XqpAVmzM\nMJh3KzP8qTQwsA902zeneeASJqhuSR9+sLb92E03tEv+BtqHbnAbdfgDo/GEnUUjyZziiLq5pgFH\nH+/UMPJIMUDrZKYoA6+YDqydDzMDzsmPAaYB+szjwousmSk65pQkiLCTPhJhlQMDGjzz4CmldpBV\nMPDTdELTl/eAvv5KbS8WZBY6eEDYibiSVZImGQsaeGoYbs70wiMmM/TGqGbgLQvkzX9WNeZBn3wU\n1i9/5m7gQdalK0BOf4N7F+MPjDpZNEEPnkMEL50QAu1dV7BsoyqL4dDeNe4UmwGnT+s8RBn4aYR+\n9TbQR7a7Gwq21PHis+4205wZT4gb8kVLof3V1SC8Zoj/ZNd1Znh4bZeEIMlMkwdPf7sD9LHf1PZi\nUUfnDZ4BXy0aiRQjMfAwDJCjTwCWrJjcwBulmoE3DTtmIDfw1jfvBv3//9U1Wv7CXqIH7w+yVsui\n4fgzX2IxFqOolunV0fwGnlXLVAZeMR3wxggA8+D9mqppME96GqGWySQMXQfRdZDeM9wsGr+Xp9k1\nwE2D6bF8leORx9ka/DRQyLPsDnHMA/thySQKUzB6oxmnE5E3TbLiTek0TVbS1l+qwDSAaBTkzDXT\nN7fxqOrB20FhyYWfHjrI5np8L/D8M2ybaXgzsUK2B18tTdJfqkDEr7NH48yDr7LamSw7sur0moZY\nXBl4xTSRdQ08LeRBjj0J2vp/dKUB0wAqZZBL/gYg2vSU5rXT4gLpbJVycKm5bmvwvLTBEUuh/eNd\nLAVvujz4wligGQd95QXQh34qnwtnYQ8waC9SsoOsRNdZ31BR9nI8Yolnz5udzEZ8oaoHzw28pHbO\n0CDQsxikexHoyLD7et0XHDUM+UIn2UpWkYCBjwWrT9pon/8qyF9+cJwJNgnKg58c+Xwed955JzZs\n2ICPfvSj2LNnD3K5HG6++WasX78et9xyC/L5+rroUNOEdc8djQxr1jFvvwHWD78DAKAZwYMv5IBE\nkmXOcKNqGkC5BHLUcWyJdYNdhyilsL56m9eD9afLAW7NkJJvqbmus2Xmdv14QgjI0iPl6YdTRbEQ\nnHexwBo3+DM1RAPfvRgY3Mf+FsvT+tv2cQ1eFnzlawKqzM287XrQfa9OYlI1UC1P3DSBaDzQLBsA\nM9CxhD1HoeSF34OvVFgXJo8Hn2R3keVyVQ+eyCQavk//a7sXuXVsmhkVZJ0cX//613HGGWdg48aN\nuO2227B06VJs27YNq1atwqZNm9Db24utW7dOvCORcgn00Ydaq3+mn+eeBt1l9zItC7f++bzrufMK\nd1yDj0RZxkqjOdlGBXTnw179VpbDzGuGlApeA8+zaHxGQ2zMPOXkx1h2h0ixwGIWOd/xECpwkp7F\noAO2Ds8lGiC42Mk0WD6//yJiZ584x0LG8/2gv/6fSUxqYngJhcBdm5O3HzTwtDAGEk96s4XsNEmH\naIz97vxZNNEY0LMY9MX/q92D547ITKy2ni748ZiHTNrA5/N5PPvss7jwwgsBALquI5FIYNeuXTj/\n/PMBABdccAF27txZ3475CdzqXwjPcRZP0kKe3SYDwMn2IhDTYB5VOMICmo2uquSeiuixVCS32Nxr\nLRbdlX+Ak0UDw/R6eVU8ePPfvuAa2cki8+D544F93u0eD34RK7QFuHnwQDBV0jSA9k5Q/7E1K2x1\nbzgS+L1RSp0Ca3Tvy5OYVA3w78gvD1l2zEDmwRcK7E5PvIjxdoycaIxduCXlBciJpwLPPV3VYOvH\nnuh9PffoZ7K95FSjPPj6GRgYQDqdxle+8hVcd911+Pd//3eUSiVkMhl0dHQAADo6OpDJZOrbMf8h\ntfoXwj1Psea7LdEAgH719cCKYwQPPjI1P0RuqESD5a83Azi6My0VvT01+UInv9GoJmPsfcUbSJ4M\nEg2e3+HQQd/FQwyyxhNu+ze/B18quneBpgnS1hG8O7I9XxKJBAqYWftea2RGtcG/a1nWjyTISikF\ncqOuRCN68LrPgy+V5HduPO1VD0ou+ub7Ef3jd8rH2soO1zw28JO+77IsCy+99BKuvPJKHHvssfjP\n//xPbNu2LfC6wOIIm/7+fvT39zuP+/r6kE6nYZXyGAWQDOnQ02npe2eSSCSCdB3joJTCuaSFI9Cp\n5bx/rFJGuGsBIvbjbDiCeDSKsUoZqc4u5BNJRHUN4QbmbWYPIwsgGQ45x88ciWAsGvXMo5Rug7nf\ngmlUEO/sQsh+jlKKDLWQjEWRD4ed9xSSKRACxHxjy5SLiEfCDY15pFgACYU848ubBirpdkRGhhEX\ntpfDYeQBRN/+LujtHahYFpLpNCqxKEqhMFLpNEajMWjf3ozIH78DkTf9KUZME4lFS5Av5j2fUdA0\nkGQSensHSpaFlPCcueuXzt8hwPPcVJE1KjABpCJhaML+R0wLia4uFCzLM97yow8hf/9/I/buKwFd\nBx3NIJ5OI0stxNNtznc4lkojrAElaiHe3uFsB4BiKo0igFgqiahkTrLf+wgAUinXdR40E5WOTpRM\nY8LvsN5zvZnYsmWL83dvby96e3sBNGDgu7q6sGDBAhx77LEAgHPOOQfbtm1DR0cHRkZGnP/b2+XL\nv8VBcLLZLKjt8Y8ND4Ek2yY7vCkjnU4jm61dF6firWyqDWap5LzfHM3AJDpK/DHRkB/NgBbGkDMp\nLF2HlRlBsY7PC3z+MJOGxoaHgYoB0tUNmhmBpemeeVgWBcbGQPM55C0KIn6mrmNsZAQgmvMei+jA\naAYV39hoPo/C6Oikx0wNFmSmec07vuwo6PJjUN77MgzP9izI2efDuOT/Q+WpnbDyY+x3MzYGy7KQ\nzWZh6SFYhw7CHDjIjrVpIK9HYGVHvZ+RzwPRGIhhwjo0gNFDg87dTOi1l53XGaViXb+BWjHtAli5\nP+wBiTLpjloWQC3kDRNWqYTRV14C6VrIxnuYfbclTQcsAGM5GNkszHIZ+VLJ+Q4tPQRj5DBosYh8\nuez5bi2T3dUUDRNlyZyq/d5psTAtx2AmoKbl/E7Go95zvVlIp9Po6+uTPjdpiaajowMLFizAvn1M\nI3366aexbNkynHXWWdixYwcAYMeOHVi9enV9O251icYw3PofHV0+iUbQ4AG3oUKxCMRiLJDZaN1q\nfitdKsK67krQl/YwLdaXNeG0Viv6smgAJtOUS15ZJxa8zaWWxYo4NVJlMpdhAdBS0ZMxQ4sFkGNP\nAH31D97XiwuzxFtvUYYKh4F8DigVWADTsoC2diCf8+XH2xp8JArsfQnW1za6Tx0UtH9/kbKpwj5u\n1p03CmMSOm8ZFVjX/S3ogdcBACRlOzz+mjv+NEmuwcskGv643gJ3rVxPPRJtbYmpARrKorniiitw\n11134ROf+AReeeUVXHLJJVi7di2efvpprF+/Hs888wzWrl1b8/4opaAv7GYP6jTw9A/P1fX6aUMw\nQOTYE73GIZ/zdpTXQ2xbNMqCWVV+iFRc+ToR9vvpMKsASZ99io1JmiZZttMkfVUINdYBh/iNhr/k\narnEtO9GessOHACOWGKvvhQuFMUCyMpeIJsB5eWKAW8Ot3C8aD4HkrBvr8MRYGyMjbdUAiIxli4Y\njriaPeBmn/ALshCEtQ68DnQssF8nlEc4sDcYrJ0ssgujJfTO5c87GVf2OLIZnwbvS5OMxtncZemx\nvMNTPVkxemj2Sv9OBdH5mwffUO7TUUcdhX/+538ObL/xxhslr66BA3tB/+vL7O86G+Va//wJaBvv\ndb2c2YLXBbnsCpDeM0F3/dp9rpB3gqwAmI7Kg2aA1MDTsRysL3wS+ub7a/t8/n4uMbz2B2D50VXS\nJEvBNEmAGRh/+zZZ82LbWNJKBfJIy8TQwf0g3YtB97/mZhPxfccTwIpjgddfBbq62Xaxlrl4vMZy\nbj30UJgZpFKRjZnncqfa2MIzfhcl5sEDLBDLxzUyBO3qT4P2Pwb6xKPOduvGa4AzzoF+zacnOWOB\nSgXkTy4G/R/hu+XGOhR258YraNr/kzf+KfDSc7CqpUnGYizfXdakgxv8egx8NArkW6RhuQzlwTcJ\nQrpYrVIFpRTWb37BH0zHqOrDPkG1t65jZVZ5rjOlLFsk7muokMu622TRfp5NIpEJ6FM7QfNeb5LX\nJ6F7Xwbau1g3JtmtuuPBlyQGPgQ6lgUR6tBICzY5tVAa8eD3s/IN/ILDKRZY+mYs7q3lbVa8Hjwf\nw1jWrXzJLxKlgleCau/0ZvzwPHj78kQP7nMWNdFSCTjmeJA3vTU4P14+uVGMCshF7wEAWD/4b9Ch\nQaG1YsT5HPrr/2GLnkwT5A3ngyzo9hZVqyrRBNNjnYVPkiyaqoh3na1IJAqMDIM+/dhsj2TKsXY+\nPO7zzWXgxROpVg++MMbagwHBKoKzgSgh6GGhQUWZ1YIRTjii6yztLV7dg3ckBUmKonXXTaAP/cy7\nkb//hd0gq84CRqsYeN55JxTySjEAk2jGsiDixUhWz8MZWyMafJZdCCO+XPQSM/AkGgMVpSHx+Ebl\nHjwPlNJS0btSt60DEFYWU67B9ywCOfvNwKsvwtr4WRYoN023+5X/4jpVcoVRcWr90B9+G/TXP3fv\nUMKuZEUffhB4aU8wzjCRRFMpByWaSXjw2sduhvbZTZOaYlMQYQvZrC99brZHMuXQr9427vPNZeBF\nQyHx4Omhg7B++G3vRo9H1gQGXvSmQiE3b7swFvSE9BAzsuNINE5+eLViWP6l4kIePHnjW4DMSHDJ\nOsAManY06L0DTKLJZUFEOSka8+rXgPu4kePOLz7+ejCOBx/zXux560HAPl72e0QPnl+YirZEY8cY\nSHsnrK9tBOXH1DRBQiEQTQc5hy3YQyLFjmE0ylJ8Q6Hg/OpYZU1LRVj3fZ39/dROx+OivGKnYJhp\n/xNuDMf/fcXi9m+LG+jqHjyJxdjKYFkNmUkEWUn3IpDlR9f8+qYjIvmNzxOay8CLt+ISD57+7w9B\nf/Df3o1irZdm8eD5yaML3p/MwIdCoLlR11OORIOtxbgx8q12dJa3R3wGnnvZXQuBY09iF4ZCnnmE\nIuGoXH8HBA9eGK/Mg/cH/yYD98iFoCG1TLsIWszW/kWJJhhkpZSCjuVAuAbPL5ilAnsv1+D1ENsv\nry0j3g3w7yCVZhdHflz0cHB+9ZTR6H8C9MGtoJYF66u3ux6X3XTDWSdyfC9btcvH5DfAluVdfDZe\nkLVjAVvhq2kg/gbek9HgW5y6AsotRKBOk4SmMvCeW3FZ1Hsk2OKMjh52HzSFBy8aeFZbnVom01NF\nyYM/n8u6pQJEjxS297fpH9kDv0TDV8r651xipQfIKauZ8Uh3sAqEAQ/evjDEfBk0ANPgcz6JRhIf\noFMg0Th3FxHBgy8WWeaLpjnZO9Z/fRn09zttw8iMHNF0O9W0wjx4HjNIcANfZL8px1jbxpHf5Yjf\nFZ9r0jbwYg0WWYPvWue3x84Ky+cAKqyR8LXTIyeexi7EpUKw8ifA5ihe3MZLk+xZDOx7TV7zPTT/\nDPycpYb03eb6lkWvXWLgpR3oM01o4HmaJL/FN83qEk0h7xggEo3C8hQnE4J5/nol/MLmP07DgyCX\nvg/knAvY40SS5ZrHfBcX8aLiR9OYB++RaKpn0TTmwXOJRgiycnkGYN53bpTp0Ia9hF8cM5e1yiXX\nU4+5Bh6lAgiXaNa9lwWfx4SLIzfw9nuInZPvXhRCEg++jrosvFx0ZoRV6fTMm3229sVvAvEEK498\neEhumE3De3doe/C885bHg0/ZwX3ZOCcTZFU0JzX0MGgqD95jrGQe/NBAcFvTafC+Gi52oJUW8l6D\nCbDXFfOuJxf1lQsWDYv/yxy1CyL4ctPpwH6QZUeBcAMZjYHmgh15nMCqzBvVmUTjuSBFo8E8eKeW\nSiMavJCqyC9iJcHAixLNgm5bHxdkpZh9zMoldpHg2wB2oRCMNQmFQRYe4eaxi+mF3IMPhXwSjd3C\nUDxO9Xjw/II9etj7PiFHnSTT7G6kvYPl/Mu8a8PwjjeRZOWUdz7MgveCx8/u3NrlWWXKg5871NDD\noLkMvBDEE1PyqGWydMDDh5ycZbbdYre+HNvQUEqnp3FGLfhT0/gtvlSisT14PqcFPd6LmHgL5v8y\nnRWrBe9cB/d7u0ZFecu1Kh6bzPvW9GCQNcQ8WY/uVyy4DSEmi+3BOytr+X4dDz4Oyi/iqXZmsEUP\nfkE3O2YVN4feCSiXiva+hAtCMiV48MLdViIJ8tfXsG1CExTPXRinHg2+VAISSXb3KWbfyHLU2zqB\n4UGvN67rwClnCh68LU+l20HOfxtw4HUWcPVTbT3IPNTg5yw19GdoLgNfxYO3PrAO9KffB44/BRDs\ni/UPH/Z2/bGbPNCHfgLrA+ume7RyZN11zAqTaGQevOh5LugBMsOg3CMW70gCzSrsi9mTjzpzpaUS\nMyhpof4Pb7lWzcDL7nrCYSCX8Rh4VjaWeI1bscAMSSN3TqbowQclGhKNuUFRywQV9XEINeHLZfdC\nyY1XpWJLYEKcIZl2V6z6pQ1eKrlcAhEvCnrYW8WyHgNfLgGLl4N+Z7M9YPuUk6SukvZO1pKPj59f\nWEJ2uq1peKWVRIo5OLJ2ev7fGidcfxaNoklpOQ9+HImG7vgJyBlvYA0tuBd5YK/3NbzFmVhHZKYx\nfEZD04HhQ3YdGokGD7grKXWdrdjkNc5Ng/VCPfPcQN9Wp9vP4AHhs1njEM/tOm+aXKWnpjRQk+4A\nDAOav6Gyrnu99WKBGcxGarVURA1e4sFH40yXBpzuVx4PvnsxWyxVKbsXSn6BjUTZe5NC4/BECvTl\n59ndn/+74ncpgwdAxNQ6+y7MuVOq5+6wXAJZtdqNp+iaO++wz/PuXgTs3xuMC+ghttBNVsI5nwvu\nx56nlHkq0WibvhW8g251Wk+DHyfIWhgDOX4V+/FXuzXhRm828179XuHhQ7C+9E/sBPd7VU5GhHCC\ndnUDh+3aK5WKU6888GVWKm5tb46s12Y0NoEHHzTOpJ0t2Sd+A+/PKCkV2BimyoPnaZKFvBtDiMXd\ni4oRNPBkyQrQV1/01l1ZcQxwzAlALMZq8iTd40RWHAs83w+8/oo3KwWwA6om6Lc3wxoRAvpij1Og\nvqYs5SLIqrNYnn3PEne7pEY/OWIJsP81VzZ61xUgf3G5exfoH284Cpofk168A/EeZy7z08BLs6Fa\nnZbz4PkJFArLg6ydC8ftn+kYmlnsE0lNI5h3O5YNlikABE9TMPCxhBvM5AtVZE2hjQrgL6fs90gB\n5gFTqz4Nvq2TpeolfRcQnxZNiwX2mkaCrI4HbzcgeXkPO15cQxa9b1s+8Xy/J6xiHYoodXK+SVsn\n9OtvYxe34UE3Px4AOfJY4NgT2e/Ld7yIrjslIczn3V4FoBR45QX2HSRSzJv3GXmazzlVHz2US0Ay\nDe3KDdBuvhuglN19yVYX27ETHkPQ3vgWaBe9xzVO/u+3EQ9+vkk0c9HAt5oG78gQkYhj4D01WJIp\ndhvuM3bkL/+OLe5wPHh7+fds9HX1e1k2dGjQ9Uo5PJAXFjzSmFDzhZf5jUh6hlYqIEceC/JH5wmf\nLencxLNBJGPSrv4UtKs+FpxDWwfQ3hHMxdZDXi3a1uBpI0FWfhHrXAgM7IN1y8eYMeUGSrzImJWg\nB59IMklJRjTG5DH/hYovEpJ58PZCs+THb3G3j47A+vLN7C4qEgF6FrFgtgD90RZYN14dHIM/YMvb\nMsoqPXYudMchwkte+O/QeL0aWUPsP/0LkMuuCG7XNBacnWcGnrcenLXki+mgUpqwTlBTGXgeJGWr\nLHm/SleaIJpme/D2Nn7i/NF5IKvf5BpBrtH7GznPBIZPJ+XsfSkoHXHDI3rwvFAU4Jb5lfQMhVEB\nFnSDvP/jgKaxC6HMg+fBQpkROPNcEN4bVtze3sm8eD+6L5ukVGxcorGlCnLy6aCPPwIAoNmMe2zE\ni6Ij0fiOoyyXH3CDq35vNhxhn+s/XrrulE8On7UmuD9e7bJ7sbcCJOBUu6T+QmT+8bZ1sNReWRYN\nv8Pz/37s2ECgNV84wi4WMommexEreCdB++trgitc5wNzzIun5TJI7xnjvqa5vmXRgy+X7IYSPsMm\nVtHjhjGWYEvx+XZu6Keqbnc9iPVCAGjX/gNbhl4sBAwREcvbcsS8b74QJ93OaoCL8PRCQtyu8VIN\n3s5GqSbRyDjhFGh/8VfB7bxBCadYYBcCf358PdiGjnQvcr/r4UNu4TDxLsI0g2mSgPcCKcIvbgEP\n3i7U5b/j0UN2meQq3m2ZGX/tgreDPvqQb6m4PU4h8E8tyw6mCse+vRPIHGbZQD5pxfmO/PnrPMhr\nehu3kEi0ukSjCDLHDLyYGlyN5jLwogzBT0J/bRZRj7YNKQmH3VQywE0h3P4j6cdY3948fbdqPg+e\nrDoLpN0OVvoNk+PBC9uFxhq0wpbxO6mAns8RPEBew8Yf4OX7A6pr8BJIIgVyypnBJ0LhQBYNWdDj\n5JXTQt4prFUzokzCjfnwYFD/B6RBVgDVf+T+MgQ2JBRhqah+j1jXmYGX5ZUDdj3/BMhJpwXjIvwu\nRlx4Z1dzFL1l0tbJymvYJSWk+OU43gzFLo7mwO/s6rl4z2fsVcnWow/BuucOFpxvZcTU4Co0p4Gn\n1F0aXy4BC3qg3fQV9pwo0SRTIO9bz/4WO+AYFSDdDvrcM4GPoKYJ+osHmJc4HRTzwWAqN7L+wl5c\nOhANVCzmLQEQCrHgm9/Ai2l2fLm+xIN3MmGqeaX14PfgS0W20IgvNnt5D+iDW+vbp3ih4senXPIG\nVznlIkC0YBC7mkRj588HYglhu5mGf82CHmJz8kke2mc3AaEw6OFDbhkEccEUnwd8tZFkclK7XbJY\nqHLph/oNPJdo/PIfP7mVB18b/E7oh98B3b+XdTtrZWTlT3w0mYG3DXT3IluLthfutHWALFrGngsL\nJXUrZZCVJ9nbheyaisG8LBlclxfzxxvEuv9bsB7Zzh7kc0HjxA1XwIO3X+fR4IWaL1yn7V4EDA14\n78T8ZMAAACAASURBVDoCHnzJW1uFw1e1ToWXJ2jwlFI2zq5uYCzLHlfLta8CtSyvF3308e6Tft18\nQQ/Tt2UeS1UPXmfrCGSvL0qKenEN3r8AafnRTDs/NAASE4qS5YMG3lPdtFwKjretk5UtKBa9K2xF\npB68IU2TBOw7WMXE6CF23o9lQU5/w+xIuJOADg/C3CSpZT8msTU+mszAl6D9w5egfegzbrDRnzWR\namNt7gDbANonUDzh1nExKiznXJZGZL8mIHk0AH3gW6A/+CZ7kMsGNd9olcJePFfZo8ELVRvtICsJ\nR9j8+LwBJ0fe2W+pJM/gcfqKToEkJda3L5eZgYzFWXGycslZpSnrPiXFHi83stqHPgOccQ57Tmif\np915L8hf/JW3bo9IldtU7frboX0i2FIS4TD7HfiPFV9jIcsRT6ZYSYSE6MH7ymR0LnSLwPFtfrmH\n/07FgmZ+Ah68LY35JTjlwddHKAw6eABYeARLwxXvwJqZl/cAzzzm2j3OmMTW+GgyA18B2tpBolFX\ni/Zrru1CVx5DqD+STIOKVQLjCXl2Bzfw934F1j13BJ6m2QzML99c/9h538yxrCfvGoDrqfmDrFow\nD96TJil65L5uRJ40O49E4/M+uf5bTcaoB7G+vVgQLJFmPzZ/k+iJEJt3gFXTdBboCDIXSbexgGIx\n6F0DADnmROnuSSLJfkt+whGnLK8Hp0SAxCNOpkGHBlyJJpH2GnjTABYtBd3xEzcfXnbB5XX1y5Jm\n5xz/uoJQiJUdfr7fK/9xw648+NoIhdgFOJkOXqCbGMrl5Oe9krOnB0IVmsvAl4Xl5tEYUC4Gao+w\nvpq2lyRmKIhfWKXMtKlqHrx9YtNHH3I2U8NgC1AG9gMvPlv/2LlnO5ZjJ7/IOKsHtX/fCiKmJEbj\nQqckwWDb2RfOeCtCl6ZIlF3dZRIN/4xj5UawLnitFsBbToAfe368CzWmpxqVYGzA7uQV0M1DdoaL\nzMC/dS20f99W6yzG8eCFZhp+ojHWj8A2sCSZBBVXuxoVkDPOYStoD9nynywmwnvbFsfx4P2ZY3qI\n/S5POYutxOUoD74+9BCQOQySTHkdwmbHVhuoP26YbzUP3hB6SFbz4NsEQyemCSXTbjYH9+BlKyyL\nebb6EQCWuW3IrFs+CuuGD7IsCNkq2gnHbnu2stsmvsLSb7QgePEcsTWesJydtHUEm5vwu5cjloL+\nx0ZYj2yXdq8JfMZkETOVeCVJwA048uNdq4GXpI4GGntzuD4uy/kmpL687lDY0eC9n1HdgyeRKPvd\ncQ968XLQb33VfQFP9+zqhrXpc6CP/Vp+wY2xGAstFbwFzTinnQ1y5rm+8YaAfA5ELCIHuHcTkt+V\nQkIoxM7vVvPg970KHHeyV/4DWlCDt6hzQpBoDLRcDCxNJ+2doKMjrDEyhLrmyZSbzWEYVT14WsiD\nJFPQbrgDoBYrQwywAmXDg6w0baXs7L9muDwhC7LWcwIm0955cGPT1hmUaPiS9ndfCfLmPwNGhqZ3\nhaLY/EJM84uwgLiT/TFYY3zj0EGmh4pUk3f06h583YQjrC9rVQ9e8hk855wXAHvrOoBobryBfx/2\nd0+HBuUSDW+IXZJLNPqHPwPt4r/0bgyF7Mwyn8RnH3/6Soun+80UoRBo5jD7jgSHsJmhxQLw8gsg\nq9/oPf8Bu4tZK3nw4bDr5Vbz4FNtbNGPP8k/kXKzOSoV1m6uUgn2LSzYaYzJNPD6K7DWX86289dl\n7LaANXrxzv4pWKNjWepSXQZe8CzEglR8BSTHX8skErWXrU+fgSe67pYl8JX0peWi48Fbd3+hpv3R\nwf0g3Ys928gF7wB5y58HX6yHmPGfCr05PJEHLzmGfNU0l2gI8RZIcwy8fcIlktKYiBNEHy/I6kOU\n4gLPvbMPZM2FNe1n3mOf80imgXQbkB2pqa/prLL3JWDJcrYWxu/BywoY+mguAx9Ysl90l4c7r7Fr\n0fhWCJJI1M3mMCrs/RoJZo8U8swLE7xs1nWHMsO8316J6C9X/OqL8h8DXyxxfC/wf0+xcfmzOuox\n8IkkUMyzlEjRiPvzrsUsGoDNd5oNvFNO99mnQPe+5LTCc76rGoofeRjwNScBoP3RedDe8375ZwNT\n48GHIkyqq+LBS1f9cuPqD3LyNRmGARIOub9VnvkiKx1RKgQbkYwHl2IkVVK1tX8N7dy31LafeQ45\n6TRbQk2xdNdo3HXompVigdmENl8MzjJtWzN+8kRzGfiQzMD7PHjuNZWLbkCWk+5ggbBKmZ1goYhb\n34YzlmUHTPSyR0fYAWzvBH3tJbZNkApoqQjrnz/Buu34sO77OnDWuSDHnAD6h+ekDZPJ6eeAvO3S\nmg4B0XS3DZ1gxEky7cpJQHAJPJcQprPXps40TOuOz7C0UGcBl52maZSdEsY1FXrLHAb8JYnH+2xg\nyiQaMdge+IxqQVbAa+DFNoP8YswdCl7rRibRlIrsLtRfDbQa/DOnIhNqHkPOWANy9ptBjj6BbZAt\nIGw2uJTXfQQweMCVQW27OFHsqbkMvMyDr5S9P2zenFnM4uD0LGb6r9PIORwMtI4yo+IxwpnDLEul\nvRM4aKe42R68ue81VljKMJj8IsD1Me191zLpaGRImpNNOrqgXfo3tR8Hrg+K/Uf9mqEQZAXgHqNp\n9uDpM4+zv03TnWuEZTyhUgF545/aF+EaCpDJml6M89ns/8YNPOESTTUNfjwPXmxeLjYp4XIMX4xW\nqYAaBkigdESUXVyKefZ7qwVl4KcE0tEF7f0fZ3X3AXkJkBmA/t/vQX+/EzQ7Gnzuyd96nCNaLIJE\nYyCJFLD0SGCPXcZ6vIVyAs1l4MWTPRpnRsO/GpB7TRIDT3oWs4jzoYNsCb24utWGZkactERy/ttY\nbXBbyyK8XGvHAqceTP6um0C33cu2533ZIc89Axx1HLvdS6ZZ303/XcVksEvKelJEk768a78GH50B\nA6/rwL7XXFnFaRYuXIzDETcvfwKoKTGAVT/bvpOZCg3eiVf49sXTZyV3alUlGo8HHwJ561pg0TJ5\nMTMIGU3tXbVn/vCLyiz2OZiTdHR5ZI+ZwrrzRlhfvgn0/v/2bKeUwvrXz3v7MpdcKY8ceyLoK3+w\nt9cWw2nYwFuWheuuuw633norACCXy+Hmm2/G+vXrccsttyDvN4rj4THw9sKWkk+i4dUkq3jw9JEd\nwKJlIKm26h4871h0zoUsuFqx+6J2L3L2wyUasqCHbetYECg/TPsfB+llRblIMsXkoQmK/9REMs1W\nxIrylKz2ScgXgwCmOYsmzO5ieCDRWbNgl3fmslEkVpOBl9ZEr/rZ43jX9RKNsSYofgeB39XJyljI\nPHixLhJPk0ymWT58pSyXaDidC2ofb0J58NNCPFl7Su8U4Ynj+Q00dxbEgn5itlX3YjdDrVSYGQP/\n4x//GEuXLnUeb9u2DatWrcKmTZvQ29uLrVvrKD4lBk2jcdBSAbTia7KsaYCusYU9fgPf1gnsfQlk\n8XJ7f5LuT5nDbq3zMMvrpuUya4tn5xmTdLubj21ZIH+2DmTlySy1ToAOD4IstueeTDOJZgoWnZBE\nErQw5pNobK+e/0BkWTTA9Hvwdoci9pmCRBPw4GvIQpLVr68GN6xT4cE72T/BNEXt1v+Atv4fg++J\nRJkBFz9fLF0tfh+eevPB8Wp//zlol3+w9vHawdW6Sj4rJiaWmPmeEWLZb386NXfgRDsjLIjzSErF\ncVZCCzRk4IeGhvDEE0/gLW9xo/i7du3C+eefDwC44IILsHPnztp36PfgSyVmUPyyRzgKZDOBDkk8\nhc25jQ55PXhqmewg8gUjvAyrbZiI3bQBsbjTJJmODIOc9UZvrRtOqehmNiRT9kKcKfDg4/YPT6h9\nTsIR1rBZ7PYkrgKdIQ0eEOrYeySakuDB1ybRSNvWVYOng8maqdQLv2hKNEzS1Q2yoDu4PRoNVgnl\nGV2Az8CHQX/4HeDZp6TfB+k9A2TpkTUP15Fymj2lr9WIJ4BCbWU1rB9tgfXbHY1/pnh36PfA8xID\nL0g06BY6iZVmQIP/xje+gfe+972egGUmk0FHB5NAOjo6kMlkqr09iF+DLxWCQVaAeY7ZTNCDj/kM\nvN+DL7PsGiLe7huGW1f51NXQbv0acNRxwIv/BwCwRoaZxy+72os6mKw702ThFxN/BpG/GYg/6whw\n4wjTAR9LwlsFk0Sjdh687cHzi/NEGEbNHrnznTXS/5UjpnfWSkRi4D1pkoLcZP+O6WO/ntIL7pxq\nN9cEkHiC3SnXAN12L7toN0pOkFn9Kdw8xuYx8IKnnm5zXzPdEs3jjz+O9vZ2HHXUUeMuFpAtz6/6\n2rDPYPFywX6jGa5i4PkJyA29ZcK672vu8/6sjRD34NldAiEEpGshyEmngz77NCilbOVbWzsQT4B+\n7xtshSJHXGXLjd5U3EbHqhh42zOmlgVYlq82uP0638KhKYX/0BwN3ifRlEs1STR0/15Y/3Zr1do5\n4zKZMhJ+uOdTwy2uQ6ot0MaQRCJuH2FxUZN40ZrCmIjTOEYxNcTrlGimwHmjhTGAS8j+Yoi81ErR\nb+CFYoX2+U9LRanE6GfSv75nn30Wu3btwhNPPIFyuYxCoYC77roLHR0dGBkZcf5vb2+Xvr+/vx/9\n/W7n+r6+PoRicSTTzHiYXQswVikBCCPZ2QU97S7JHY3FoOVzCC1Zjpiw3VzYjSyAWGcXouk0zA98\nHLlbP420/RqrXEQ2EnUfG2VkLRNRQkBTKcTt7VRfhkw+h3Qshoymoa1rAQqVEkoAEtRAyH7daKWM\nZOcCZ2wjAHTTcPY/WYodnbAG9qFcLiG1YCE0WxIZjceRDIegxWPIhMJoa3PzqM2OTmQBpI9Z6UpV\nDRKJRDxzKXV0oAAg1rUABQDxtnZE0mkYnV0oGAZIYQzRnkUoJ1II6xoiVY5D8X+fQPGxX4Ok2pDs\n6PB8t+MxAkC3TKQaPL6UUmQ0DdH2ds/vR8Q/d5y0CvQfN3lq/eQTSeg6QTSdRsY0kOrohJZKo5xu\nAz9FI4mk87tqaMz3/lxaZ2iqCcx7DmMs6Ea+VHTmO97cRwDo8UTDx6ZELZi9p4OcfR6Ipnl+f6VS\nAQUAUct0tueMCqIdXQhzGxOJIh2NoAwKM92GhL19y5Ytzn56e3vR29sLoAEDf/nll+Pyy9ky/927\nd+OBBx7ARz7yEdx7773YsWMH1q5dix07dmD16tXS94uD4BiVMrJZXjDMhFXIA2YUYxUDJOve2lh6\nGNbhIZhER0XYTi12J1EkGsrZLGgkDlosuPscGQYNhdzHxSJouYxSLgvEEzCcz2ayTfbQAEgshmw2\nC8vOpsmPjDhjsQp5jBmmZ2xmLuvsf7JYmg5kMkCphFy5DGLZnxeKYGx4iHnMobDnc6idOpszTKDB\nz+ek02nvZ/Be5rY0VDRNlLJZUNOCVRgDsgascAxU02BkRlCqMg7z6ceASAQ0N4qxYslz/CbCyI81\nfHwBANE4SiCe34+If+4yLKKhkh1lv7VKGbliEYQCluHmMZdN0/ldtQK1zHuuQC0KayznzHeiuZt6\nqPFze2SYBd6JBoxlnd8fpRTW1zYBuo7SyGFnu5kbhUUpisLnZt73DpB3XAaEI8hms0in0+jr65N+\n3pTnwa9duxZPP/001q9fj2eeeQZr166t/c3+FCInyFqjRMMLQTk1u4Vl/0Cwkz1fTl7x9jYkoRAr\nczCWc27jtTe/DTjpNK/04CuEBmBK0q5ILMFKmVLL1+DBDl76yxSA1UzXN9/f8GePC2/g7QRZhdLO\npaKbgsq/u2ocHgJ67OyjeiWtqZBoADbGeiQaGWIefEWsOyP8jlXmS/MST7iVWwWoZYHKKk1ORZoq\nr4UVDrPfDKfIWjiSde91bBbN51iyh5htw/tOPP4bkONPmfDjpuSe7+STT8bJJ58MAEilUrjxxhsn\ntyOPgbd1XAJ5kHVUkkUTCrHneEEocdl/Mh0sUMb7uEozdSJAzvcZQnYIpVTeALrGoM24xBMsnTMS\n9cYwxNZ8s1EDnGuB/l6y0SjTD0sl9lw8MX6lvtERYGUvK6RUh+xALnwHcNTKSQ7eRywGUk+QVUa6\nDRg8GKxs6skgUpkvTUvcdQDFktr0Z98H/f5/BRwmMhXnXCHvlucQNfixLJC0S6jsfw30ke2gT+8K\nVozkOfIHXmclhCeguVayCkt0iaa7Vf9kQdaSZKETwLx4UYMWl/j767foOvvMqncJox4DTyJRUO6Z\nllnt+kCtdYlHUDfcwPsNUFT04GfBM+TByVicHTsxDz4/xnrnahqwcBFbTSyBmiarbc7LBNcxD+3y\nD05dYa1ovPZiX1UgJ54GuvvJYOMS0cDnp+CCr5gWiK4zg5rzOiN095PyN0yFB1+0ix3ytRIcu1EQ\nK4eeYcY9P2bXfJfr/rWs6p7+qE0dBLJxIjHpYhgSjTO/SGLgyVv+3FtjPOHr9CQYckIIoIdAC3lo\n/otIJAqazUCLxV0fTMzvLgs58Dba1Z+qvR/peMTiQHaENbQW52ZfYEg9K0CnEqe3bIQdR1GiAdyF\nYj2LYe36lXwf2Qz7wTprFWbnJ0je+BZgSe256FKWH82qEWYz3lXFp57NCkP9/ActUXN8XsM7xAk9\ngHn5ApapEnMl3ik452ghDy2RAC0UJB58imVqHR5i5Qq6j2CqRgPZO01l4AO3s9EYa4XmT7XkmlQs\nmC2iveMy32v9HrzvYIVC7Eopk2j8Or9o4CW1IMiZ52JKeutEYnYxL780JUg0s+HB8/mGo3Y6pJ0H\nz6UJHo+QVOmjzzzGvt5Ekp1UfF+zpFFrF76z4X0QQthchge9Bn5BN0jflTB//oOW6Ro0b+G9jpcJ\n27IjzFkZ2M8u4kV3VXvD8HLlFYMVpHv1DywFN2976u0dTLqMRIDhQ0AyXVequZ/mMvCWxMDLVkTy\nWxaZROODLWbIM8MrtgTkhOz6KgEPPgLkmEQj9eCFVaZTDt+vf//8eEiCrDOC0zw8AtJ3JeBfVMWN\nXNdCIJvxFEuzNn2OPXfWuewHbX8PdbXaa0baOtnaCMmFStvwOVZ4TNG0kPZO0MxhxzGjRoWtbl15\nsttghydW1NvlTUaeNQQixTwsowJ6098DRx4Hct5bWfJC2r6TOOUs4PFHgCUrpLvRPruppo9rqrOL\n+I1sNCY3oo4HX0MWhBgYrZRBQhIPvjBWNVPHE2QVLzh1dOSpm2oGPmIX9ZqtICuXpEIRaOdcEMzL\nDnGjrQMLe4BBiQ4/sJ/JM9NZFG0mae9gt9OykgQnn+GWv1A0J22d3l6noxkWPI8lvGVBAG8RsBqg\nLz4L+vwz3o35LOuZIJZRKZeA3CiQSDFdPZkGOWMNe07Wc3XJCpDlRwe3S2iqs4z4CzDF4vKgZaIO\nAx8VvG5/kBVgBzpzONhmLxIFzY66wUB7m/NjmFYDz4OXEgM/lps1iYZoGrRPfoHVZZEhGrmeJcDg\nPmCpzwM5dBBk+TFzxsCTtqBEo2gh2juAw0JXp1FWjJDE4kyDB9xyJ3VKNNaD2wCjAl1MZ+SNssUg\nq2UBhw853rp2zadZU3cgEGDVbvk3aWevajSXB++/WkWi8j6Ufu13PPgyeiCYJgnYV9Jy8EoZjjAt\nzq/Bl4r2UvsvTJtEw/p9Rj1VNJ3P571PZ8mgkJXVU7PEaoeke5FT+c4TPOd5wFNRNKwZaO8EHRpQ\nBr5V8XvwGTvgylsrAo6nTevw4OljvwYe/w3w/DNOFyZaqdjtRONuijYAWCbowH4Qu88COb7XrXjq\ns0ukZwn+X3vnHhVl+e3x7/MCc2EQaJBJkAOkLkAdDirKyRt5iY63Sj0dT5fzS1sdTUNtaRf1eGnV\n0uOqVV7SpGyRlq1WVobLf0qPK4wQKtEWeQRLRCcFuQwCAsIgM8/54533ZYYZlOHi3PbnH+Wded55\n9gzs2e9+9/5u1tMpaPAwB98VplQ7v4PsSvSnuEcEL72BXd/IIAVQXQHBVlnQejXAi38Fbrf0vY76\nXvvu6uCt+tW8rdWhB8AjsHVyIaFAi7VEsL2LZLM6+L603d8XgkPEXK07qpqIPiPl4CW4sUa8ald2\nCQwBl3LwvLQYLH2WdQpTiXjwdrOYhmGsi4O3OM4nDgwUu127KZHsKR7t4KFUOp+QpHVBMdHOwTuJ\n4KVvyq7HrZOjAoZ0at0zlRr8dov4xkv7GygUSscqHc0gscOu7Tag9kAHb5sXtI2ApPdfkvxVBzuU\ngHot6mCg6RZF8N5K6AOdN1MBoKZSdLRKNfi3B8V69DtOBnHci9stQMJosFFjwEuLxWMtTfaqs3LJ\ntUkst9Xq5OXSVbycju4lHu7g1c5TNHEjIOz7tofn6EEO3hnWLxbBxsFjWCJQVgq5nNOFXJjLOLvB\nLE11kkqtPAhh3xGwR5/oPGArbSy9/5KKnkoN9lBCzz9DD4apg4HmRrfV8xN9JCzcbmyfnCqxBle8\ntNiqehrgWgTf0iRO94qJB6+6Lh6U8u+AWIEmjYZsagQeGOx4VatU+ngEr1I5VtZY6XHbsMJGm7y9\nzfGKoLt0j/UqgYV3jlZj4RHiqLWrZeKB+52ikeaytt52vCnsZlhQkH29ru0lrtXBs7gR4s/Wcth+\naf12N+pg8Q+fInjvRDMIMLWCd9wR7xVV/g08GG3TtR0sRvBKtWtlklIHqm1PiE0Ez1RdglfbYg4J\nha87eEU3ZZIunUPsSOVms1gCZduxBnSbCxbmLkLAJ8cc6rTZ6LHgf/xmfdIAvn0KhWMKyDaC98QU\njQ1MKSp5AhC/WGOHQXhmmfhz1zGK3ozKvR25RN9gjFnnL7TCcuO6mA9/cGjn1bk6WLw5qlK5lqKR\nOlMjowBjlSxgZnfTNKRT7htNtxzPoVA6Fp64iEf/VrJ/igcP7lukypQq8PNF4DmHwG/VQwjr4uAf\nngbek/Fy0vMTk8GPW+fM9kdnW3c4S9EEh4g3alpbPC5F44A0iBuwDm2x/sE8lCBWCfgKkrAdRfDe\ni3XwR8fVv8BG/jMYY7KAHCyWPkXwTKkCQsLE3L5tDh4AGz8F/PJFsNhhon5TF9jIFPHLpg94toPX\np/a99V9yko314s2UrlN5kscjINm5Zr1TbLs3B3KEmpMUjaiWqQSvN0LwsBSNA11z8FZbAv77PTdu\nagCwnf9LeCeqYKC1RYzgpc5j2wIBhVIsxug6gQnW0seGOrDITgfNzWZxvfTlPzIF/MLv9jl4AMKT\nz911W8LTS/tomKenaPoDKc87KNSqV/7A3Z9/L2zXD2AEz8Y+DOZMGjdYA9TVenyKxqGKZqBkHdyN\ndCXVJfVHeBFqtZiiqa7orEWXgr52kxjBq7qJ4It/heXALvtjbbdFbXdrCpfpx4H/3zmxi7WPOXVX\n8X0HL6VfLBZRY6Kvb7Dt+gF08MLD08Fi4h0fUKrFLyqPT9GogKoK8JLfwa/85di05SNI93Du1gBG\neDhWXXhzVYVci84ih4A9vVS8CpUcvJMrdl5d6SCsB1OXQUAjxwCXSsDr6/pc9ugqvu/gR4wEHkoQ\nBaHUwX0Wt5LXJyaDzf63ftigi0iRRD/NXR0wrNLClp1vgv9wxHmVgI/A/pEp/hETXglTBYO3togO\n2LZL1Ea9lXWXg6+9ATTWdxYUAA5S4kwTAsTEAcW/gVEE378whVLUiG+o65l2TU/POybNroTyvqHs\nvLvv0XRt0tKPc9NGBh4h/V99pzPXH7GmaHjX8mN5RKY1gq+tAr96yW6pLMchFV4ATlOS8u8/Ofj+\nhwVrgIab/Va3Lqx/F2zqrH45l8sobepzPRgWGAj2ny+L/5/3NDA80c07IohuUGvEZiPY92YwpVKs\nsLtzRw4O+S+n7Nc23QJ78lnw/z3aWXnjZFYzS58F9o+XAWdp1wHELxw8VMFiK3A/RfBseFL3iooD\njKTP4w0RI5uSAQQGgk2b7TjakCA8BXUwUFcjdiXb0jWCR2fELmNqA5s4U0xBStG9swg+NBxC+qwe\njdnrT/zDwavV4uirgew8vV+oVB4fvUuwgAAIb+0F62vlEkEMICxuBPiFc2BOJMPRbgJvvtVZJeXg\n4FvFjvu4EeCVf1uPeU7VmJ84eOsH5wsOXqnyOJmCu8F00e7eAkHcnYTRYp+M0KXrRmmdR3GrAUxS\nla2rlme0cs4750LoosQbroDdJDN34x8OPsQ6DFrp4bXjPUGp7tebxQTh70h5d0tjg/0D2khxWlfD\nTWDwEAh7vxavnputsgIdHQCY2MWsi+pM37SbPCaY9AsHL+fLB1Ja4H6hUnl+BQ1BeBtMECVAbA9p\nQgAhQHTyoeGi7EBoOCyvLgZvuy2mZ6yOnD0YDRSfgXnpEwM7r9lF/MLBS3CTk/F/3oaSHDxB9DuD\nQp0ftwqCyQN2JMXU6huiI5dUJ2PiO5VpG26Sg3cLkjaKF8OiYsGGJ7l7GwThU7C5i6B49HHH42P/\nBUhM7jxgbWjiNZVAW5vc0MeEALAZc8XHjn/nMeqinrGL+4UvOPhEPVii/t5PJAiixwgz5iF40CA0\nNTXZH3/qBfsnSj7k2hVRYM4m1y4sfB7m78UhNvy6YUD321P8xsGzf38BTJooRBAE0QuE55bD8sN3\n4N9/K851s43uAbD/+C/wi39AmD7bLfvrSq8dfF1dHfbu3YvGxkYwxjBz5kzMmTMHzc3N2LVrF2pr\na6HT6bBmzRoEB7s/Zyw8tsDdWyAIwsth46dACAyE5cP/EQ90qWgTHn0CsB1d6WZ67eADAgKwePFi\nxMfHo62tDevWrUNKSgpyc3ORnJyMJ598EkePHkVOTg6ee+7uuscEQRBeg81MCebhInq9vskaHh6O\n+Ph4AIBKpcLQoUNRV1eHoqIiPPLIIwCAadOm4cyZM/2yUYIgCI/AtjPb2cwGD6JfqmhqampgMBiQ\nkJCAxsZGhIeLbb3h4eFobGzsj5cgCILwDKyyBeyJZ8HGT3HzZu5Onx18W1sbduzYgSVLlkClco27\nLQAACqdJREFUcuzeYqzPQ/cIgiA8BhakEOetTpzu8aJ/fdqd2WzG+++/j/T0dEyYMAGAGLU3NDTI\n/4aFhTlde+HCBVy4cEH+edGiRYiO9kzdkkGD7q+GsydBtvsf/mo34ILtX+cO7EZc5Ouvv5b/P3r0\naIwebR1sz/vAnj17+MGDB+2OHTp0iOfk5HDOOc/JyeFffPFFX16Cc8754cOH+3yO3rJlyxa3vbY7\n7eacbHcX/vr7zrn/2j5Qdvc6gr948SJ+/vlnxMbG4o033gBjDM888wzmz5+PnTt3Ijc3F5GRkViz\nZk2fv53kbyM3EBkZ6bbXdqfdANnuLvz19x3wX9sHyu5eO/ikpCQcPnzY6WObN2/u9Yac4c4PXafT\nue213e3kyHb34K+/74D/2j5QdvuXFk0vcLejcSdku//hr3YDvmk745xzd2+CIAiC6H8ogicIgvBR\nyMETBEH4KJ5dpT8AZGVl4dy5cwgLC8N7770HADAYDPjkk09gMpkQGRmJ1atXy01b0mOtra0QBAHb\nt29HYGAgCgoKkJOTA4vFgtTUVDz77LPuNKtHuGJ7fn4+jh07BsYYOOcwGAx49913ERcX5/O237lz\nB/v27cO1a9dgsViQnp6O+fPnA4DP297R0YH9+/ejvLwcgiBgyZIlGDVqFADvs703gog5OTnIzc1F\nQEAAlixZgpSUFADeZ7vMgBRfejClpaX8ypUr/NVXX5WPrV+/npeWlnLOOc/NzeVfffUV55xzs9nM\nX3vtNW4wGDjnnDc1NXGLxcKbmpr4ihUreFNTE+ec8w8//JCfP3/+PlviOq7YbovBYOCrVq3inHO/\nsD03N5fv2rWLc865yWTiL7/8Mq+trfUL23/44Qe+b98+zjnnjY2NfN26dZxz7/zc6+vr+ZUrVzjn\nnLe2tvLVq1fz69ev80OHDvGjR49yzu17da5du8Zff/113tHRwaurq/nKlSu9+u+dc879LkWTlJQE\njUZjd6yqqgpJSeKUpOTkZPz6668AgOLiYsTFxSE2NhYAEBISAsYYqqurERUVhZCQEACAXq+X13gy\nrthuy+nTpzFp0iQA8Avbw8PDYTKZYLFYYDKZEBQUBLVa7dO2//bbbwCA69evQ68XB8qEhoZCo9Hg\n8uXLXmm7q4KIRUVFmDRpEgICAqDT6RAVFYWysjKvtF3C7xy8M2JiYlBUVAQAKCwsRF1dHQDgxg1x\nSvq2bduwfv16HDt2DAAwZMgQVFZWwmg0wmw248yZM/Iab6M7220pKCjAlCmiqJI/2D5mzBio1Wos\nW7YMmZmZePzxx6HRaHzadqPRCACIi4tDUVERLBYLampqUF5ejrq6Oq+3vSeCiDdv3sTgwYPlNVqt\nFjdv3vRq2/0uB++MFStW4MCBAzhy5AhSU1MRaBUQMpvN+PPPP7F9+3YoFAq8/fbbGDZsGPR6PZYu\nXYqdO3dCEAQkJCSgurrazVb0ju5slygrK4NKpUJMTAwAQKPR+LzteXl5aG9vx/79+9Hc3IwtW7Yg\nOTkZOp3O522fMWMGKioqsGHDBgwePBiJiYkQBMGrP/e+CiJ6s+3k4AFER0dj48aNAMSo/ffffwcA\nREREYOTIkfKl2dixY3HlyhXo9XqMGzcO48aNAwCcPHkSguCdF0Pd2S5x+vRpTJ482e6Yr9v+119/\nIS0tDYIgIDQ0FImJiSgvL4dOp/N52wVBwOLFi+Xnbd68GVFRUQC883N3RRBRq9XKVzKAeJNWq9UC\n8E7bAT9N0XDOwW36u27dugUAsFgsOHLkCDIyMgAAKSkp+Pvvv9He3g6z2YySkhI5kpXWNDc348SJ\nE5g5c+Z9tqJ39NR26bmFhYVy/r3rGl+1PTo6GufPnwcgRn+XLl2SlU593fb29naYTCYAwB9//IGA\ngAAMHTrUbo032Z6VlYWYmBjMmTNHPpaamopTp04BAE6dOoXx48cDAMaPH4+CggJ0dHSgpqYGVVVV\nGDFiBADvtB3ww07W3bt3o6SkBE1NTQgLC8OiRYvQ2tqK48ePgzGGtLQ0uxKo/Px85OTkgDGGsWPH\nyuMHd+/eDYPBAMYYnnrqKUycONFdJvUYV20vKSnBl19+ia1btzqcx5dtv3PnDrKysmAwGAAA06dP\nx7x58+Tz+LLttbW12LZtGwRBgFarxfLly+W8tLfZfvHiRbz55puIjY0FY0wWRBwxYgR27twJo9Eo\nCyJKN6FzcnLw448/IjAw0K5M0ttsl/A7B08QBOEv+GWKhiAIwh8gB08QBOGjkIMnCILwUcjBEwRB\n+Cjk4AmCIHwUcvAEQRA+Cjl4giAIH4UcPEEQhI9CDp7wSywWi7u3QBADDomNEV5HZmYmMjIykJeX\nh4aGBkyYMAFLly5FYGAgzp49i8OHD6O2thYxMTFYunSprOefmZmJxx57DPn5+aisrMShQ4e6FY3K\nzMzErFmzkJeXB6PRiJSUFKxcuRKBgYFoaWnBnj17UFZWBovFgoSEBCxbtkwWpnrrrbeQmJiICxcu\nwGAwQK/Xy+qNZ8+exdChQ7F27VpZAqCiogIHDhxAeXm5LCXgLa3whGdDETzhleTn52PTpk3Ys2cP\nKisrceTIEVy9ehUfffQRXnrpJXz66afIyMjAO++8g46ODnldQUEBNmzYgIMHD95TEfCXX37Bxo0b\nsXfvXhgMBlmginOOGTNmICsrC/v27YNSqUR2drbd2sLCQqxatQoff/wxqqqqsGnTJsyYMQMHDhxA\ndHQ0vvnmGwCAyWTC1q1bMXXqVGRnZ+OVV15BdnY2Kioq+vcNI/wScvCEVzJr1ixotVpoNBosXLgQ\n+fn5OHnyJDIyMjB8+HAwxpCeno6goCBcunRJXjd79mxotVoEBQXd8zVmz56N8PBwaDQapKam4urV\nqwDEyV5paWkICgqCSqXCggULUFpaard22rRp0Ol0UKvVGDNmDIYMGQK9Xg9BEDBx4kT5XGfPnoVO\np8MjjzwCxhji4+ORlpaGwsLCfnuvCP+FUjSEVxIRESH/PzIyEvX19TAajfjpp5/w/fffy491dHSg\nvr7e6bp7IU39AQClUomGhgYAoqTuwYMHUVxcjJaWFnDO0dbWBs65PDxC0hgHAIVC4fBzW1sbAMBo\nNOLSpUt44YUX5MctFgumTp3a430SRHeQgye8EtuRaUajEVqtFhEREVi4cCEWLFjQ7bp7Te/pCceO\nHcONGzewfft2hIaG4urVq1i3bp2dg+8pERERGD16tDx8gyD6E0rREF7J8ePHcfPmTTQ3N+O7777D\npEmTMHPmTJw4cQJlZWUAxGEd586dk6Pl/qKtrQ0KhQJqtRrNzc1yPr03pKamorKyEnl5eTCbzejo\n6MDly5cpB0/0CxTBE17J5MmTsXXrVtTX12PChAlYuHAhFAoFli9fjuzsbFRVVUGhUCApKQmjRo0C\n4Fr0frfnzp07Fx988AFefPFFaLVazJs3Tx5g7SoqlQqbNm3CZ599hs8//xycc8THx+P555/v1fkI\nwhYa+EF4HZmZmVixYgX0er27t0IQHg2laAiCIHwUStEQXkd/3Cg1Go1Yu3at3bmkm6Q7duxwqdqG\nIDwVStEQBEH4KJSiIQiC8FHIwRMEQfgo5OAJgiB8FHLwBEEQPgo5eIIgCB+FHDxBEISP8v9hGBsh\nbQMipAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlgVNXZ+PHvudkgyZAhIQFChCCrDAExAQWB4L6UKlqb\nvq9al7oi2ja21pX6WrEWN0AsdKNq9ddWXJJqW7dqglJQCCBLIEjYt0BIyAYkJLnn98eQESTLLHcy\nS57PP5DMXZ6TgSdnzj3nOUprrRFCCBF2jEAHIIQQwj8kwQshRJiSBC+EEGFKErwQQoQpSfBCCBGm\nJMELIUSYiuzogIULF7J69WoSEhJ47rnnAPjiiy9488032bNnD08//TRnnnmm6/i8vDwKCgqIiIjg\nlltuYfTo0f6LXgghRJs67MFfcMEFPProo6d8r3///vz85z9nxIgRp3x/z549LF++nDlz5vDwww/z\npz/9iXCeZl9cXBzoEAJG2t41SdtDS4cJfvjw4cTFxZ3yvdTUVPr27XvasUVFRUyYMIGIiAhSUlLo\n27cvpaWl1kUbZELxDbeKtL1rkraHFkvH4CsrK+nVq5fr68TERCorK628xSkC/QM/ePBgwO4tbQ8c\naXvgBLL9odj2kH7IGuh/7OXl5QG7t7Q9cKTtgRPI9odi25U7tWjKy8uZPXu26yFriyeeeIIf/vCH\nroes+fn5AEybNg2Ap556ipycHIYMGdJqsCcHnJOT43HwQgghYPHixa6/OxwOHA4H4MYsGgCttVsP\nS7OysnjxxReZOnUqlZWVlJWVMXjw4FaPPTmIFvv27XMnnKBhs9mora0NdBgBIW2XtncmfbgC8xe3\nYjz8LOrMYZ1+fwje9z01NbXNDnKHCX7evHls3LiR2tpapk+fTk5ODnFxcbz88svU1NTwm9/8hvT0\ndB555BHS0tIYP348ubm5REZGcvvtt6OUsrxBQoiuRX/1hfPPivKAJfhQ5NYQTWeRHnzokLZL2ztT\n8/OPQcVBVPYVGJdd0+n3h+B931NTU9t8LaQfsgohwp+uq4GdpaiJl0BFYGeyhBpJ8EKIoKbXroTh\no1B90tCVgZ3JEmrcesgaSPHx8UE7jh8REYHNZgt0GF7RWlNXVxfoMITokF6zHJV1PiSlgCR4jwR9\ngldKBeW4V6gL1V9MomvR9cdg83rUrT8F04QKSfCeCPoEL4TowopXw5nDUXHxzqnaTcfR9UdR3WID\nHVlIkDF4IUTQ0quXo8acBzg/zZOYDJWHAhxV6JAEL4QISrqxEb1hFersc7/5ZmKKDNN4QBJ8GFq+\nfDlZWVmBDkMI35Ssg75noOyJrm+ppGSZSeMBSfAWue6663A4HDQ2NgY6FICgnXkkhLv0muWoc8af\n+s3EXjKTxgOS4C2wZ88e1qxZQ1JSEh999FGgwxEi5GmzGf3Vl6gx307wKbLYyQOS4C3w5ptvMnny\nZK677rpTqrrl5uby6KOPctNNNzFs2DC++93vsmvXLtfraWlpvPbaa0ycOBGHw3HKzlkvvPAC9913\nn+vrPXv2kJaWhmmaALzxxhtMmTKFYcOGcf755/P66693QkuF6CSlJZCQiEruc8q3ZYjGM5LgLfDW\nW29x1VVXMXXqVJYsWUJFRYXrtXfffZef//znbNq0ifT0dGbPnn3KuZ988gkffPABH330Ee+99x5L\nlixxvfbtYZaTv05OTua1115j8+bNvPDCC/zf//0fGzZs8FMLhehces03s2dOIbNoPBIW8+Cb77jK\nkutE/PFdj89ZsWIFZWVlXHrppcTFxTF06FDy8vK4/fbbAbjiiisYNWoUANdccw2/+tWvTjn/3nvv\nJT4+nvj4eCZMmEBxcTHZ2dkd3vfCCy90/f3cc88lOzubFStWMHLkSI/bIEQw0Vqj13yBce9jp7/Y\nMwmqK9HNzaiIiM4PLsSERYL3JjFb5a233iI7O9u1b+3UqVN58803XQk+OTnZdWz37t05cuTIKed3\n9HpbPv30U+bMmcO2bdvQWlNfX89ZZ53la3OECLxd28AwoN+A015SkVEQ3wOqK529edGusEjwgVJf\nX897772HaZqMGTMGgOPHj1NTU8PGjRt9unZsbCzHjh1zfX3gwAHX348fP86dd97J/PnzueyyyzAM\ng9tuu82tTVmECHYts2fanAmWmOycSSMJvkOS4H3wwQcfEBERwaeffkpUVJTr+3fffTdvvfWWT9ce\nMWIECxYsYO/evdhsNn7729+6XmtsbKSxsZHExEQMw+DTTz9lyZIlDB8+3Kd7ChEM9JovMG66t83X\nVVKKc+OP1jeLEyfpMMEvXLiQ1atXk5CQ4NqTta6ujrlz51JeXk5KSgq5ubnExjprQ+Tl5VFQUEBE\nRAS33HILo0eP9m8LAuitt97if/7nf+jbt+8p37/55pt5/PHHmThxYrvnt/cQdfLkyVx11VVccskl\nJCYmMmPGDD7++GMA4uLi+NWvfsVdd91FY2MjF198MZdddplFrRIicPTBfXCkFgYObfsgmQvvtg53\ndCopKaFbt2689NJLrgT/+uuvY7PZuPrqq8nPz+fIkSPccMMN7NmzhxdffJGnn36aiooKnnzySV58\n8UW3F920tqNTsO6iEup8/bl25fdF2u6/tptLP4ZN6zDu+Fnbx3z6T9i/G+OG6X6LozXB+r77tKPT\n8OHDXQ8QWxQVFblmekyZMoWVK1e6vj9hwgQiIiJISUmhb9++lJaW+hK7EKIrKd0Ig9ufLNAyRCM6\n5tU8+Orqaux2OwB2u53q6moAKisr6dWrl+u4xMREKisrLQhTCNEV6NISVAcJ3vWQVXTIkoes3tQ9\nKS4upri42PV1Tk5Oq5tQRMhcV7/wdTeq6OjoLrtpiLTdP203a6qoqa3CNtyBMtr+f2/2H0hN5aFO\nfw+C+X0/eQW9w+HA4XAAXiZ4u91OVVWV68+EhATA2WM/dOibVWYVFRUkJia2eo2Tg2jR2vhWsP5A\nQ11zc7OMwXtJ2u6ftuu1K2HgUOqOHG3/OK1Bm9Qc2I+KjfdLLK0J1vfdZrORk5PT6mtuDdForU+Z\nY52ZmUlhYSEAhYWFrtK0WVlZLFu2jKamJg4ePEhZWRmDB8tcJiFEx/SWTR0Pz3Dyxh8yTNORDnvw\n8+bNY+PGjdTW1jJ9+nRycnKYNm0ac+bMoaCggOTkZHJzcwFn8azx48eTm5tLZGQkt99+u5StFUK4\nRW/dhDHtRvcOTkyGikOQNtC/QYW4DqdJdqbWpknGx8cH7S+JiIgImpubAx2GV7TW1NXVeX1+sH5c\n7QzSduvbro83YObeiPHCa6iYbh0eb76+APoNwLjgO5bH0pZgfd/bmyYZ9CtZfUlC/hasb7gQIWdH\nqXP3JjeSO3CiBy9DNB2RcsFCiIDTW90bf3eRMXi3SIIXQgScLt2EGjLC7eNVUops/OEGSfBCiIDS\npglbS2CQhz14GaLpkCR4IURgle2B7rEoe+trZlplT4TaanRTcGxyH6wkwQshAkqXejj+Ds7dnBLs\ncLii44O7MEnwQojAKt0Eg90ff3dJTJH9WTsgCV4IEVC6dKPHPXgAlZiMrjjoh4jChyR4IUTA6JrD\nzg0++p7h+clJsvFHRyTBCyECp3QTDDoLZXiRihJTJMF3QBK8ECJgdOkm1CDv9hJWScmy8UcHJMEL\nIQLGOYPGiwesIKtZ3SAJXggRELqhAfbuhPQh3l3gRIIPonqJQUcSvBAiMHZsgX4DUDExXp2uusdC\nZCTUScG/tkiCF0IEhLfTI08hwzTtkgQvhAgIb1awniZJZtK0x6d68P/+97/55JNPALjooou48sor\nqaurY+7cuZSXl5OSkkJubi6xsbGWBCuECA/aNGFbCdz6Y5+uoxJ7oSsOEpxbAgWe1z343bt38+mn\nn/Kb3/yGZ599ltWrV1NWVkZ+fj4ZGRnMmzcPh8NBXl6elfEKIcLB/t0Q3wPVo6dv15EhmnZ5neD3\n7t3L4MGDiYqKwjAMzjrrLFasWMGqVavIzs4GYMqUKaxcudKyYIUQ4UFv2YjypDxwW6QufLu8TvBn\nnHEGJSUl1NXV0dDQwJo1azh06BBVVVXY7XYA7HY71dXVlgUrhAgPeu0KcIzx+TpK6sK3y+sx+H79\n+nH11Vcza9YsunXrRnp6OkYry43b2jC7uLiY4uJi19c5OTnYbDZvwwmI6OjokIvZKtJ2abu3zNpq\naraW0OPnT6K6dfftWv3TqT18qFPej2B+3xcvXuz6u8PhwOFwAD4+ZL3gggu44IILAPjb3/5GUlIS\ndrvd1YuvqqoiISGh1XNPDqJFqG1g3ZU33Za2S9u9ZX7+HxgxmrrGJmj07Vo6Ihp9pJaaygpUVLRP\n1+pIsL7vNpuNnJycVl/zaZpkTU0NAIcOHWLFihVMnDiRzMxMCgsLASgsLCQrK8uXWwghwoxe+TnG\n2EmWXEsZBtiTpC58G3zqwT///PPU1dURERHB7bffTmxsLNOmTWPOnDkUFBSQnJxMbm6uVbEKIUKc\nrqmCHaUww8KOX8tMmt6p1l0zTPiU4J944onTvhcfH8/MmTN9uawQIkzp1ctQGZlelydojUpKRleW\ny1z4VshKViFEp9Erl6KyJlp70cRkkJ2dWiUJXgjRKXRVBezZDiPPsfbCSSkyVbINkuCFEJ1Cr1qG\nGjXO8tkuzo0/pAffGknwQohOoVd+jhpr8fAMyNZ97ZAEL4TwO11ZDmV7YcTZ1l88KRkOH0KbzdZf\nO8RJghdC+J0uWoo6+1xUZJTl11ZR0RAbD1WHLb92qJMEL4TwO71yKcqixU2tSkqBShmH/zZJ8EII\nv9LlZc5pjMNH+e0eKjEZLTNpTiMJXgjhV7poKWrMeFREhP9ukpQic+FbIQleCOFXfps9c7IkKRvc\nGknwQgi/0WV7ofowDHV0fLAPVFIKWsbgTyMJXgjhN7roc1TmBJThx+EZkNWsbZAEL4TwG130X1SW\nH2fPtDgxBq+19v+9QogkeCGEX+gD+6C2GgZbsPdqB1T3WIiMhLrg25AjkCTBCyH8Qq9Zjjr7POem\nHJ0hUebCf5skeCGEX+g1X6DGnNd5N0ySssHf5tOGH3l5eXz++ecYhkH//v255557qK+vZ+7cuZSX\nl5OSkkJubi6xsbFWxSuECAH6cIWz9szwjE67p0pKQVfIxh8n87oHX15ezieffMIzzzzDc889R3Nz\nM0uXLiU/P5+MjAzmzZuHw+EgLy/PyniFECFAf/Wlc+cmP9SeaZP04E/jdYLv3r07kZGR1NfX09zc\nzPHjx0lMTKSoqIjs7GwApkyZwsqVKy0LVggRGvSa5ahzxnfqPVt68OIbXg/RxMfHM3XqVO655x5i\nYmIYNWoUo0aNorq6GrvdDoDdbqe6utqyYIUQwU8fqYXtX8OMRzv3xvKQ9TReJ/gDBw7wr3/9iwUL\nFhAbG8sLL7zA559/ftpxSrU+IlZcXExxcbHr65ycHGw2m7fhBER0dHTIxWwVabu0vS3H1yyjMSOT\nuF7JnRSVkzlgILWVh/z23gTz+7548WLX3x0OBw6Hc+Ww1wl+69atDBs2jPj4eADGjRvH5s2bsdvt\nVFVVuf5MSEho9fyTg2hRWxtac1htNlvIxWwVabu0vS3NywpQY8Z3+s9Iqwj08Xpqyg+iunW3/PrB\n+r7bbDZycnJafc3rMfjU1FS2bNnC8ePH0Vqzfv160tLSyMzMpLCwEIDCwkKysrK8vYUQIsTohnoo\nWYcaPbbT762UgkQpOnYyr3vw6enpZGdn89BDD2EYBunp6Vx88cXU19czZ84cCgoKSE5OJjc318p4\nhRDBbMNqGDgUFRegoYyWcfh+/QNz/yDj0zz4q666iquuuuqU78XHxzNz5kyfghJChKZAzJ45mUpK\nRlcclLnwJ8hKViGEJXRTI3p9EerscwMXRFIKHJKZNC0kwQshTqFN07sTS9ZD3zNQ9iRrA/JEUgpU\nyhh8C0nwQggXvXkD5i9uRa9e7vm5a5ajxgRueAZaFjtJD76FJHghBFprzI/yMf/wDOr8izHzX0eb\nze6fbzY7yxN0ZnGx1sjWfafw6SGrECL06fpj6L+8hD64H+OR5yAxGV2yDr1yKercbPcusnUz9LCj\nUvr6N9iO2BPhSA26sREV1Yl1cIKU9OCF6MJ02V7Mpx+A6BiMB3+DSkpBKYVx9fXo9/6ObnavF+8c\nnglw7x2cWwMmJMJh6cWDJHghuiz91ReYzzyEumgq6ub7UFHR37x41tnQIwG94rOOr6M1enVgp0ee\nQvZndZEEL0QXpPfuwvzLbzHufQxj8uWn1Yxy9uJvQL/3N3RTU/vXWvYJxHSDful+jNh9LXPhhSR4\nIbok/ek/UVOuRJ05rM1j1LAMSEpBf1HQ9nU2b0C//SrG3Q+1WViw00kP3kUSvBBdjD5Shy76HJV9\neYfHGldfj/7nG+imxtOvU7YX8/ezMe74Oapvmj9C9U6ibPzRQhK8EF2MXvYJamQWKqFnh8eqwSOg\nTz/0fz859RpHajHnP4madiPqrNH+CtUrKikFLYudAEnwQnQp2jTRBf9CXfgdt88xrr4B/e/F6EZn\nL143NWIueBp19rkYky/zV6jeS0qRHvwJkuCF6Eo2rILYeGhn7P3b1MChkDYQvfQj54yZ1xZAbBzq\nezf5MVAfJPaCqgqPFmqFK1noJEQXYp7ovXv6QNS46nrMl56kvqEevWc7xi9+45xzHoRUVDTE2aDq\nsDPZd2HSgxeii9Ble2HnVtTYSR6fqwYMgvShHP/0Xxj3zkTFdPNDhBZKTJb9WfGhB79v3z7mzp2L\nUgqtNQcOHOAHP/gBkydPZu7cuZSXl5OSkkJubi6xsbFWxiyE8IIu/Ddq4iWnLmjygHHTDOKjIjnS\nLc7iyKynevVGV5SjBgc6ksDyOsGnpqbyzDPPAGCaJtOnT2fcuHHk5+eTkZHB1VdfTX5+Pnl5edxw\nww2WBSyE8JyuP4peXoDx+Dyvr6FsCRg2GwThvqSnkamSgEVDNOvXr6d379706tWLoqIisrOdBYqm\nTJnCypUrrbiFEMIHenkhDM9AJSYHOpTOIYudAIsS/LJly5g4cSIA1dXV2O12AOx2O9XV1VbcQgjh\nJa01uuBfGBdODXQonUYlJaNlDN73BN/U1ERRURHnndd6JbmgWb4sRFe1aS0YBgwdGehIOo/04AEL\npkl+9dVXnHnmmfTo0QNw9tqrqqpcfyYkJLR6XnFxMcXFxa6vc3JysNkCtBO7l6Kjo0Mm5sb1q9BH\n64gYOBQjuY/Pv3hDqe1WC7W2133+ITFXXEvMif+jvgiVtusBZ1JdWU58fLxlncxgbvvixYtdf3c4\nHDgcDsCCBL906VLOP/9819eZmZkUFhYybdo0CgsLycrKavW8k4NoURsKD29OYrPZQibm5j/Pgx52\nOLAPjtdD/0Go/oNgwCCU4xxUXLxH1wultlstlNquDx3ALFmHectPOG5BzKHUdiIiqd2/F2VrvZPp\nqWBtu81mIycnp9XXfErwDQ0NrF+/nrvuusv1vWnTpjFnzhwKCgpITk4mNzfXl1sIC+jGRigvw5g5\nBxUVja45DLu2oXduRX/+EbpoKRH3PBLoMIXFtNaYixehJl8e/PPW/SHpxEwaixJ8KPIpwcfExLBo\n0aJTvhcfH8/MmTN9CkpYrGwP9Ortmv+sevSEkZmokZnoKVdiPnQb+thRVHdZrxBO9JIP4NAB1B0P\nBDqUwGgZh08fEuhIAkZWsnYBeu9OVL8Brb6m4uJh6Ej0V192clTCn/Teneh//D+MOx/osnuTqqSU\nLr/xhyT4rmDvTkhrPcEDqLET0Ss/78SAhD/phgbMPzyLuu4WVJ8gqtPe2RKToYuXDZYE3wU4e/Dp\nbb6uRp8LpRvRR+o6LyjhN/rNRai0dNSEiwIdSkBJD14SfNewdwe0MUQDOMfeh49Cr1neeTEJv9Cr\nl6GL16BumC5rUJKkBy8JPszpo3VwpA569W73ODV2Enrl0k6KSviDrijHfH2hcwu92OAvCOZ3PXvB\n4YpARxFQkuDD3d5dkNofZbT/VqtRY2H7ZnStlJYIRbq5GfNPz6MuubrdjbS7FFsCHDvi2omqK5IE\nH+b03h1tzqA5mYrphnKcI8M0IUq//xZERaEuuzbQoQQNZRjQoydUdd1evCT4cLd3Z7vj7ydzzqaR\nYZpQo7VGf/4hxg/u6PCTWpfTMwmqKgMdRcDIv4Ywp/e0PQf+NCMzYddW50pXEToO7ANTQ+oZgY4k\n6KievdCHDwU6jICRBB/GtNYn5sCnu3W8io5BZWShVy3zb2DCUnrTV6izRsusmdbYk7r0g1ZJ8OHs\n8CHnuKwHtTics2lk0VMo0RvXwoizAx1GcOqZ5Px/0EVJgg9nHoy/u4wYA3t3obtwryeU6OZm+Ho9\nasToQIcSnHr2QstDVhGOnOPv6R6do6KiUGefi14lD1tDwo4t0LOXs4CcOI3qKUM0Ilzt3dFuDZq2\nyGya0KE3fYWS4Zm2SYIX4aq9KpLtGj4aDu7v8nU8QoHeKAm+XQk9oaYKbTYHOpKAkATfSfTXxZh5\nr3fe/ZqanNPn+vb3+FwVGYkacx66SHrxwUzXH4Vd22CIo+ODuygVGQXxNqipCnQoAeHThh9Hjx7l\nd7/7Hbt370YpxfTp0+nbty9z586lvLyclJQUcnNziY2VjSTMT96DDavQV17XObvrHNjnHJuNifHq\ndDV2Eubbr4KsjAxeXxdD+pCuuVuTJ1qmStqTAh1Jp/OpB//yyy8zZswY5syZw7PPPku/fv3Iz88n\nIyODefPm4XA4yMvLsyrWkKWP1MGmryAtHb2uqHPu6eX4u8vgs2DvTucsDRGU9Ebn/HfRgS48VdLr\nBH/06FFKSkq44IILAIiIiCA2NpaioiKys7MBmDJlCitXrrQm0hCmVy2FEWejJl2KLuqkOebejr+f\noKKineOXMg4ftPSmtTL+7gbVMwl9uGuWK/A6wR88eBCbzcaCBQt48MEH+f3vf09DQwPV1dXY7XYA\n7HY71dVSnVAvL8Q47wLUmPGwaa1z7NTf9+xgkw+3pPSFg/ssiUdYS1dVOGusDBgU6FCCX89e0oP3\nlGmabN++ncsuu4zZs2cTExNDfn7+acd19eXTurzMuen1yHOc+58OHoH+aoX/b7xnh+eLnL5F9e6H\nPrDfmniEpfTGtTB8FMqICHQowa8LT5X0+iFrYmIiSUlJDBrk7EGcd9555OfnY7fbqaqqcv2ZkND6\nMvni4mKKi4tdX+fk5GCz2bwNJyCio6M7jLn+o3cwJ1xIbM9EAI5PupjjX35G/CXf9Vtc+thRqutq\nsA0a4lMCqO8/EPPAPmJbaaM7bQ9XwdD2I6XFRI45l5hOjiMY2u6pxtQzqF/2ic9xB3PbFy9e7Pq7\nw+HA4XDOrPI6wdvtdpKSkti3bx+pqamsX7+etLQ00tLSKCwsZNq0aRQWFpKVldXq+ScH0aK2ttbb\ncALCZrO1G7PWGnPJhxi33e86Tg8bjfnnedQc2I+KjfdLXHprCfRJo+6Ib0NBOiERc9UymltpY0dt\nD2eBbrvWGnPdKpovv47jnRxHoNvuDR0Ti3nooM9xB2vbbTYbOTk5rb7m0zTJW2+9lfnz59PU1ETv\n3r255557ME2TOXPmUFBQQHJyMrm5ub7cIrRt2wzKgIFDXd9SsXEn9j/9EnW+fzZFdneTjw6lpMJB\nGaIJOvt2Q2QkJPcJdCShwe6sCa+17nJDxj4l+PT0dJ5++unTvj9z5kxfLhs29BeFqPOmnPaPSmVN\nRH9RAH5K8OzxoshYa3r1hsMV6KZG54IRERT0pjWoEWd3uWTlLRUTA9ExUFcLth6BDqdTyUpWP9FN\njeiipajzppz2mho9DraWoOtq/HPvvTtRvsyBP0FFRkJiLyg/YEFU1tKmiT6wD3Pl55hvvULzCzNp\nfuh29Nrwn5arN8r0SI/ZE7vkTBqfevCiHRtWQd80VK/ep72kunWHEWejVy9HTb7M0tu6NvnwdYpk\ni5RU51TJvmnWXM9Humwv5usLYNdWiI2H/mei+g/CuORqiIjA/NMLGD+cgRpzXqBD9Qvd1AhbiuFH\nPw10KKGlZy/n3qz9zwx0JJ1KEryfmMsLUOdd0ObrxthJmEs+AIsTPNWVoBT0sFtyOdU7FX1gH8Ew\nGKAbGzH/8AwqayLqrgdRrXzcNn7yf5gvPoFhNqMyz2//eq4prJmhM9yxbTP07oeK71pDDb5yLnaq\nCIp/x51Jhmj8wFmaYC0qq50EMzILdpSirS6CdGL83bKE1TvVWdcmCOh3XoVevVFXXNdqcgdQAwY5\nk/xff4/Zxs5UuqEeM+91zKd+hvm3P6BfnY9uPO7P0FuP40gduqrC+anL3XM2fiWbe3ijiy52kh68\nH+iiE6UJ2pkGqWJiUBmZ6NXLUFOutO7ee3ei3NyD1R0qJRVz9XLLructvW4levVyjF/O7fCXl+p/\nJkburzDnPo7Z3IRx4pOU1hpdtBT91suowSMwfjkPYuPQr87HnP0Qxt0Ptjqk5g+6qRHz6Qegtto5\nI2bAYNSJ4SYGDILE5FbbqTetxZh2Y6fEGFbsiVC6KdBRdDpJ8H6gvyjAuPx7HR6nxk7E/PhdsDDB\ns3eHteVjg6Bcga6qwHx1PsZdD6Li3FtootLSMe5/EnPOLzGbTdSAQZh//yMcqcW47X7U0JHfHHzn\nA/DxPzCffgDjR7koxxg/teQbuvB96JWC8eQCqDwEu7aid23FXPox/L+FUFfjHGr7tpjuzkJwwiOq\nZy/MLrh1nyR4i+nyMueQhuOcjg92ZMLLL6KrKlAWlTLVe3diWPkLIykZamvQxxtQ0d6VHvaFNpsx\nF81BZV+BGurZLy6V2h/j/lmYL8xENzehvvs/qMmXoyJOXd2rlEJdOg09YBDmH59HXXClcxjI8M8I\npj5Si/73mxg/e8rZS09KhqTkUx4M66am1k82lJQn8EbPXl2yXIEkeIvpLwqdDwEjO/7Rqqgo1Oix\n6FXLUBf5XrpANzc7Hxqmer7JR1uUEeGcD39wP1g49OMu/WEemM2oqa2v1OuI6puG8dgLEBHR4YNJ\nNSwD45E2BzgUAAAgAElEQVTnMH8/G72z1Dlk44dkqt/7OypzAqpf2++TO/9+hAe6aMlgechqMV2y\nFnX2OLePV2Mnodt4GOixHVsgua9zGqaVAjRMo7eWoD/+h3NIxYdEqxJ6uj3rRCX2wvj5r6FsL2z7\n2ut7tkWX7UF/uQR11fWWX1u0o3ssaI0+5v9KrsFEEryFtNns3EJtwBD3TzprNOzbja71vayy3rAa\nNdKNoSEPOadKdm7JAn30COafnse48R5UYnKn3tv5yWocuni15dc233wZdfn3ULbWi/AJ/1BKOXvx\nXWwcXhK8lQ7sA1uCsyywm1RklPOh2dcbfL69Ll6Ncmfs31MpqXBgr/XXbYPWGv36AtTIc1DnjO+0\n+55MjTwHvX6VpdfUG7+C/btRF0619LrCTV1wqqQkeAvp7VtQ6R703k9QwzPQJet8u3dtjXP8fcgI\nn67TGtU7Fd2JQzR62SfofbtQ3/9Rp93zNIOGw8H9lq1T0GYz5uJFGN+7BRUldX0CQdmdi526Eknw\nVtpZCgMGe3yaGjYKXbLep1vrjWtg6Ej/FAXrxKqSumwP+q1XMO54ICCzdlqoyCgYluH8uVpAL/0P\nxMVDgD6RCLrkg1ZJ8BbSO0tR6Z4neM5Ih5oqdJUP+0ZuWI0amen9+e2xJ8Kxo37fatBZiuBZ1LQb\n251h0llUxjmwwfdxeH3sKPrdv2Lk3BY6JRHCUc8k6GJ7s0qCt4hubobd26G/53tkKiMCho5Eb/au\nF69N0zn+7ocHrIBzPnhyH/Dzg1b99ivOWUBW1+fxknKcgy5egzZNn66j338TNWIMyotPd8I6qmcv\ntPTghVf274LEXqjusV6droZngJcJnt3bIM7m32X2vfv5dRxer12JXvMFxk33Bk0vVyWlgC0Bdm71\n+hq6oR5d+D7q2h9aGJnwShfcm9Wn1RQzZswgNjYWpRQRERE8/fTT1NXVMXfuXMrLy0lJSSE3N5fY\nWO+SXijRO0rx5gFrCzUsA/OT97y79/pVfuu9t1C9+/qt6JiuqsD8y3yMux/yaAZSZ1Ajz0EXr0IN\n9PK9Ld0E/dItW6ksfGCXaZIeUUrx+OOP88wzz7h2dsrPzycjI4N58+bhcDjIy8uzJNCgt2OLVw9Y\nXVL7O8e5K8s9PtU5POOn8fcWLXXhLabNZsw/vYCaciXKDzOAfKVGnoP2YRxeb17n/HQmAi++B9Qf\nC0jl0EDxKcFrrU8rdVpUVER2djYAU6ZMYeXK8N9hB1p68N4neGUYqGEZHs+m0UfqYM8O8LBOi6dU\nirMuvNX0B++ANlHf+b7l17bEEAfs3Yk+4t1my7pkPWqYJPhgoAzjxM5OXacX73MPftasWTz88MN8\n8sknAFRXV2O3OzebsNvtVFf7vkIz2OnGRucY/Bk+7hYzPAM8nQ+/6SsYPAIVFe3bvTvSx089+E//\nhXHjjKAtoKWiomGIw7lIyUP62FHYt8s5p14Ehy42Du/TGPyTTz5Jz549qampYdasWaSmpp52TFsP\nzIqLiykuLnZ9nZOTg83mXinYYBEdHY3NZqNp22aO9u5Hj16+LalvPmc8dR/mER8f7/aDxqOb1xOR\nNYEYP//sdHw81c3NxCmNEd/D1XZfmHW11DQcwzZkeNA8WG1NQ9YEmjevJ/ZCZ5VOd9veuGUDDYPP\nIj4xfMbfrXjfA+lIch+i6o8Q7UUbgrntixcvdv3d4XDgcDg/0fuU4Hv27AlAjx49GDt2LKWlpdjt\ndqqqqlx/JiS0XnPj5CBa1NZ69zE4UGw2G7W1tZgb18EZZ/ocv7bZ0Y3Hqd1eikru0/HxWmN+9SXG\nxVdzvDN+dsl9qdv6NerMYa62+0KXboK+Z1BXV2dRgP6hBzsw33mNpupqlGG43XbzqxUw+KyQ+3fd\nHive90Ay4xNo2r+HBi/aEKxtt9ls5OS0Xm3V6yGahoYG6uvrAaivr2fdunX079+fzMxMCgsLASgs\nLCQrK8vbW4SOnaXgwwyaFkqpE+Pwbg7T7N0BUdGo3qd/cvIHq0sW6P27UX3PsOx6/qJS+jo32tiz\nw6PznOPvo/wTlPBOmA3R6C0b233d6x58dXU1zz77LEopmpubmTRpEqNHj2bQoEHMmTOHgoICkpOT\nyc3N9fYWAM6FJm1MbVKjxgZFVT69fQvGpEutudjwUVCyHty4nl7vv8VNreqdau1ip327IDX4Ezy0\nzKZZherv3nMWfaTOOa3U2+mVwi9Uz16YFhT2Cxb6sw8g++I2X/c6waekpPDss8+e9v34+Hhmzpzp\n7WVPYb7/FnrJB63OQtDl+2Hb16gf3mPJvbyljzfAwb2WbYahhmVg/uOvaK07HJfWxasxLp1myX3d\nkpIKG6yrsKj37cY4KzQ2kFYjMzE/eAuudHO2z9cbYNBw/9QGEt6zJ4IvJUGCiK4/hl7b/izFoN02\nxvznG+gvCjEenI3qefpDKl22B/P5mW4lQr/avR36pFk3iyW5D0QYzvK8fdLaPEzXH4UdpdCJU/BU\nSl9MK6dK7t8NITBEA8DQkfD7Z9BHj4AbD9r05vUy/z0YhVHJYL16eYf78wZdqQKtNea7f0Wv+Azj\n50+1mtwB6N0PoqOdy/QDSO8stbTGyDfj8B3Mh9+0DgYNQ8V0s+zeHertnCr57bUP3tDHjsKRWkhK\nsSAw/1MxMTB4OJSsdet4XbJO5r8Ho4Sezj2G29rzNoToLwpQ4y9o95igSvBaa3T+6+jVyzF+Pgtl\nT2zzWKUUatS4Dj+i+N2OUvBhgVOrho/qsC6N3uCnzT3aoeJ7gBEBFuw+xf7dzk8+ftrY2h/cXdWq\na6uhsty3lc3CL1REhLO+UM3hQIfiE324AnaWoka3vz1oUP3v0m+/gl63EuNns1A9enZ4vBo9Fr12\nRSdE1ja9YwvKky363KCGjUJvXt9mT1lr7Xzg15kPWFtYtD+r3r8bFSIPWFsoRyZ6w+qOP8FsXu9c\nfBYRnIu3urwwmEmjVyxBjRnf4Z4JwZXgN611Jnd3Z8YMHgHl+9ucZeNvuv4YVBwAi2uXq6Rk6Nbd\nOcukNWV7nH8GYPzauT+rBePw+0Jo/L1Fn35gGJgdTJeU8fcgFwZ7s+rlBajxF3Z4XFAleOP+Wc5h\nADepyEhnzW6L9850V/P2Lc5KgX6YKdHaOLzWGv3Vl5jzn0Sdf3FgHi6npFpSVTIke/BKoc4ZT8OH\n7RfQk/nvwS3U68Lr3dvh2FG3tucMqgTvVanYUYEbpmnattl/mzgMy0Bv/mbBky7bg/niE5hvv4px\n43SMq/7XP/ftiFWLnfbtgr6B37XJU2rqD2hctbzNBSa6qhJqqpy7dIngFOJDNHr5p6jzprj1/Cqo\nErw3VEYmbF7vnI/eyZq3bbb+AesJzg1ANqCPHsF862XM2Q+izhqN8fg81IgxfrmnW3H19r0Hrxvq\nobYKkv24QYmfqNh4ut98L+ZfXnIWmfsWvXk9DHUEbfE0gbMufIgmeN3cjF7xGeq89mfPtAj9BB9n\ngzMGer8bkg+at33ttx68sidBjwTMR+6EmmqM/3sJ49JrAr9w5sQG3D5NlSzbAyn9QjYJRp072flJ\n5v03T39x83rUcBmeCWaqZ5JzFkoo2rQW7Emovm2vkTlZyCd4ADV6XKcP0+ijdZiV5X59UGjk3IZx\n30yMH/0UldDxrKLOoLrHQkw3n8Yw9b7QG38/mVIK4/q70QX/Rn/rQbjMfw8BIbzYyTn3veOHqy3C\nI8GPGodeV2TJAhy37dxKRPpgv06FUxlZqGCsJX7GQJpKN3l//v5doTeD5ltUYi/UVdc7h2pObMqt\nK8udD79SQ+/ZQpdiT4TqSp83U+9suv4Yel0Ratwkt88JiwRPn34QFdXuqlZdVUHzo3dhvvOqc3qj\nj/TOUiLOHObzdUKROmcCjcsLvT4/1HvwLVT25cCJgk84Z88wbGRILd7qilRUNHSPg+rQWuykVy+H\nISM8KrAYFv8Snatax6LXtb6qVZvNmIvmoEaNhcOVmDPvwfxyiW89/h2lRHblBL92hfNhqTdCdAbN\ntynDwLjpXvQ//uoc090s0yNDxoBBzjLfIUR/UeD2w9UWYZHgwVk6uK2yBfrDPGhuQl13K8ZtuRh3\nPYD+KA/z2Yedc0o9pM1m9Pavu24P3taDyMFnodcVeXyuPt7grObnxoYmoUCl9kdNuRLzr793jr/L\nA9aQoNKHord/Hegw3OYsTbAVNXqsR+eFTYJniMNZCOtbpUD11hL0x//AuP1nrvFyNXgExqPPo86d\ngjnnl5j/byH6qPu7Cum3/wK9UjDcfJIdjqLGX4Au+tzzE8v2QnIfVGTQFjL1mLry+86ZQc1NzuFC\nEfTUmSGW4L8sRJ3TcWmCbwubBK8iI1EjxqDXf9Or1EePYP7peYwb70ElnrpfqjIiMLIvx3hyATQ2\nYj77qLNIVAfMzz9Cf/UFxvSHu/RYa9TYSbBprbNssQdCZRcnT6ioKIwf5aKu+H5Q7y0rTpI+BHaU\nhsSDVm02oz//CHX+RR6f63OGMk2TBx98kNmzZwNQV1fHrFmz+MlPfsJTTz3F0aOeJQCfjP5mHF5r\njX59AWrkOahzxrd5ioqzoW6+D5WRifn8Y+iaqjaP1ZvWovNew7jvlx6VVAhHRrwNBo9Af+Xh9NR9\nu0NmFydPqIFDMC6aGugwhJuULQHi4i0pu+F3q5c7K2AOar/2e2t8TvD//ve/6dfvm4+l+fn5ZGRk\nMG/ePBwOB3l57dftsJIaeWJVa+Nx9LJP0Pt2ob7/o47PUwp1zQ9RY8ZjPvcoupWn63r/Hsw/Podx\n1y9Q8jEcADV2ErpoqUfn6P27UDKNUAQBNTD4h2m01pgfvINx+bVefTr0KcFXVFSwZs0aLrrom48O\nRUVFZGdnAzBlyhRWruy8eu0qvgekpaML30e/9QrGHQ+4PWallMK4+nrUuEmYzz1ySoVKXVuDOf9X\nqO/dLItYTqLOPhe+3uDR8wvnLk6S4EUQGDgUdgR3gqdkHTTUw6j26763xacE/+qrr/LDH/7wlN8s\n1dXV2O12AOx2O9XVFmwO4QE1aix68SLUtBtRXpTxNab+D2rCRZjPPoKuLEc3NmIu+DUq83yM89ve\n3LYrUt1jYdgo9Jov3TpeNzZCRTn07uvnyITomBo4BL0tuBO8+eE7qMuu8fp5n9dTGVavXk1CQgLp\n6ekUFxe3eVxbHyuKi4tPOS8nJwebG3tddsS88DscV4qY71zn/QOvnFupj43j+PMziUgfTERiErE3\n3XPaDzk6OtqSmENRS9uPT76E40s+JP7yjjf/bt69nSPJfejRs+2dukKBvO/h0XbtOJvqsj3Ex8Sg\nojveU7mz2960o5Qj+3bT4+KpHe75vHjxYtffHQ4HDocD8CHBl5SUUFRUxJo1azh+/DjHjh1j/vz5\n2O12qqqqXH8mJLS+6urkIFrU1tZ6G843orvBZdfSWOfBsEFrsq9ANzXR+NWXGPfOpO7IkdMOsdls\n1sQcglraroeMxPzj89Ts39vhg2dzSwm6T7+Q/5nJ+x5Gbe+dSu3GtW6VBOnstpvvvA4XTaWuvgHq\n266Wa7PZyMnJafU1r4dorr/+ehYuXMhLL73ET3/6U0aOHMl9991HZmYmhYWFABQWFpKVleXtLQLO\nuOi7RPxslnPDZdEq1a07jDjbuYy6I/t3hd0USRHaVPpQ9I4tgQ7jNPrQAXTxatSky3y6juUTuadN\nm8b69ev5yU9+woYNG5g2reOP7iK0Ge7OpgnFbfpEeDtzKAThTBr9UT5q0qWo2DifrmPJcsIRI0Yw\nYoRz+6j4+HhmzpxpxWVFqBiZBa++hK6pQvWwt3mY3r8b4zutf5QUIhBU+lDMf7dS1z+AdG0N+ssl\nGE+85PO1uu5STGEZFRODyshEr17W5jG6qQnKy6B3aidGJkQH+vaDmir0keB5rqAL/onKnICy+z4Z\nQRK8sIQaOxG9sp1hmvL90DPJ41oaQviTMiJgwGDYHhzj8LqhHl34PupSa4a2JcELazgyYc+OUxaI\nnULG30WQCqYVrXrpf2DwWag+1hQylAQvLKGiolCjx6I/zEM3N5/2upQoEMFKDRwSFAle1xxGf5SH\ncdm1ll1TErywjLrqevSeHZhP/hT97U3Qw7TImAgDA4fBji2du+Xnt+itJZizfoY6/yJLt+kMn6Lc\nIuBUr94Y9z8Jq5dh/nku6sxhqO/fikpMds6gsbBnIoRVVM8kiIiAQwc6fSMarTV6yfvod/+GcfN9\nqNHe1ZxpiyR4YSmlFGSejzEyC/3B25hP/hR10VVwcB9YNK4ohOVOLHhSnZjg9fEG9OsL0bu2Yjw0\nG5Vi/QwzGaIRfqFiYjCuvh7jkefRO7dCYoqsCBZBS505FDqx8JguL8Oc/SA0N2E8/KxfkjtID174\nmUruQ8SMR9BNjYEORYg2qfQhmO/+tVPupXeWYs57AnXl91EXfdevu4BJghedQkVGBToEIdqWPgR2\nb0c3Nfl1v2Dd1Ij58jxUzo8wzrvAb/dpIUM0QoguT3WPhcRk2LfTr/fRH+ZBz16oc6f49T4tJMEL\nIQQtC578t6JVl+1F/+cfGDdO77TN2SXBCyEEwMAhfqssqU0T87Xfor6Tg0pK8cs9WiMJXgghADVw\nmN9WtOr//geON6AunOqX67dFErwQQgD0GwCHDqDrj1p6WV19GJ33GsZN9zqLm3UiSfBCCAHO2TNn\nDISdWy29rv7bH1ATL0adMdDS67rD6/lAjY2NPP744zQ1NdHU1ERWVhbXX389dXV1zJ07l/LyclJS\nUsjNzSU2NtbKmIUQwi/UUAd63UrUsAxLrqfXrkDv3obxo59acj1Ped2Dj4qK4vHHH+eZZ57hueee\no7i4mJKSEvLz88nIyGDevHk4HA7y8vKsjFcIIfxGTboMvewTdEPbm1y7Sx87ivnX32HceE/A9kHw\naYgm5sTS88bGRkzTJD4+nqKiIrKzswGYMmUKK1eu9D1KIYToBCq5D5w5HL1iic/X0u/+DXXWaNRZ\noy2IzDs+JXjTNPnFL37BnXfeicPhIC0tjerqaux2576cdrud6upqSwIVQojOYFw4Ff3pP30qH6xr\nq9HL/oOa9kMLI/OcT2tyDcPgmWee4ejRozz11FMUFxefdkxbE/qLi4tPOT4nJwebzeZLOJ0uOjo6\n5GK2irRd2h6u9LiJ1L7xJ2L3bifypN63J20/9sFb6POmEHvGAH+FeYrFixe7/u5wOHA4HIBFtWhi\nY2MZM2YMW7duxW63U1VV5fozISGh1XNODqJFbW3wbHzrDpvNFnIxW0XaLm0PZzr7Co78802MtDNd\n33O37bqhHvPDfIwHZ3fKz8pms5GTk9Pqa14P0dTU1HD0qHO+6PHjx1m/fj0DBw4kMzOTwsJCAAoL\nC8nKyvL2FkIIERBqwoXoTWvRlYc8Plcv/RiGOlB9+vkhMs943YOvqqrit7/9rXNHEq2ZNGkSGRkZ\nDBw4kDlz5lBQUEBycjK5ublWxiuEEH6nuseizp2MXvIB6pob3T5PNzWhP8rHuOsXfozOfUoHciPC\nb9m3b1+gQ/BIV/m42hppu7Q93On9ezCffRhj9p9RUVFutd38ohD9+UdEPPDrTooSUlPb3ixEVrIK\nIUQrVN80OGMgumipW8drrdEfvoNx+ff8HJn7JMELIUQbjAu+g/70n+4dXLwatIaR5/g3KA9IghdC\niLaMyoLaareqTJofvIO6/NpOq/XuDknwQgjRBmVEoNzoxevtX0N5GSprUidF5h5J8EII0Q418WL0\nupWYVZVtHmN+8A7qkqv9up+rNyTBCyFEO1ScDZV5PvX5r6OrKk4rYaDL9sKWYtSkSwMUYduC69eN\nEEIEIXX59zDf+CPmEz8GIwL6D0INGITqPwi9ehkq+wpUTLdAh3kaSfBCCNEBldKX+EeepaamBioP\nwa6t6F1bMZd+DJXlGD+4PdAhtkoSvBBCuEkpBUnJkJSMGnNeoMPpkIzBCyFEmJIEL4QQYUoSvBBC\nhClJ8EIIEaYkwQshRJiSBC+EEGHK62mSFRUVvPTSS1RXV6OU4qKLLuLKK6+krq6OuXPnUl5eTkpK\nCrm5ucTGxloZsxBCCDd4neAjIiK4+eabSU9Pp76+ngcffJDRo0dTUFBARkYGV199Nfn5+eTl5XHD\nDTdYGbMQQgg3eD1EY7fbSU9PB6Bbt27069ePiooKioqKyM7OBmDKlCmsXLnSkkCFEEJ4xpIx+IMH\nD7Jz506GDh1KdXU1drsdcP4SqK6utuIWQgghPORzgq+vr+eFF17glltuoVu304vtBFPxeyGE6Ep8\nqkXT3NzM888/z+TJkxk7dizg7LVXVVW5/kxISGj13OLiYoqLi11f5+TktLt5bLCy2WyBDiFgpO1d\nk7Q9+CxevNj1d4fDgcPhcH6hfTB//nz9yiuvnPK91157Tefl5Wmttc7Ly9Ovv/66L7do1xtvvOG3\na7vjl7/8ZcDuLW0PHGl74ASy/aHYdq978CUlJXz++ef079+fX/ziFyil+N///V+mTZvGnDlzKCgo\nIDk5mdzcXJ9/O7XF9VsqQJKTkwN2b2l74EjbAyeQ7Q/Ftnud4IcPH84bb7zR6mszZ8709rIeCfQ/\n9pSUlIDdW9oeONL2wAlk+0Ox7bKS1QeB/s8WSNL2rknaHlqU1t/aYFAIIURYkB68EEKEKUnwQggR\npmRP1pMsXLiQ1atXk5CQwHPPPQfAzp07+eMf/0hDQwPJycn8+Mc/plu3bixdupR3330XpRRaa3bu\n3MkzzzzDgAED2LZtGwsWLKCxsZExY8Zwyy23BLZhbvCk7Y2NjSxYsIDdu3djmiaTJ09m2rRpAGHf\n9qamJv7whz+wbds2DMPglltuYcSIEUBott2booF5eXkUFBQQERHBLbfcwujRo4HQa7+nba+rq+P5\n559n69atTJkyhR/96EeuawVt262eqxnKNm3apLdv365/9rOfub730EMP6U2bNmmttS4oKNB///vf\nTztv586d+r777nN9/fDDD+stW7ZorbX+9a9/rdesWePnyH3nSdsLCgr03LlztdZaNzQ06HvuuUeX\nl5drrcO/7R988IFesGCB1lrr6upq/eCDD7rOCcW2Hz58WG/fvl1rrfWxY8f0j3/8Y71nzx792muv\n6fz8fK31qetZdu/erR944AHd1NSkDxw4oO+9915tmqbWOvTa72nb6+vrdUlJif7444/1okWLTrlW\nsLZdhmhOMnz4cOLi4k75XllZGcOHDwcgIyODL7/88rTz/vvf/zJhwgQAqqqqOHbsGIMHDwZg8uTJ\nIVFwzZO22+12GhoaME2ThoYGoqKi6N69e1i3fcWKFQDs2bOHkSNHAtCjRw/i4uLYunVryLbd06KB\nRUVFTJgwgYiICFJSUujbty+lpaUh2X5P2x4TE8OwYcOIjDx14COY2y4JvgNpaWkUFRUBsHz5cioq\nKk47ZtmyZUycOBGAyspKkpKSXK8lJSVRWVnZOcFarK22n3322XTv3p0777yTGTNm8N3vfpe4uLiw\nbvuhQ4cAGDBgAEVFRZimycGDB9m2bRsVFRVh0XZ3igZWVlbSq1cv1zmJiYlUVlaGfPt9KZgYzG2X\nBN+B6dOn8+GHH/Lwww9TX19/2m/v0tJSunXrRlpaWoAi9J+22v7ZZ59x/Phx/vCHP/DSSy/x3nvv\ncfDgwQBHa6222n7hhReSmJjIww8/zKuvvsqwYcMwjND/b9SViwaGc9vlIWsHUlNTefTRRwHYv38/\na9asOeX1//73v5x//vmurxMTE0/p5VdUVJCYmNg5wVqsrbZ//fXXjBs3DsMw6NGjB8OGDWPbtm0M\nHz487NtuGAY333yz67iZM2fSt29f4uLiQrbtnhQNTExMdH2agW/aGar/7n0pmNgimNse+l0Pi2mt\n0Set/aqpqQHANE3efvttLrnkklOOXb58uWv8HZz/OGJjYyktLUVrzWeffeb6hxPs3G17amoq69ev\nB5y9ny1bttCvX78u0fbjx4/T0NAAwLp164iIiAj5ti9cuJC0tDSuvPJK1/cyMzMpLCwEoLCwkKys\nLACysrJYtmwZTU1NHDx4kLKyMgYPHhyy7fek7W0J5rbLStaTzJs3j40bN1JbW0tCQgI5OTkcO3aM\nDz/8EKUU48aN4/rrr3cdv3HjRv76178ya9asU66zbds2fvvb37qmTN16662d3RSPedL2xsZGFi5c\nyM6dOwG44IILmDp1KhD+bS8vL+epp57CMAwSExO5++67XWPSodj2kpISHn/8cfr3749SylU0cPDg\nwcyZM4dDhw65iga2PIjOy8vj008/JTIy8rRpkqHUfm/aPmPGDOrr62lqaiI2NpbHHnuMfv36BW3b\nJcELIUSYkiEaIYQIU5LghRAiTEmCF0KIMCUJXgghwpQkeCGECFOS4IUQIkxJghdCiDAlCV4IIcKU\nJHjRJZmmGegQhPA7KTYmQs6MGTO45JJL+Oyzz6iqqmLs2LHccccdREZGsmrVKt544w3Ky8tJS0vj\njjvuoH///q7zLr30UpYuXcq+fft47bXX2qwEOWPGDC6//HI+++wzDh06xOjRo7n33nuJjIzkyJEj\nzJ8/n9LSUkzTZOjQodx5552uAlNPPPEEw4YNo7i4mJ07dzJy5EimT5/Oyy+/zKpVq+jXrx/333+/\nq8TB3r17efnll9m2bZurVML48eM754cpwpr04EVIWrp0KY899hjz589n3759vP322+zYsYPf/e53\n3HXXXfz5z3/mkksuYfbs2TQ1NbnOW7ZsGQ8//DCvvPJKh2V+v/jiCx599FFeeukldu7c6SpApbXm\nwgsvZOHChSxYsICYmBgWLVp0yrnLly/nvvvu4/e//z1lZWU89thjXHjhhbz88sukpqby5ptvAtDQ\n0MCsWbOYNGkSixYt4ic/+QmLFi1i79691v7ARJckCV6EpMsvv5zExETi4uK49tprWbp0Kf/5z3+4\n5K/5eBEAAAJpSURBVJJLGDRoEEopJk+eTFRUFFu2bHGdd8UVV5CYmEhUVFSH97jiiiuw2+3ExcWR\nmZnJjh07AIiPj2fcuHFERUXRrVs3rrnmGjZt2nTKuVOmTCElJYXu3btz9tln06dPH0aOHIlhGIwf\nP951rVWrVpGSkkJ2djZKKdLT0xk3bhzLly+37Gclui4ZohEh6eQddJKTkzl8+DCHDh1iyZIlvP/+\n+67XmpqaOHz4cKvndaRlVx9wbtdWVVUFOEsGv/LKK6xdu5YjR46gtaa+vh6ttWtziJNriEdHR5/2\ndX19PQCHDh1iy5Ytp1QfNE2TSZMmuR2nEG2RBC9C0skbLBw6dIjExESSkpK49tprueaaa9o8z4rd\ned59913279/P008/TY8ePdixYwcPPvjgKQneXUlJSTgcDtfmIkJYSYZoREj68MMPqayspK6ujnfe\neYcJEyZw0UUX8dFHH1FaWgo4NyNZvXq1q7dslfr6eqKjo+nevTt1dXWu8XRvZGZmsm/fPj777DOa\nm5tpampi69atMgYvLCE9eBGSzj//fGbNmsXhw4cZO3Ys1157LdHR0dx9990sWrSIsrIyoqOjGT58\nOCNGjAA86723d+x3vvMdXnzxRW677TYSExOZOnWqa4NuT3Xr1o3HHnuMV199lb/85S9orUlPT+em\nm27y6npCnEw2/BAhZ8aMGUyfPp2RI0cGOhQhgpoM0QghRJiSIRoRcqx4UHro0CHuv//+U67V8pD0\nhRde8Gi2jRDBSoZohBAiTMkQjRBChClJ8EIIEaYkwQshRJiSBC+EEGFKErwQQoQpSfBCCBGm/j+x\nDC0GDYxaUgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEWCAYAAACQdqdGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VOW5///3MzkQQiYZEhIkBIwEITBBIAE8cRJERUOh\n6k4LbNm4abEYrMXu/UMuoGxbrKVawQ2C2/4QD0g5qESlFqoIBgSRcJAwEOUYgXAIIQkJOWee7x8D\nU5BgJslM1szkfl2XF5mVdbjvDH6yeGatZymttUYIIYRPMhldgBBCiMaTEBdCCB8mIS6EED5MQlwI\nIXyYhLgQQvgwCXEhhPBhgfWtkJeXx4IFC1BKobXm7Nmz/OxnP2Pw4MEsWLCA/Px8YmJimDZtGqGh\noc1RsxBCiMvqPROPjY3lz3/+M/PmzeNPf/oTISEhDBgwgIyMDHr16sUrr7yC1Wpl7dq1zVGvR9ls\nNqNL8Cjpz3f5c28g/TVFg4ZTsrOzad++Pe3atSMrK4shQ4YAMHToUHbu3OmRApuT/EXybf7cnz/3\nBtJfUzQoxLdt28bAgQMBKC4uxmKxAGCxWCguLnZ7cc39xp47d65Zjyf9uZc/9+fPvYH01xQuh3hN\nTQ1ZWVnccccddX5fKeW2oq5o7h90fn5+sx5P+nMvf+7Pn3sD6a8plKtzp2RlZbFhwwZmzpwJwLRp\n05gzZw4Wi4WioiKee+455s+ff912Npvtmh9YWlqam0oXQoiWZfXq1c6vrVYrVqvV9RBfsGABffr0\nYejQoQAsX76csLAwxowZQ0ZGBpcuXWL8+PEuFZKXl9fw6puB2WympKTE6DI8RvrzXU3pzb7ln+id\nW6DoAqb//A0q/lb3FucG/vzegXv6i42NrXO5S8MplZWVZGdnc/vttzuXjRkzhuzsbJ5++mn279/P\nmDFjmlSgEML9dHU1et0qTKPHo6zJ6P27jS5JuFm914kDtGrViqVLl16zLCwsjNmzZ3ukKCGEe+gt\nG6DjzaiERKgox/7x3yD1Z0aXJdxI7tgUwk/pykr0J+9hGn15mLObFU7loi+VGluYcCsJcSH8lP7i\nE0hIRN2cAIAKCoZbrXBwr8GVCXdyaThFCOFbdEUZev0HmH77/DXLr4yLq34DG7XfsLAwj1xOHBAQ\ngNlsdvt+vUVD+tNaU1rq+r+WJMSF8EN64zpUjz6ojp2vWa6SkrGvfw+tdaPCWCnl11eReIOG/jKT\n4RQh/IwuK0V/9hFq1M+v/2ZMBwgKhlPHm70u4RkS4kL4Gf3ph6jeA1A3dbzue0opVJJcauhPJMSF\n8CO65CJ68yeoH7mMUFlTJMT9iIS4EH5Eb3gf1W8Qql37G6/UPQmOH0ZXlDVfYS1IXFwcubm5zXY8\nCXEh/IQuLkRv/Qz14L/96HoqpDV06QY5+5qpsuZx++23k5CQQGJiIlarlTFjxvDOO+/g4swibuOJ\nq3d+jIS4EH5C/+M91J3DUG2j6l3XH8fFlVK8/fbb5OTksGPHDtLT01m8eDG//e1vm7WO5v6lISEu\nhB/QF/LRX21GjXzEpfWvjIs3d+B42pV+wsLCGDFiBEuWLGHNmjV89913VFVV8fvf/54BAwbQt29f\nZsyYQWVlpXPbDRs2cN9995GYmMjdd9/NF198AcCqVasYOnQo3bt35+6772b58uXXHHPJkiUkJyeT\nkpLCqlWrrjkTr++Y7iAhLoQf0H9fjRp8Pyrc4toGsZ3AboczpzxbmMH69OlDhw4d2LFjB3/84x85\nfvw4n332GV9++SVnzpxxTp+9Z88efvOb3/C73/2OnJwcPvjgA+Li4gCIjo7mnXfe4dtvv+Xll1/m\nf/7nf9i/fz8AmzZt4vXXX2fVqlVs3bqVLVu2XHP8559//obHdBe52UcIH6fPnUbv3oZp7msub+O8\n1NC2C9Uhzm211P7yJ27ZT8BfP3LLfgDat29PYWEh7777Lhs3biQ8PByA9PR0nnrqKZ599llWrlzJ\nz3/+c+eTy9q3b0/79o4Ph4cNG+bc1+23386QIUP4+uuvSUpKYt26daSlpXHrrY7pfZ955hkyMjKc\n669YseKGx3QXCXEhfJxetxJ1TyqqTcPu9FNJydgzN8C9o91WizvD113OnDlDbW0t5eXljBw50rnc\nbrc7h1/y8vIYPnx4ndt//vnnzJ8/n6NHj6K1pqKigh49egBw9uxZbrvtNue6V87eAQoKCn70mO4i\nIS6ED9OnT6L3727QWbhTYm944xV0VSUquJX7i/MCe/fu5ezZszzwwAMsXryYzz//3HmGfbXY2Ng6\nLwusqqpi8uTJLFy4kPvvvx+TycSkSZOcQRwTE3PNQ25OnjzpHBOPjIykdevWNzymu8iYuBA+TH/8\nN9SIMajQNg3eVoW2gc63wLf7PVCZsUpLS/n0009JT0/nkUceoUePHowdO5Y5c+ZQUFAAwOnTp50f\nXo4dO5bVq1fz5ZdforXmzJkzHDlyhOrqaqqrq4mMjMRkMvH55587twEYNWoUa9as4dChQ5SXl18z\n3q2UYty4cTc8prtIiAvho/TJY+jv9qOGPdTofaikFLTNfy41nDhxIomJiQwYMIBFixbxxBNP8PLL\nLwMwa9Ys4uPjGTVqFD169GDcuHEcPXoUcHwA+vLLLzNnzhwSExN59NFHOXXqFG3atOH3v/89Tzzx\nBFarlQ8//JD777/febx77rmHX/ziF6SlpTFw4EDnmPoVM2fOvOEx3cXlZ2y6kzxj0xjSn++qq7fa\nV59HdU/C1IQxbf39Eeyvv0TA3CWNrkO4141+xk16xqYQwrvo44fg+GHUkJH1r/xj4m6B8kvo/DPu\nKUw0OwlxIXyQ/cN3UQ+lOZ7W0wTKZEJZ+/rd3ZstiYS4ED5GHzoAp0+iBt7rnh362bh4SyMhLoSP\nsX/4LmrUz1GBQW7Zn+rZB77bj66udsv+RPOSEBfCh+iD30BhAeqOe9y2TxUWDjfFweEDbtunaD4u\n3exTVlbGa6+9xokTJ1BKMWXKFPbu3cvGjRuJiIgAHNdZ9unTx6PFCtGSaa0dZ+E/GYsKCHDrvq/M\naqh69HbrfoXnuRTiy5Yto2/fvjzzzDPU1tZSWVnJ3r17SU1NJTU11dM1CiEA9u+C8jJU/0Fu37VK\nSsH+9iL4t8d/dD2ttUeeSh8QEEBtba3b9+stGtJfQ6/6rjfEy8rKyMnJIT093VlMaGhoow4mhGgc\nrTX2jOWYRo9DmTwwChrfFYovoC+cR0W2u+FqpaWl7j82/n/9uSf7qzfEz507h9lsZvHixeTm5tKl\nSxcmTpwIwPr168nMzCQhIYEJEyY4w10I4V7VOy9Pcdr3To/sX5kCUD36oG27UYPu88gxhGfUe8fm\n0aNHmTlzJnPnziUhIYE333yT1q1bM3LkSMxmM0opVq5cSWFhIVOmTLlue5vNhs1mc75OS0vz2t+4\nwcHBVFVVGV2Gx0h/vknbaymd/ktCxk0mqO8dHjtO1Rfrqd61nTbPPOexY9yIv753V7ijP7PZzOrV\nq52vrVYrVqu1/jPxyMhIoqKiSEhIAOCOO+4gIyPDOT8uwPDhw5k3b16d21850NW8NcTln3S+zV/7\ns+/4AlNIKOUJPanwYH86oSf2txZxsbAQFdi8E5z663t3hTv6M5vNpKWlXbe83sE1i8VCVFSUc76T\n7Oxs4uLiKCoqcq6zY8cOOnXq1KQChRDX07W16I/+Rkja4x5/AK+KaAvt2sOx7zx6HOFeLv26ffzx\nx1m4cCE1NTW0b9+eJ598kjfeeIPjx4+jlCI6OprJkyd7ulYhWhz91SZoG0VgUjJ46EPFqylrMnr/\nLtStPT1+LOEeLoV4fHw8L7zwwjXLpk6d6pGChBAOuqYa/fFKTJOe8fhZ+BUqKRn7qqXw08ea5Xii\n6eSOTSG8lN76GXSIa96z4i6JkH8GfbGw+Y4pmkRCXAgvpKsq0X9fjekn45v1uCowEHrchrbtbdbj\nisaTEBfCC+nM9RDfFXXLrc1+bGVNdtwdKnyChLgQXkZXVqDXf4Bp9DhDjq+SktEH9qDt/nsbvD+R\nEBfCy+jP/47qloSKu8WQ46vIaAhvC7lHDDm+aBgJcSG8iC67hP40AzVqrKF1XJnVUHg/CXEhvIj+\n7CNUUjKqQ5yhdVy5Xlx4PwlxIbyEvlSC3rQOlfpzo0uBW62Q9z269KLRlYh6SIgL4SX0hrWo5LtQ\nMR2MLgUVFATdkhxPEhJeTUJcCC+gLxahMzegHrp+giOjqKRkkHFxrychLoQX0P94H3X7EMeVIV5C\nWZPRtt1ou93oUsSPkBAXwmC6sAC9bSNq5KNGl3INFdMBWrWGk8eNLkX8CAlxIQymP1mDGjQCZYk0\nupTrqCTH2bjwXhLiQhhInz+L3rkFdf8jRpdSJ7le3PtJiAthIL1uFWroSJQ5vP6VjdCtF+QeQZeX\nGV2JuAEJcSEMos/mob/5GnXfGKNLuSHVqhUkJIJcaui1JMSFMIj++G+oe3+CCg0zupQfJePi3k1C\nXAgD6FPfow/sRQ1PNbqUel0ZF9daG12KqIOEuBAGsH+0AnX/w6iQUKNLqd9Nl+dxOX3C2DpEnSTE\nhWhmOvcIHMlBDX3Q6FJcopRCJaXIVSpeSkJciGZm//Bd1IOPOj409BEyLu69JMSFaEb6SA6cykUN\nut/oUhom8TY48i26ssLoSsQPSIgL0YzsH76LeijNMUugD1GtQ+HmBPg22+hSxA8EurJSWVkZr732\nGidOnEApxZQpU+jQoQMLFiwgPz+fmJgYpk2bRmioD3xII4RB9LfZcP4s6q7hRpfSKFfGxdVt/Y0u\nRVzFpTPxZcuW0bdvX+bPn8+LL75Ix44dycjIoFevXrzyyitYrVbWrl3r6VqF8Flaa+wZ76JGjUUF\nunTu5HVkXNw71RviZWVl5OTkcM899wAQEBBAaGgoWVlZDBkyBIChQ4eyc+dOz1YqhC87sBdKL6Ju\nH2x0JY0XFw+VlehzeUZXIq5S7ynBuXPnMJvNLF68mNzcXLp06cLEiRMpLi7GYrEAYLFYKC4u9nix\nQvgix1n4ctRPxqFMAUaX02iOSw37OoZUhsUaXY64rN4Qt9vtHDt2jEmTJpGQkMCbb75JRkbGdesp\nperc3mazYbPZnK/T0tIwm81NKNlzgoODvbY2d5D+jFGd9SXl9lrMQ+9HmRp3LYG39FbV726qMv9J\n2Oixbt2vt/TnKe7qb/Xq1c6vrVYrVqu1/hCPjIwkKiqKhIQEAO644w4yMjKwWCwUFRU5/4yIiKhz\n+ysHulpJSUlT+vAYs9nstbW5g/TX/LTdjn3l/49p9HhKL11q9H68pTd9S3fs//ciFy8UoIKC3bZf\nb+nPU9zRn9lsJi3t+sf31XtaYLFYiIqKIi/PMQ6WnZ1NXFwcKSkpbN68GYDNmzfTr1+/JhUohF/a\nvQ0Cg6D3AKMrcQvVxgwdb4ZDtvpXFs3CpY/JH3/8cRYuXEhNTQ3t27fnySefxG63M3/+fDZt2kR0\ndDTTpk3zdK1C+BRtr8X+4QpMP/vFDYcbfdGVCbFUz75GlyJwMcTj4+N54YUXrls+e/ZstxckhL/Q\nOzIhLBys/hV2ypqCfdkCSJtkdCkCuWNTCI/QNTXoj/+Gacy/+9VZOOC4c7OkGF2Qb3QlAglxITxC\nb9sI7dqjuicZXYrbKZMJ1bMv2rbL6FIEEuJCuJ2urkb/fRWm0eONLsVzeskDlL2FhLgQbqa3bICO\n8aiERKNL8RjVsy/kZKNraowupcWTEBfCjXRlJfqT9/z7LBxQ4RaI6QBHc4wupcWTEBfCjfTmTyAh\nEXVzgtGleJyyJqP3y7i40STEhXATXVGG3vABpp+MM7qUZqFkXNwrSIgL4SZ64zpUjz6ojp2NLqV5\n3NIdCs6hiy4YXUmLJiEuhBvoS6Xozz5Cjfq50aU0GxUQAD16ow/sMbqUFk1CXAg30J9moHoPQN3U\n0ehSmpWyJoMMqRhKQlyIJtIlF9Ff/AOV+jOjS2l2KikFfWAv2l5rdCktloS4EE2kN7yP6jcQ1a69\n0aU0O9U2CiyRcOyQ0aW0WBLiQjSBLrqA3vIp6sHr53luKeTZm8aSEBeiCfQ/3kPdNdxxRtpCOa4X\nlxA3ioS4EI2kC/LRO75AjXzE6FKMdWtPOHMSXXLR6EpaJAlxIRpJf7IaNfg+xy3oLZgKDIJuSXKp\noUEkxIVoBH3uNHr3NtT9DxtdildQSckg4+KGkBAXohH0upWoe1Idz5wUznFxbbcbXUqLIyEuRAPp\n0ycdz5i89ydGl+I1VPRN0CYMThwzupQWR0JciAbSH/8NNWI0KrSN0aV4FZnV0BgS4kI0gD55DP1t\nNmpYqtGleB2VJJcaGkFCXIgGsH+4AjXyEVSrEKNL8T7dkuDEMXRZqdGVtCgS4kK4SB87BMcPo4aM\nNLoUr6SCW8GtPeDgPqNLaVECXVkpPT2d0NBQlFIEBATwwgsvsGbNGjZu3EhERAQAY8eOpU+fPh4t\nVggj2T96F/XQv6GCgo0uxWspq+MWfJVyl9GltBguhbhSijlz5hAWFnbN8tTUVFJTZWxQ+D996ACc\nPolKn2l0KV5NJSVj37AWrTVKKaPLaRFcGk7RWqO1rnO5EP5Oa409Yzlq1M8ddyeKG2vfEQIDIe97\noytpMVw+E587dy4mk4nhw4dz7733ArB+/XoyMzNJSEhgwoQJhIaGerRYIQyRsw+KLqDuuMfoSrye\nUsp5lYrqeLPR5bQISrtwOl1YWEjbtm25ePEif/jDH5g0aRKxsbGYzWaUUqxcuZLCwkKmTJly3bY2\nmw2bzeZ8nZaWRklJiXu7cJPg4GCqqqqMLsNjpL+G01pT+runaHX/GIIH3uvWfTeEL7131VlfUrn+\nA8Jm/cXlbXypv8ZwR39ms5nVq1c7X1utVqxWq2tn4m3btgUgPDycAQMGcPjwYRITE53fHz58OPPm\nzatz2ysHupq3hrjZbPba2txB+ms4nZ2F/VIJFb36UWngz86X3jt9c1fshw5yMf8cKqS1S9v4Un+N\n4Y7+zGYzaWnXz1tf75h4ZWUlFRUVAFRUVLBv3z46depEUVGRc50dO3bQqVOnJhUohLe5MhZuGj0O\nZQowuhyfoUJC4ZZb4dtso0tpEeo9Ey8uLubFF19EKUVtbS2DBg2id+/eLFq0iOPHj6OUIjo6msmT\nJzdHvUI0nz3bHX/2vdPYOnyQc1y89wCjS/F79YZ4TEwML7744nXLp06d6pGChPAG2l6L/cMVmB6d\nKJfKNYKyJmN/9Xm51LAZyB2bQtRB79wKIa0hKcXoUnxTx5uhpgbO5hldid+TEBfiB3RtLfqjv2Ea\n8+9yFtlIzksN5UERHichLsQP6K82QdsoSLzN6FJ8msxq2DwkxIW4iq6pRn+8EtPo8XIW3lQ9esPh\nA+iqSqMr8WsS4kJcRW/9DG7qiLq1p9Gl+DwVGgZx8fCdrd51ReNJiAtxma6qRP99NabR/250KX5D\nJaXIuLiHSYgLcZnOXA/xXVG33Gp0KX5DxsU9T0JctHjabkcfPohe/wGm0eOMLse/dOoCl0rQ588a\nXYnfcmnuFCH8jdYavj+C/noLOmsrtApBpf4MFXeL0aX5FWUyXX6A8m7UUHkikidIiIsWRZ/KvRzc\nW0BrVP/BmH79O5k21ZOSkh2/KCXEPUJCXPg9fTYPvXMLeucWqChD9RuEafJ/Q+cEuYywGaiefdDv\nLkHXVMtDNTxAQlz4JV1wDp21Ff31FigqQPUbiOmxJ6FLIsokHwU1J2WOcDzx50gOdO9ldDl+R0Jc\n+A17YQH2LzY4zrjPnkL1vRPToxOhe5JMJWswlZSCzt6FkhB3Owlx4dN0yUX0nm3or7dQcvIY3NYf\n00M/gx69UYHy19tbqKRk7MsXw6MTjS7F78jfcuFzdNkl9N6vHGfcR3JQ1mRMw1Ix3zmU0kq5xdsr\nxd8KF86jiwpQliijq/ErEuLCJ+jKCvQ3XzuC+9ts6N4Ldecw1BPTnY8AU8HBICHulVRAgOMDzv27\nUQNHGF2OX5EQF15LV1dB9i7HB5T7d0FCIqr/INTjTzvm5RC+JSkFsrNAQtytJMSFV9E1NXDwG/TO\nTPQ3X0OnLqj+gzCNfQJlDje6PNEEytoX++ql6NpaVIB80OwuEuLCcNpeC9/ud1zLvWc7tO/oCO6H\nJ8j4qR9RlkiIjIZj30HXHkaX4zckxIUhtN0OR3Mcd0/u3gYRkagBgzDNmo+KijG6POEhjgmxdqEk\nxN1GQlw0G6015B5G79zquO29VWtHcP/XH1E3dTS6PNEMVFIK9jVvwBiZ7tddJMSFxznnK9mZCXB5\nvpI5Ml9JS5TQHc6dRl8sQoVbjK7GL0iIC4/QZ06hs7Y4nhp/9XwlN3eV+UpaMBUYBN17oQ/sRd0x\n1Ohy/IJLIZ6enk5oaChKKQICAnjhhRcoLS1lwYIF5OfnExMTw7Rp0wgNDfV0vcKLXTdfScrdMl+J\nuI5KSob9u0BC3C1cCnGlFHPmzCEs7F/X5mZkZNCrVy9Gjx5NRkYGa9euZfz48R4rVHgnXXQBvetL\nma9EuEwlJWP/8F203S6/3N3ApZ+g1trxodRVsrKyGDJkCABDhw5l586d7q9OeCVdchH7F+upfWkm\n9jnpkHsY00NpmF58E9OEqagevSXAxQ2pqBgIC4fvjxhdil9w+Ux87ty5mEwm7r33XoYPH05xcTEW\ni+ODCYvFQnFxsUcLFcbStbWOG3B2fHHNfCX0SkEFBRtdnvAxzqf9xMvzTJvKpRD/wx/+QNu2bbl4\n8SJz584lNjb2unVu9GGVzWbDZrM5X6elpWE2mxtZrmcFBwd7bW3u0Nj+qvdlUf72q5jM4bQaMZqg\n/5rrnK/Em/jz++dvvVX3v5uK99/CPPYXgP/190Pu6m/16tXOr61WK1ar1bUQb9u2LQDh4eH079+f\nw4cPY7FYKCoqcv4ZERFR57ZXDnS1kpKSxvbgUWaz2Wtrc4eG9qfPnML+3jLI+x7To4+j+95BpVJU\nVtdAtff9nPz5/fO33nSnLti/P8rFM6dRbcL8rr8fckd/ZrOZtLS065bXOyZeWVlJRUUFABUVFezb\nt4/OnTuTkpLC5s2bAdi8eTP9+vVrUoHCe+iyUuyrlmKf9/+huvbA9NyrqOQ75dJA4TYqKBhutcLB\nvUaX4vPqPRMvLi7mxRdfRClFbW0tgwYNonfv3iQkJDB//nw2bdpEdHQ006ZNa456hQfp2lr0lg3o\nj/6G6nM7pucWocLbGl2W8FPOcfF+A40uxafVG+IxMTG8+OKL1y0PCwtj9uzZHilKND99YA/2VUsh\nLBzTb55Dde5idEnCz6leydjXv3fdlW+iYeSOzRbuh+Pe9L1Dhk1Es1AxsRAUDKeOQ/htRpfjsyTE\nWyhdVor+eBX6q89R9z/seEJOUJDRZYkWxjGr4W7oISHeWHK7VAuja2uxb/4E+6wpUFmO6blFmB54\nRAJcGEJZUxwhLhpNzsRbkOp9WdjfXCjj3sJ7JPaCv76ELi8zuhKfJSHeAlwZ9y4/fRLTI/8h497C\na6hWIdClGzW23dC9t9Hl+CQJcT/2w3Fv83/9gdIKeRq88C4qKZnqvTslxBtJxsT90I3HvWWOE+F9\nlDWFmm++lksNG0nOxP2MXO8tfE5sJ8e0tGdOQYc4o6vxORLifkKu9xa+SilFYO/+VNt2oSTEG0yG\nU3yczHMi/EFgnwFyqWEjSYj7KLneW/iToKRkOJKDrpIP3htKhlN8kD6wF/tqGfcW/kOFhkHnLvDt\nfuiVYnQ5PkVC3Ifos3nY17wh497CLylrMtq2GyUh3iAS4j5Al5Wi161Cb/8c9cAjMs+J8EsqKRn7\n6y8ZXYbPkRD3YjK/t2hR4m6B8kvo/DOo6JuMrsZnSIh7KRn3Fi2NMpn+9aCIex40uhyfISHuZWTc\nW7RoScnorzNBQtxlEuJeQsa9hQDVsw96+WJ0dbX8/XeRhLjBZNxbiH9RYeFwUxwcPgA9ZEIsV0iI\nG0jGvYW4nkpyPChCSYi7xJAQr138R1RkNES2g7bRqMh20LYdWNqiTAFGlNSsZNxbiBtTScnY314E\n//a40aX4BENC3DRgMPrCeSg8jz6S4/ya0hKIaAuR7VBt28HloFeXw57IaAgz+2zgybi3EC6I7wrF\nF9AXzjv+3xc/ypAQV/0GUlcM6+pqKCqAC+fRhflw4TzkfY99/25HyF84DzVVYGl3OdyvnM1f9XVk\nO1RIaLP39GNk3FsI1ylTAKpnX8fdm4PuM7ocr+dyiNvtdp599lmioqKYPn06a9asYePGjURERAAw\nduxY+vTp06RiVFAQRN8E0TfVGfIAuqLcGej6wuWgP5qDPWvr5eX5EBB0OdCjL5/RX/76yrBN23bN\ndgYs495CNII1Gf3N1yAhXi+XQ/yTTz4hLi6O8vJy57LU1FRSU1M9UtiNqJDW0KETdOhU99m81nCp\nxBHuhVcF/f7d2K+c3RddgDZhjkC/6oy+KrYTunWYW8bnZdxbiMZT1r7oVX9F19SgAuX6ix/j0k+n\noKCAPXv28PDDD7Nu3Trncm98nJJSCsLCHf917lJ30Ntr4WKRI9Av5DvH5Ktzj2A/d7pJ4/My7i1E\n06mIttCuPRz7Dm7taXQ5Xs2lEH/rrbd47LHHKCsru2b5+vXryczMJCEhgQkTJhAa6l1j0TeiTAFg\niXL816W7M+jbmM2UlJQAoGuqofAH4/OnT/z4+HybMPRXm2XcWwg3cFxquAslIf6jlK7ndHr37t3s\n2bOHSZMmYbPZWLduHdOnT+fixYuYzY4z0ZUrV1JYWMiUKVOu295ms2Gz2Zyv09LSnEHpbYKDg6mq\nqnJ5fV1Rjr3gHPbz57AXnEMXFhCYcheB8V09WGXjNbQ/X+PP/flzb1B3fzUH91H+9iLML7xuUFXu\n4473z2w2s3r1audrq9WK1WqtP8RXrFjBli1bCAgIoKqqivLycm6//XamTp3qXCc/P5958+bx0kuu\nTSOZl5fXyDY8y3zVmbg/kv58lz/3BnX3p2tqsD/zGKa5i33+X7XueP9iY2PrXF7vcMq4ceMYN24c\nAAcOHOAOZNM+AAAQiElEQVTjjz9m6tSpFBUVYbFYANixYwedOnVqUoFCCHE1FRgIPW5D2/ai7rzH\n6HK8VqM/9l2+fDnHjx9HKUV0dDSTJ092Z11CCIFKSoH9u0BC/IYaFOI9e/akZ0/HhwxXD6cIIYQn\nKGtf7B+8hbbXtogpORpDnnYvhPBaKjIawttC7hGjS/FaEuJCCK+mkhxP+xF1kxAXQni1K9eLi7pJ\niAshvFvXnpD3Pbr0otGVeCUJcSGEV1NBQdAtCX3wG6NL8UoS4kIIr6eSkkHGxeskIS6E8HoqKQVt\n2422240uxetIiAshvJ6KvglatYaTx40uxetIiAshfIJKSkbbZEjlhyTEhRA+wXG9uFxq+EMS4kII\n39CtF+QeRZddMroSryIhLoTwCapVK0hIhJx9RpfiVSTEhRA+Q8bFrychLoTwGVduwffG5/saRUJc\nCOE7buoIygSnTxhdideQEBdC+AylFMoqsxpeTUJcCOFTZFz8WhLiQgjf0uM2OPIturLC6Eq8goS4\nEMKnqJBQiO8K32YbXYpXkBAXQvgcGRf/FwlxIYTPkXHxf5EQF0L4nrh4qKxEn8szuhLDSYgLIXyO\nUgqV1FeGVIBAV1e02+3MmDGDyMhIpk+fTmlpKQsWLCA/P5+YmBimTZtGaGioJ2sVQoh/saagt38O\nw1KNrsRQLp+Jf/LJJ3Ts2NH5OiMjg169evHKK69gtVpZu3atRwoUQoi6qJ694ZANXV1ldCmGcinE\nCwoK2LNnD8OHD3cuy8rKYsiQIQAMHTqUnTt3eqZCIYSog2pjho43wyGb0aUYyqUQf+utt3jsscdQ\nSjmXFRcXY7FYALBYLBQXF3umQiGEuAHHgyJa9rh4vWPiu3fvJiIigvj4eGy2G//Guzrgr2az2a7Z\nLi0tDbPZ3IhSPS84ONhra3MH6c93+XNv0Pj+agYMomzJn7z+Z+Ou92/16tXOr61WK1artf4Qz8nJ\nISsriz179lBVVUV5eTkLFy7EYrFQVFTk/DMiIqLO7a8c6GolJSVNbMUzzGaz19bmDtKf7/Ln3qDx\n/el2HbAXFXLx+FFUVLQHKnMPd7x/ZrOZtLS065bXO5wybtw4lixZwqJFi/jNb35DUlISTz31FCkp\nKWzevBmAzZs3069fvyYVKIQQDaVMJpS1L9rWcp+92ejrxMeMGUN2djZPP/00+/fvZ8yYMe6sSwgh\nXNPCx8Vdvk4coGfPnvTs2ROAsLAwZs+e7ZGihBDCVapnX/SK19E1NajABkWaX2h5HQsh/IoKt0BM\nB/SOzRB7s9Hl1KmmTSj6UlnTdhIbW+diCXEhhM9TQx5Ab/oEb33yZnlAAPba2qbt5O4hdS6WEBdC\n+DzToPtg0H1Gl3FDnry6SCbAEkIIHyYhLoQQPkxCXAghfJiEuBBC+DAJcSGE8GES4kII4cMkxIUQ\nwodJiAshhA+TEBdCCB8mIS6EED5MQlwIIXyYhLgQQvgwCXEhhPBhEuJCCOHDJMSFEMKHSYgLIYQP\nkxAXQggfJiEuhBA+TEJcCCF8WL3P2KyurmbOnDnU1NRQU1NDv379GDduHGvWrGHjxo1EREQAMHbs\nWPr06ePxgoUQQvxLvSEeFBTEnDlzaNWqFXa7ndmzZ5OTkwNAamoqqampHi9SCCFE3VwaTmnVqhXg\nOCu32+2EhYUBoLX2XGVCCCHqVe+ZOIDdbufZZ5/l7NmzjBgxgri4OADWr19PZmYmCQkJTJgwgdDQ\nUI8WK4QQ4lpKN+B0uqysjOeff57x48cTFxeH2WxGKcXKlSspLCxkypQpLu0nLy+v0QV7ktlspqSk\nxOgyPEb6813+3BtIf66IjY2tc3mDQhzgvffeo1WrVowaNcq5LD8/n3nz5vHSSy9dt77NZsNmszlf\np6WlNeRwQgghLlu9erXza6vVitVqrX9M/OLFi5SVlQFQVVVFdnY28fHxFBUVOdfZsWMHnTp1qnN7\nq9VKWlqa87/GFtwc5syZ06zHk/7cy5/78+feQPpz1dVZarVaARfGxIuKinj11VfRWqO1ZtCgQfTq\n1YtFixZx/PhxlFJER0czefJktxR5tStFNpfo6OhmPZ70517+3J8/9wbSX1PUG+KdO3dm3rx51y2f\nOnWqRwq6WnP/oGNiYpr1eNKfe/lzf/7cG0h/TSF3bF6lud/Y5ib9+S5/7g2kv6Zo8AebQgghvIec\niQshhA+TEBdCCB/m0h2bvmrJkiXs3r2biIgI5zXsubm5/PWvf6WyspLo6Gh+/etfExISwtatW/no\no49QSqG1Jjc3lz//+c/cfPPNHD16lMWLF1NdXU3fvn2ZOHGisY1d1pD+qqurWbx4MSdOnMButzN4\n8GDGjBkD4Bf91dTU8Prrr3P06FFMJhMTJ06kZ8+egHf2V1BQwKJFiyguLkYpxfDhw3nwwQcpLS1l\nwYIF5OfnExMTw7Rp05x3Qq9du5ZNmzYREBDAxIkT6d27N+Af/ZWWlvKXv/yFI0eOMHToUP7zP//T\nuS9/6G/fvn2sWLGC2tpaAgMDGT9+PElJSYAb+tN+7ODBg/rYsWP6t7/9rXPZs88+qw8ePKi11nrT\npk165cqV122Xm5urn3rqKefrGTNm6EOHDmmttf7jH/+o9+zZ4+HKXdOQ/jZt2qQXLFigtda6srJS\nP/nkkzo/P19r7R/9rV+/Xi9evFhrrXVxcbGePn26cxtv7K+wsFAfO3ZMa611eXm5/vWvf61Pnjyp\n33nnHZ2RkaG11nrt2rV6+fLlWmutT5w4of/7v/9b19TU6LNnz+qpU6dqu92utfaP/ioqKnROTo7+\n9NNP9dKlS6/Zlz/0d+zYMV1YWKi11vr777/XTzzxhHNfTe3Pr4dTEhMTadOmzTXLzpw5Q2JiIgC9\nevVix44d12335ZdfctdddwGO6+TLy8vp2rUrAIMHD2bnzp0ertw1DenPYrFQWVmJ3W6nsrKSoKAg\nWrdu7fP9ff311wCcPHnSeWYTHh5OmzZtOHLkiNf2Z7FYiI+PByAkJISOHTtSUFBAVlYWQ4YMAWDo\n0KHOWrOysrjrrrsICAggJiaGDh06cPjwYb/pr1WrVnTv3p3AwGsHB/ylv/j4eCwWCwCdOnWiurqa\nmpoat/Tn1yFel7i4OLKysgDYvn07BQUF162zbds2Bg4cCMCFCxeIiopyfi8qKooLFy40T7GNcKP+\n+vTpQ+vWrZk8eTLp6emMGjWKNm3a+Hx/58+fB+Dmm28mKysLu93OuXPnOHr0KAUFBT7R37lz58jN\nzaVbt24UFxc7/2e3WCwUFxcDjr+H7dq1c24TGRnJhQsX/Ka/G/HH/r766ituueUWAgMD3dJfiwvx\nKVOmsGHDBmbMmEFFRcV1v/kPHz5MSEiIc6ZGX3Oj/jIzM6mqquL1119n0aJFfPzxx5w7d87gahvu\nRv0NGzaMyMhIZsyYwVtvvUX37t0xmbz/r3dFRQUvv/wyEydOJCQk5LrvK6UMqMp9pL9r+ztx4gQr\nVqxw6x3ufv3BZl1iY2OZOXMmAKdPn2bPnj3XfP/LL7/k7rvvdr6OjIy85my9oKCAyMjI5im2EW7U\n33fffceAAQMwmUyEh4fTvXt3jh49SmJiol/0ZzKZ+I//+A/nerNnz6ZDhw60adPGa/urra3lL3/5\nC4MHD6Z///6A4+ytqKjI+eeVJ2dFRkY6/9UB/+rDm/9+NqS/G/Gn/goKCnjppZeYOnWq8w5Od/Tn\n/acqTaQvz/lyxcWLFwHHHOnvv/8+I0aMuGbd7du3O8fDwfGmhIaGcvjwYbTWZGZmOt8wb+Bqf7Gx\nsWRnZwOOs4dDhw7RsWNHv+mvqqqKyspKAPbt20dAQIDX97dkyRLi4uJ48MEHnctSUlLYvHkzAJs3\nb6Zfv34A9OvXj23btlFTU8O5c+c4c+YMXbt29Zv+bsRf+rt06RJ/+tOfGD9+PN26dXOu747+/PqO\nzVdeeYUDBw5QUlJCREQEaWlplJeXs2HDBpRSDBgwgHHjxjnXP3DgACtWrGDu3LnX7Ofo0aO8+uqr\nzkuAHn/88eZupU4N6a+6upolS5aQm5sLwD333ON8tJ4/9Jefn8/zzz+PyWQiMjKSX/3qV84xZG/s\nLycnhzlz5tC5c2eUUiilGDt2LF27dmX+/PmcP3+e6Ohopk2b5vxwd+3atXz++ecEBgZed4mhP/SX\nnp5ORUUFNTU1hIaGMmvWLDp27OgX/X3wwQdkZGTQoUMHtNYopZg5cybh4eFN7s+vQ1wIIfyd3w+n\nCCGEP5MQF0IIHyYhLoQQPkxCXAghfJiEuBBC+DAJcSGE8GES4kII4cMkxIUQwodJiAu/ZbfbjS5B\nCI9rcRNgCd+Qnp7OiBEjyMzMpKioiP79+/PLX/6SwMBAdu3axapVq8jPzycuLo5f/vKXdO7c2bnd\nfffdx9atW8nLy+Odd9654WyG6enpPPDAA2RmZnL+/Hl69+7N1KlTCQwM5NKlSyxcuJDDhw9jt9vp\n1q0bkydPdk5O9Nxzz9G9e3dsNhu5ubkkJSUxZcoUli1bxq5du+jYsSPPPPOM89b/U6dOsWzZMo4e\nPeqcQuDOO+9snh+m8GtyJi681tatW5k1axYLFy4kLy+P999/n+PHj/Paa6/xxBNP8MYbbzBixAjm\nzZtHTU2Nc7tt27YxY8YM3nzzzXqno/3qq6+YOXMmixYtIjc31zl5kdaaYcOGsWTJEhYvXkyrVq1Y\nunTpNdtu376dp556iv/7v//jzJkzzJo1i2HDhrFs2TJiY2NZs2YNAJWVlcydO5dBgwaxdOlSnn76\naZYuXcqpU6fc+wMTLZKEuPBaDzzwAJGRkbRp04aHH36YrVu38tlnnzFixAgSEhJQSjF48GCCgoI4\ndOiQc7uRI0cSGRlJUFBQvccYOXIkFouFNm3akJKSwvHjxwEICwtjwIABBAUFERISwk9/+lMOHjx4\nzbZDhw4lJiaG1q1b06dPH2666SaSkpIwmUzceeedzn3t2rWLmJgYhgwZglKK+Ph4BgwYwPbt2932\nsxItlwynCK919RNPoqOjKSws5Pz583zxxRf84x//cH6vpqaGwsLCOrerz5WnsIDjEWFFRUWAY2rb\nN998k2+++YZLly6htaaiosI5Ax1wzVzRwcHB172uqKgA4Pz58xw6dOia2ensdjuDBg1yuU4hbkRC\nXHitqyfLP3/+PJGRkURFRfHwww/z05/+9IbbueNpMR999BGnT5/mhRdeIDw8nOPHjzN9+vRrQtxV\nUVFRWK1W58MshHAnGU4RXmvDhg1cuHCB0tJSPvjgA+666y6GDx/OP//5Tw4fPgw4HnCxe/du51mv\nu1RUVBAcHEzr1q0pLS11jm83RkpKCnl5eWRmZlJbW0tNTQ1HjhyRMXHhFnImLrzW3Xffzdy5cyks\nLKR///48/PDDBAcH86tf/YqlS5dy5swZgoODSUxMpGfPnkDDzsJ/bN2HHnqI//3f/2XSpElERkaS\nmprqfEBzQ4WEhDBr1izeeust3n77bbTWxMfHM2HChEbtT4iryUMhhFdKT09nypQpJCUlGV2KEF5N\nhlOEEMKHyXCK8Eru+HDy/PnzPPPMM9fs68oHky+//HKDrmIRwlvJcIoQQvgwGU4RQggfJiEuhBA+\nTEJcCCF8mIS4EEL4MAlxIYTwYRLiQgjhw/4ftlnLRJWiTmYAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We can graph these!\n", "df.plot(y='val', label=\"Monthly\")\n", "df.resample('A').median().plot(y='val', label=\"Annual\")\n", "df.resample('10A').median().plot(y='val', label=\"Decade\")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcFNW5//+url6mu6dnhhmYYWBYBAbQEUTBhUUBjcYt\nXrdMzHZjbkhMNGowixriErfExIBk0Zur95s9vwhEjCa5KiqDqIAiiwKCbLLOwOzT+1JVvz+qqveB\n2adnOO/XixfTp6q7zunlc556znOeR9I0TUMgEAgEgw5Lf3dAIBAIBL2DEHiBQCAYpAiBFwgEgkGK\nEHiBQCAYpAiBFwgEgkGKEHiBQCAYpJxU4J9++mm+/vWv873vfS/j2EsvvcTnPvc5fD5fvG3lypXc\ncccdLFy4kK1bt/ZsbwUCgUDQYU4q8PPnz2fRokUZ7Y2NjXzwwQcMHTo03nb48GHWrVvHkiVLuPfe\ne3n22WcZaGH227dv7+8u9CqDeXyDeWwgxjfQ6Y/xnVTgJ0+ejNvtzmj/wx/+wJe//OWUto0bNzJr\n1ixkWaa0tJTy8nL27NnTc73tA8SXbOAymMcGYnwDnZwU+Gxs3LiRkpISRo8endLe1NSUYtEXFxfT\n1NTUrQ729Zty/PjxPr2eGF/PMZjHBmJ8Pc1gHx90QeAjkQgrV66kurq6N/qTQV9/CPX19X16PTG+\nnmMwjw3E+HqawT4+AKkjuWjq6+t5/PHHeeKJJzh48CAPP/wwDocDTdNoamqiuLiYxx57jNWrVwNw\n7bXXAvDoo49SXV1NZWVlxmtu37495Q3uqwlDIBAIBhvLli2L/11VVUVVVRUA1o48WdO0+GLp6NGj\neeaZZ+LHbrvtNh5//HHy8/OZMWMGv/zlL7n66qtpamqirq6OCRMmZH3N5E6YHD16tHOj6gU8Hg9e\nr7e/u9FrDObxDeaxgRjfQKe3xjdixIh2DeSTCvzSpUvZsWMHXq+Xb33rW1RXVzN//vz4cUmS4n9X\nVFQwc+ZMFi5ciNVqZcGCBSnHBQKBQNB3dMhF01cIC773GczjG8xjAzG+gU5vWvDtIXayCgQCwSBF\nCLxAIBAMUjq0yNqf5Ofn96kfX5ZlPB5Pn12vrznZ+DRNS0k9IRAIBi45L/CSJA1qv1yuMZgnN4Hg\nVEO4aAQCgWCQIgReIBAIBilC4AUCgWCQIgR+AFJRUcGBAweyHlu2bBnXXXddH/dIIBDkIkLgu8n5\n55/PuHHjaG5uTmm/7LLLqKio4MiRI916/RtvvJG//e1vKW0niyoSu4cFAgEIge82kiQxatQo/vGP\nf8Tbdu7cSSgU6jWhzaHNxwKBIIcRAt8D3HDDDSxfvjz+ePny5Xz2s5+NP/Z6vdxxxx1MnTqVCy64\ngKVLl8aPmS6Vhx9+mKqqKmbNmkVNTQ0Ajz/+OO+++y6LFi1i0qRJ3HffffHnvfnmm8yZM4eqqqqs\nFbcAFi1axEMPPZTS9tWvfpVnn322J4YtEAhyHCHwPcA555yDz+djz549qKrKiy++yPXXXx8/vmjR\nIvx+Pxs2bGDFihWsWLGC5557Ln58y5YtVFZWsm3bNr75zW/y3e9+F4C7776b8847j0cffZRdu3bx\n8MMPx5/z+uuv8/LLL/Pqq6/y0ksvsWbNmox+ffazn025s2hqauKtt95K6ZtAIBi85PxGp46gfP2a\nHnkd+ZkXu/xc04qfOXMmlZWVDB8+HIBYLMZLL73EqlWrcDqdVFRUcMstt7BixQo+97nPATBy5Ehu\nuukmQBflH/7whzQ0NKRUx0rn29/+Nvn5+eTn5zNr1iy2b9/O3LlzU86ZNm0aBQUFrF27lgsvvJAX\nX3yRmTNnUlxc3OVxCgSCgcOgEPjuCHNPccMNN3D99ddz6NAhbrzxxnh7U1MTsViMkSNHxtsqKiqo\nq6uLPy4tLY3/7XQ6AfD7/ScU+GHDhqU8x+/3t9uv559/ngsvvJC///3vLFiwoPODEwgEAxLhoukh\nRo4cyahRo1i9ejVXXHFFvL2kpASbzZYSTXP48OG4hX8yurtQe8MNN/Dqq6+yY8cO9u7dy+WXX96t\n1xMIBAMHIfA9yOLFi1m2bFncCtc0DVmWueqqq3j88cfx+/0cPnyYZ555JsXKPxHDhg1rN+a9I5SX\nlzNlyhTuuOMOrrzyShwOR5dfSyAQDCyEwHeTZAt79OjRTJkyJePYI488Ql5eHjNnzuT666/n+uuv\nj/vfT/aaX/va1/jnP/9JVVUV999/f8bxjvDZz36WXbt2dXhSEQgEg4Ocr+g02Ku89AXvvvsut99+\nOxs2bDjpuQP5/R7Ife8IYnwDG1HRSdDjRKNRnnnmGb7whS/0d1cEAkEfIwR+ELNnzx7OOOMMGhoa\nRPSMoMdQfv0IWkAUhRkIDIowSUF2JkyYwO7du/u7G4LBxtZ34ehBmHBGf/dEcBKEBS8QCDqPmjNL\nd4ITIAReIBB0ntyJzRCcACHwAoGg82hqf/dA0AGEwAsEgs4jLPgBgRB4gUDQeVRhwQ8EhMAPQtat\nW8eMGTP6uxuCAY4W8KH52to5KAR+ICAEvoe48cYbqaqqIhqN9ndXAFG2T9B91J8vQv3hLSlt8Y3v\nwkUzIDhpHPzTTz/Npk2bKCws5IknngDgz3/+M++//z5Wq5WysjJuvfVWXC4XACtXrmT16tXIsszN\nN9/MWWed1bsjyAEOHz7M5s2bGTlyJK+++ipXXXVVf3dJIOg+zQ0QTEtDbbpmlFjf90fQaU5qwc+f\nPz+jJNzUqVP5xS9+wc9//nPKy8t54YUXAF3o1q1bx5IlS7j33nt59tlnT4n6ocuXL+eiiy7ixhtv\nZNmyZfH2hQsXsmjRIv7zP/+TSZMm8ZnPfIaDBw/Gj1dUVPCnP/0pa+m9xYsXc/vtt8cfHz58mIqK\nClTjB/bcc88xb948Jk2axOzZs/nzn//cByMVnFJkuwk0BT4mBH4gcFKBnzx5Mm63O6Vt6tSpWCz6\nUysrK2lsbARg48aNzJo1C1mWKS0tpby8nD179vRCt3OLFStWcM0113D11VezZs2a+PsB8OKLL/K9\n732Pjz76iLFjx/L444+nPPdEpffS3SzJj4cNG8af/vQndu3axeLFi3nwwQfZtm1bL41QcEoiZZEH\nVQFAEwI/IOh2qoLVq1cze/ZsQK9eNHHixPix4uJimpqaunuJk/Iff9nZI6/zjy9O7vRz3n33Xerq\n6rjssstwu91MnDiRlStXxnO/XHHFFUydOhWA6667LqMIdkdK72Xj4osvjv99/vnnM3fuXN59913O\nPPPMTo9BIOgwimL8LwR+INAtgX/++eeRZZk5c+b0VH+6RFeEuadYsWIFc+fOjd/lXH311Sxfvjwu\n8CcrrdfR0nvpvPHGGyxZsoR9+/ahaRqhUIjTTz+9u8MRCBJYsljwRvSM9vtfop0/D8kq0lnlMl3+\ndGpqati8eXO8CAXoFntDQ0P8cWNjY7sFnrdv38727dvjj6urq/F4PBnnybLc1S72OqFQiJdeeglV\nVTn77LMBiEQitLW1sWPHjm69tsvlIhgMxh8fO3Ys/nckEuEb3/gGv/rVr/j0pz+NxWLha1/7Wo+s\nd8iynPVzGAjY7fYB2/eO0Nfja7VY0CDlmqoawwyczLeApQf7Iz6/rpO89ldVVUVVVRXQQYHXNC1F\nPLZs2cKLL77Ij3/8Y2w2W7x9xowZ/PKXv+Tqq6+mqamJuro6JkyYkPU1kzthki0Zfi5/4C+//DKy\nLPPGG2+kvA/f/OY3WbFiRbde+4wzzuCpp57iyJEjeDwefvOb38SPRaNRotEoxcXFWCwW3njjDdas\nWcPkyd2/k1EUZcAWXRAFI3oW8yeffE2trTX+t6+xAcnScxa8+Py6/rrV1dVZj53001m6dCk7duzA\n6/XyrW99i+rqalauXEksFuORRx4B9IXWBQsWUFFRwcyZM1m4cCFWq5UFCxYM6njsFStWcNNNN1Fe\nXp7S/pWvfIUHHnjgpK6rEy2iXnTRRVxzzTVceumlFBcXc9ttt7Fq1SoA3G43Dz30ELfccgvRaJRP\nfepTfPrTn+6hUQkEBpYsv93kHazhYOZxQU4hSvYJUhjI7/dA7ntH6OvxKXd/DZrqkZ95Md6m1deh\n/vAbAFju/ilSD+aEF59f1xAl+wQCQefJdvednKKgvTQGgpxBCLxAIMhONoFXEgKv/uaxPuyMoCsI\ngRcIBNnJJvDGRicTTVEyzxHkDELgBQJBdrIKfFoWyWi4b/oi6BJC4AUCQTvoAq81J1JvoCowejw4\n9eSCRITA5zJC4AUCQXaMMEn1Z/ck2hQFLBYstxsbHCORfuiYoKMIgRcIBO1guGiSrXRVBVlGqjwD\nho+EqBD4XEYIvEAgyI7pg7ckpQtRlUSOGptdWPA5jhD4QUJFRQUHDhzo724IBhOmwCfng1KUhODb\nHWKRNccRqeC6yfnnn09DQwM2mw1ZlqmsrOSGG27gS1/6Up+maRjMKSEE/UTcgk+yAzVVWPADCCHw\n3USSJP74xz8ye/ZsfD4f69at4/7772fz5s0sXry4z/qRQxknBIOFrBa8mnhsswsffI4jXDQ9gCmu\n+fn5XHrppTz99NMsX76cjz/+mEgkwkMPPcR5553H2Wefzb333ks4nLitfeWVV7jsssuYPHkys2fP\njld0OllJvqeffppzzjmH6dOn89xzz6VY8Ce7pkDQIdrzwZuVnux2NBEmmdMIge8Fpk2bRnl5ORs2\nbOCxxx7jk08+4bXXXuPtt9+mrq6OJUuWALB582a+853vcP/997Nz506ef/55KioqgBOX5Fu9ejX/\n8z//w3PPPcdbb73F2rVrU67/6KOPtntNgaDDmEKeIvAJC16yO4SLJscZFC6al55r6ZHX+czninrk\ndQDKyspobm7mL3/5C6+//joFBQUA3Hbbbdx+++3cc889/O1vf+Omm26KpxUuKyujrKwMOHFJvn/+\n859UV1dTWVkJwF133RUvfA7w17/+td1rCgQdJpsPXk1aZLWJRdZcZ1AIfE8Kc09RV1eHoigEg0Gu\nuOKKeLuqqnGXztGjR7nkkkuyPv9EJfmOHTsWr/MKxK1+0KtoneiaAkGHyeKD90ZU3JaEi0ZY8LnN\noBD4XGPLli0cO3aMyy+/nKeeeoo33ngjbpknM2LEiKyhjScryVdaWpqSO//w4cNxH3xxcTFOp7Pd\nawoEHSZN4BVV484DxfxQHkIlgGxNFOEW5CTCB9+D+Hw+Vq1axW233cYNN9zA6aefzuc//3keeOAB\nGhv1fB61tbXxhdTPf/7zLFu2jLfffhtN06irq2Pv3r3tluQz+cxnPsPy5cvZvXs3wWAwxb8uSRJf\n+MIX2r2mQNBVNtf6aVJkjliNMppWKyjR/u2U4IQIge8Bbr75ZiZPnsx5553Hr3/9a2655ZZ4iOSP\nfvQjxo4dy2c+8xlOP/10vvCFL7Bv3z5AX4xdvHgxDzzwAJMnT+bGG2/kyJEjKSX5qqqq+Mc//pFS\nkm/+/PksWLCA6upq5syZk1EacNGiRe1eUyDoMKqK9PlvQCwGwBv7WimRY9Ra8vXjsjV+TAsF0Y6I\njXa5hijZJ0hhIL/fA7nvHaHPS/Y9/B2k+Vehvf4SgXuWcMs/9lLtbmB/U4iFX74Y9f9WgN+H5cab\nUf/2DNrrL6WU9+ss4vPrGqJkn0AgOCnarm1oTQ2JBlXV0xHEoqw90MY5I9yMl0PUWdz68WQffEy4\nanIRIfACgQAA9Ykfov71v5MaVCS7HaJR3tjXysXjCim3hKjFqR9P9sEnx8oLcgYh8AKBIIGUHPOu\nW/AHbUU0BmKcNdzNEKKEkAlEFV3gDR88sgjIy0WEwAsEggSWTIGvKTqD+acVIFskJE2hTApT542m\nLLKm5KsR5AxC4AUCQYJN76Dt3qH/rakoNjs1xVO4eFyh3qYolEshan0RkK1o695Ae/8dYcHnKELg\nBQJBCtqWDfofqsrmNiuloWYqCh3xtuGWCLXeKJJVF3V17SvCgs9Rcn7a1TQNj8fTZ9eTZRllEO/O\nO9n4cihqVtBfWG36/6rKG8dV5te+h6Zdqu+WVhXK5Qh7vBHIM+TDZhcCn6PkvMD7fL4+vZ6IxRWc\n8hiWuVeysaUhyrcat+u+dpsNFJXh1ghv+aLg1icCyWoTAp+jCBeNQCBIxRD4t4pOZ3qpHbekJOLc\nNYVyOUatNxI/D6st7oMXd4C5hRB4gUCApia57QwXzeriKVw82g02KzTV68cUlRKrQltIISyZaYNt\nYNab8fZM6m5Bz3BSF83TTz/Npk2bKCws5IknngB0t8mTTz5JfX09paWlLFy4EJfLBcDKlStZvXo1\nsixz8803c9ZZZ/XuCAQCQfdJrsxktXGwJUyT3cPUMif4vKgP3q6nIVAVZFlmmNvG8ajGSON8VBUA\n9btf6Va6AkHPclILfv78+SxatCil7YUXXmDKlCksXbqUqqoqVq5cCehpa9etW8eSJUu49957efbZ\nZ8Utm0AwEEgWeNnCOwe9zG74ENmasAG1Q/vjFZ3KPTZqo0kWvKL2cYcFHeGkAj958mTcbndK28aN\nG5k7dy4A8+bN47333ou3z5o1C1mWKS0tpby8nD179vRCtwUCQY+SXLhDVdlc6+fspl0p8e3qQ3ca\nFZ0slHvs1EYMv4zVrrcLco4u+eBbW1spKtKrKBUVFdHa2gpAU1MTQ4cOjZ9XXFxMU1NTD3RTIBD0\nKuaOVMAfhU9awpzevBfkNIlQVbAYFnzIaLNaQRMWfC7SI2GSZjWhzrB9+3a2b98ef1xdXd2n8e7t\nYbfbc6IfvcVgHt9gHhv07viUZjtm8OxOxU1VmRuHGqOgsIjkZVObxYLscnHasEI2fdKs98umL8pG\n8gvAYulyH8Xn13WWLVsW/7uqqoqqqiqgiwJfVFRES0tL/P/CQn0bc3FxMQ0NiXSjjY2NFBcXZ32N\n5E6Y5EJ89mCPEx/M4xvMY4PeHZ/W1hr/e6PPxpSRemx7+vWi4RDRSJQiq8Jhn271R0JB/eCsS9DW\nvNzlPorPr+uvW11dnfVYh1w0mqalLJZOnz6dmpoaAGpqapgxYwYAM2bM4J133iEWi3H8+HHq6uqY\nMGFCN7svEAh6nWgUTpsIZ57DlqibaaWO7PllVBVkC6VuG40RiJ4zW/e/qwq43BANow3ineADjZNa\n8EuXLmXHjh14vV6+9a1vUV1dzbXXXsuSJUtYvXo1w4YNY+HChQBUVFQwc+ZMFi5ciNVqZcGCBV1y\n3wgEgr5Di0ZRH78bJp5J3egqQkELY9wWtGw53g0fvE2WKHFZafCcwYiQcddukSHPBUE/5Bf07SAE\nWTmpwN95551Z2++7776s7ddddx3XXXdd93olEAj6jlBA/99qY6taxDS5FUlV0LKkH9AUBYuRUnh4\nvo26oIMRRgw8Fouel0ZUd8oZxE5WgeCUx7jLtkhsVQo4S2rRS/G156IxLPtyj5061aG3qaou8LJF\nxMTnEELgBYJTHSOGXVHhw1g+Z9Git2VLIJbUXu6xUas4DB+8IfAWGZRY5vME/YIQeIHgVMdYFN0j\nFzFMjjJEC+kibQr86UnpRoyNTgDD8+3UKkaaAlXRxd0ii01POYQQeIHgVMcQ5C32cs6yB3VxVxKW\nunzXw0nnprlo4gJvumhk4aLJIYTACwSnOobAb7UPZ5ozpAu0Esvug1eSLXgbx2M2lGQXjSws+FxC\nCLxAMAjRVAXtyIGOnayo+OU8PrEVc7ozpgu0oqYW4DYxXTGAw2qhQFZpVOzCB5+jCIEXCAYh2voa\n1Adv79jJqsK2IeOZFD6Ow2rRrfQ0C1664SvGuWpKfpoyW4w6nHouGsl00QgLPlcQAi8QDEbCoZOf\nY6IobBlSyVnBQ0aYo5LigweQPn19/FySNkCV21XqJGfifFmO54YX9D9C4AWCUx1VYWvxRKYFDulW\nu5rFgpck3UKPxVJcN+V2lVpcqS4a4YPPGYTACwSDkU4U2qnzK4RkB2NCDUgWWS/fly0OXrbou1ST\nBH64Q6NWcqFpKlI8ikb44HMFIfACwWCkE4XUtraonNX0MZKmtuuiAXTrPBIG2RZvKndo1FncugUv\niTDJXEMIvEBwirO5BaY1fwwlpUYUTKaLBtAt93BIL8JtMDwP6uR8NOGiyUmEwAsEg5KOmfBRReVD\nr8RUVwTLN36Q5INX27fgrfZ4k9tmwaHFaNb0/PHxCUKQEwiBFwhOIZRfPoRa839om9ahPLyQdYd8\nTHCqDHHZkRwOvfxeLIqmxJDS0wXLMkQjepFtE4vM8JhXd9NIerIxkQ8+d+iRkn0CgSDHMGqkapqW\nWpPhw41oQT+Uj4KDe3llTwtXDonAAUPMC4uhubF9HzyANVngLZTH2qizuDnTYkEy7wAEOYGw4AU5\ng/L1a9Aa6/u7G4ODqBHJEssS0WK0HXEO43BrmHPzwwkxLxkGzQ16tEy6D97c4GRNs+CP7aWuJZi0\nk1UIfK4gBF6QWzQLge8smt+XUlIT0F0pAEqW4hu+NlAVVo04j4vHFWLTEpuXJJsd3AXQVJ9pwUum\nwCcJv8XC8GAjtc4SCIf1ScDXiiA3EAIvyC0i4f7uwYBD/c4X4P23UxvNqkrZLPiGY0TeqaGmbDqX\nTShCUxSkZDEvKobG45kCb+xQTXH5WCwMDzVS5xwKQ8vAIqMt/x1aVFR1ygWEwAtyi7AQ+K6gtbak\nNsQFPrvQrh82hbG+o5R77Ck53gGwWtEi4UwXTbYUBLLMiEADtQUjYMSoxIQiyvblBELgBTmF1pkc\nKoIk0lw0J7LggVXl53NZ7Qb9gZLI8Q7oPvZwOIsFn8W3LlnIjwWQLBJtYSXhGjL/F/QrQuAFuUVE\nCPyJ0D54T99UdDJOYEkfcQ7jsLuUcxt26A3paQlkc8dqdhdNCtEIEjCiMI+j3ghaXOCFBZ8LCIEX\n5BbCB98umqah/uphOHY028HUx9F2LHhJYlXlp5hft1FfXIWMDJHIVt0CT4+Dz2bBjzoN6Wt3Ue5x\nUOuNCgs+xxACP0jRYlHUl/7W393oPMIH3y5am+ln78AuVdNyT0r8pakqUUmmZuhULj26IXGuqqTk\neEe26ikJOuCDl+wOLBfMo7zARq03khD2mBD4XEAI/GCl4Tjai3/t7150HmHBt4taX6f/kW2dIjmy\nBdBMyz3ZVRKNsH74NE5zqgwPNennmZkjk6x1qTMuGoMRHrsu8BHhosklhMAPcLRQEPXvf8g8YMQq\nd8hfm0uIRdZ2URuO6X9kmwTTXTRKFh98JMyq4efx6bKkySAay8w7I1sNgU+z4LX2v0vlHjtHvdHE\n9YSLJicQAj/QaWtBW/NyZrvpLx1oi5Yil3i7aAG//kdH3FiKok/yoWC86UhriMPOoZw7dkjivFgk\nw4LHagp8mjwMK2/3cuUeO3XeiB5eCcKCzxGEwA90VAWC/syNJeYtemhgCHx8J2Y7YX2nIurvf4n6\n2ouJBtMqTpq0NXMiT79TU2KQX5iYFIBVB4LMb96GbWhp6mtmLLLKWS14aeb8dvvqsVtAgrYxk1P6\nqu38AOWhO08yUkFvIQR+oGMWV/C1pbUbP/wkCy6niQu8sPxAn/C0t19D2/Z+os14b1L2CpgTYvqd\nj6KApwCCusDHVI2ao2Euad6OlJwNMhrNvsiqZqYLli6/ActTK7L2V5IkRnjsHLvuGzDtgrjBoX34\nPhza35mhC3qQbmWTXLlyJWvXrsVisTB69GhuvfVWQqEQTz75JPX19ZSWlrJw4UJcLldP9VeQjmnB\neVthSEmi3fzhhweYwItbewC0l/8OgFQxNtFoLGBqv1uKdu5FulBnW0wFXfA9hWBY8JuP+hnutDBC\nSTMEIoYFb0vkeI/nmkkLk5QkKfW8NMrz7dT6FCblOZNy4Yg7sv6kyxZ8fX09r7/+Oj/72c944okn\nUBSFt956ixdeeIEpU6awdOlSqqqqWLlyZU/2V5BOssAnYyaZGigWvOFi0E4xC16LRrKOWdu2CSZN\nyTg3TtCn/6+0b8FL+QVxgX99XysXD5fjKQnkZ16E0yZCKKC7Y+yOxHNNyz19kfUkxEMlbbZEmKQQ\n+H6lywLvdDqxWq2EQiEURSESiVBcXMzGjRuZO3cuAPPmzeO9997rsc4KsmC4YrR0gY/74AeIwJsR\nGqeYwKsPL0Rdcn/mgQN7kSZWpYU5Jv1t+tZj7aQFNi34oI+2sMIHdX5mD7OkWuVOFwQDeuSSIy/R\nbgp7epjkSYiHStrsGRutMrJdCvqELrto8vPzufrqq7n11ltxOBxMnTqVqVOn0traSlFREQBFRUW0\ntorUob2KacGnp2g1f1ihIBIDgFN1kbX2EDQ7U5o0TdMXUguKoKUp0Z5swccFvp2kYooC+QVoTfWs\n/aSN6SPzcUsh1OSkYnmudix4XRakzlrwZqikzZZYZDX7GQmnTiKCPqHLAn/s2DH+9a9/8dRTT+Fy\nuVi8eDFr167NOE+SssvL9u3b2b59e/xxdXU1Ho+nq93pMex2e070o6PEHA58gD0UxJnU76jdhh/I\nUxUcSe25Oj7NKtMKyKra5f7l6thORAuAJKX0WwuHaLXacBYUEkXDbRwLqQrW6bOIvf8OTlRsHg9K\nWzNewGaRcCW9RpumkjdqDKHN66g54GXBeRW4onUEbbb4tQIFBciaSkxVsBUVYTev43IRApz5bmyd\neD8rbU7qfIexufORAKfHgy8aJgbkW8ByktcaiJ9fZ+jN8S1btiz+d1VVFVVVVUA3BH7v3r1MmjSJ\n/Px8AM477zx27dpFUVERLS0t8f8LCwuzPj+5EyZer7er3ekxPB5PTvSjo2g+3RcbaWogltRvzaf/\nHWo4TiSpPVfHZ1p6SjjU5f7l6thOiqal9FvztoLDQVBRIRCIH7OEQihTzkWSLAQaG7B4vfH0BdGk\n8wDUaJRQ+Wj2exUavSEmFEgEPvGiaonfmWq1E21pRvP7UBSNsNluuP2CkSihTryfkqYBGg2ajUJf\nMzGvF8WI+PEdP45kO7EFP2A/vw7SW+PzeDxUV1dnPdZlH/yIESPYvXs3kUgETdP48MMPqaioYPr0\n6dTU1AAZGRAOAAAgAElEQVRQU1PDjBkzunoJQUdoxwcf36rubUl/Rm5yKodJpt/lRsJgz0Oy2VIX\nYGNRPcLF5e6AD14Bm4PVp13E/GIF2SJlhj7mufQwynZcNJ31wZuhkrWW/MRmrHi4bqBTryXoGbps\nwY8dO5a5c+dyzz33YLFYGDt2LJ/61KcIhUIsWbKE1atXM2zYMBYuXNiT/RWkoyr6Ylm2RVarFbxt\n2Z+Xa5yii6w6aQIfDumCa7WnbvmPRpBsdjSnC+3t12Du5Ym1lvTkXkqMmGThzfxKHnUZVqOqJMru\nATid0Nx0gkXWzsuDHirpZLK5ozUW07+fIsdQv9CtOPhrrrmGa665JqUtPz+f++67r1udEnQCVdGj\nJfy+1HYlBkUlmdE1ucqpHAefvkwVNhYkbakCr0X1BUzpgvlorxjhx4ohoEcPpb6GorC5McZwgowI\nG5N8Ngs+dFi/XrYwyfR0wR1AD5XMS+QUUoTA9ydiJ+tAR1EhP7FjMU4sptfWTN/hmquop7IFn0Yk\nDA6HEY0SRdM0ava3stw6Qa+2NGJUwq0TjcKYCdDWnJROGFBivHEoyHxHc+LuLr00n9Oth0ma1zOx\nds1FA7oFX6fYEzlpFAWc7sRjQZ8iBH6Ao6l6OByBNIFXYuD2DJzsjJoKdvspKvDpPnjDRWOz06Ra\neezNI/x9eyP/clayM2RDMixrTVX0z9lmh6ISSBJ4r8XO1uMhZhfEEgKvqCkCLzmdaMGAfr0ectGM\nKLBzNConLPZYVJ9IhMD3C0LgBzqKgpTnBFVNjZNWYkgO58ARTFUDm+PUdNGkEw6h2fNY0wh3jf4c\nowsdLL5iLF9tWs9vD1hQVE23rhVFv1Oz2cCRh/qrh+N5ataWTGHGCDfuIk+SBZ9We9WMg09z0cRz\n1XTFgvfYqQ1bEvlyFEW4aPoRIfADHbOepsud6qaJxSDPOXAEU9N0S1SJnfK7HhsDUX7qnsnfD8T4\n0f4VfHnaMGyyhTmtO3FZLby8u0W3rpUYWiyqb0iyO6CpHpob0VSF1cNncMn4IqQhw9Ca6vUXzuai\n8Xl14bcmJSAbPV7/vwsC77FbkCRoM4N6FAVJWPD9hhD4gY6Z6tXpTnXTmAI/UCx4zVgAtFhOvfwl\nSWGS4ZjKPUeHMtoS5BcXlzPhyDa0Tev006IRbjnDyd8+bKDF7tFdLooRLWWKsa+V1Xtb8NpcTClz\nwdAyaDiuH0tfZHU6oa0ZHI6UDYnS0DL9j+SF1w4PRWKES6ZOMhIMKlHd+BClGPsFIfADHfNH63JD\nc2OiXYkOMIHXdKGz2gZMnzVNS03d21WSXPCv7mlhnDXMl+SD2D35SHMvR2tt1q8XjTK6yMnF4wr5\n85hLdXGPRfX3zLjrqTkU5I8fNLFo51/02PeiYvC1okWjaKqCJKWnKghmFXL5mReRSkoz2jvCcI+N\noxZjx6ai6N9NYcH3C0LgBzpmNR6nC3XxfWhbjGLKiqL/cFV1YJTt01Rd4G02vYzcAEBb+wrqt7Pv\nIOwcusKHYyp/39FEtfN4IpLF5oCoWSVJz9T4uSklbCkYz86GkH6nZuRvX1N2Nn+oc/DQrBJGRfQc\nNpIsg6dIt9QzwiSNhdUTpADuCiMKHNTJ+bqrTYRJ9itC4Ac6iuGDN3yoWu1hvT0W09vSLGKl7kh/\n9PLkqKq+CSetv1okjNbU0I8dOwGm66OTaPV1WSfdV/e0MLEkj3H4EkJst8fFUYvpcfAum8xX6mr4\n7TYvSlT/nNfkjeWP467ix+69jHJLqREwdkci73tyFE0X4tw7QnmRi1rnUD2CKxYzLPgBEs01yBAC\nP9AxF85Miy+YtIXdas0QTO93voR2/Gg/dPQkaBpYDBdN8uaeVf9Avfu/+rFjJ8DStZ+P+sNvoK1f\nndJmWu83TRlqTNqmBW+PF/ogEolP5HO8u3HJ8EqggBqpjD8WTOfBrf/DqMBxiCmplrqZ3VFTs29e\n6mGX2IgCO7XuUj16R9PA4UyMQdCnCIHvRbQDe/Q4495E0X+0khkFYV5PiSZEf+cHqf36eDs5h6pl\nteDx6MnqtFxcpOuiwAOp+xMkiVc+bmRiXpRxxXm6W8MUeLsDohHd4leVlFS+t0y08ddAKX+MjebB\n+pd1cfe2pj4fEjtiFSV7ZEwPi2+5x06tYwhaU6P+3XTkiY1O/YQQ+F5EfeQutBf+3MsXMV00WSx4\nWYagH/XpnwIk3ALHctGCNzbhpAu8OXE11/dPv05EdwQ+abEzLFl5fusxPrtqqd6QIvCGBW8spsaj\nXWSZ0Xka37Af4MfufYyKGAux3taEe87EZryn6bloTHrYfaKHSkq0NjXr30u7Q/jg+4lu5aIRdIDe\nLmBhhkmaPnjTgo/FQLalnmsWB0lPa5ALmFE0xvb8OGbIZC4WAskmlh0laXJY5ZlMZfN+xvmMiTfZ\n0jYXWaNRJHvSYqgRB38Rx8FRgGYK+kdb0fbtSquxaljwqppaXNvsh5nxsYeQJIlyAtS++x4FsiwE\nvh8RFnxv09vllFRF/9GaFp+ZXVBRkKxp87diWPDpaQ1yATOKxmpNFXPzriMXY+O7sBEo+bmaqhK2\nWFk5ej7Vu/+VOGaun0CGBZ9ybcVIVWC1Yfn697Dc8QAA2u+X6s8zMSdNM+IqmV6qslRenM/R+lb9\ne2l3iDj4fkIIfG/THSuvI6ipFnw87a6SJBKAuvLPcQtey1kLPouLxhT2XNyR2wkXjRYOoTz1GNqB\nPXqDpG/oWlV+PpVtBxPWO6S4aCSbHe34UbR/L0+1yg0L3swRLxUVw+Sp+rGS0pRzJZtdT2Ohqhl9\nbhk9gw+rFhAO9Wwo7YjyEuqcQxMCLyz4fkEIfG/TixZ8OKbyaKiSpwIVvKSNYMuQSppw6PHHsWjK\nQpv272UJF00uWvCq6aJJSzhmug9y0YLvjA++7jBsXo+2vkZ/LEmEwxFWjpnPTVeeGz9Ni0VTXTR2\nOxzaj/bO60gpAp+UiyY+GdiQ5lyqW+zJm5dMCz4p2VgwoLJ5vZ/3JyxAOedC1tX4CId7TuSHFzr1\nUEmLRQh8PyIEvtfpPYXf1xyiTstjnC1Crebk+dEX892hV/HFFbt5xTEuMxugKZI5KfBK9kVWc1LK\nSR98J1w0DcfB7UH7aKv+WInx/EctVPqPMn7imMR5Zux48kYn0Hec2pJdNIYFr6QtqI46Ta8NkDwZ\nmFE0qkJMsrNrW5A1r3jJc1m4+KpCzrmwiLJyG+tr/EQjPSPyIwsd1DpL9M/SkSfi4PsJIfC9TXci\nLU7CnsYQZ9LM5flevmHbz0Nbf8vvDvyBB+ePYkX+FJQMgTd+vLnqorFYkKw2vbCFSbwkXQ66aAy0\nDixSao3HoLIKGo4B8FabgzcOBvjGkdcAsPzqOT2tQCiYGSZpkNWCj0ZTXHHY7BDwI6VY8LqL5nBk\nOGtiF+Pzqlx0mYfTpzqx2iQkSWLy1DxKhsmsX+MnFu1+srdyj51a11D9sxQWfL8hBL6PUJ97FmXp\ngz36mrsbQ4xX21IjI6JRJg51Uhzzs8lr0ZOQxTuhIHn03PHKfbeivvaPHu1Pt4hH0VjTLHizEEiq\nBa/89AcoTyzqww5mIX530YHJp6kBaeRoCIfYWTCGZ1qLWXS2m2JNt2ylPKf+WYWC+gK56aLxFOjC\nD2k+eF3gNSWW2AMBupWvxFIWWZvkMt5umcaB6GjOtm9h+kw3LnfqT1+SJKrOdlI4RGbDWh+xWPdE\n3mO3IGkabZJdn4AUtUMToaBnEQLf2xiLrNqmdbBtU4++9O7GEJVKk2HtmRV+9E0rl7Vu45U6kH/5\n/2G552cwbpKeI97p1sWy7jDarv7Z8KQpSqIoeLzRjKLJHiappYvovl2w68Ne7ulJ6IzAx6JQOIS6\nvGJ+VvVl7sg/ylinlup2yXMmWfB6u1Q8DMuiX+h/21KjaLRQMNWdQ5KVb7MT8ClsfNvPZvVcTpP2\nMktaTbHd224XJUliynQnbrfMe2v9KN0QeUmSKA82UFc0Uo/dtyfl1BH0GULgexvTBd+dkLos+CIK\nTcEYFbHWVB+sIY6zW3ays02l3h/Vo2wURXfRyNZ4kqkUwehD1CcfQP3pD1Ib24uiac8H30vhfZ3C\ntEg7EuGjKPgkO49O/S+qD7zGdLlV322c7EZLEfjkVAP21P8Bjh1F+92TmbtWrXaich4fydN4c5WP\ngiKZefnvMOKVJ+HVlSd1GUqSxFnnOnHkSWx8x4+idF3ky4ON1BaU6w+ScuoI+g4h8L1EvGhFfOdh\nz+4p29sUYtwQB3J6fLRhwedFQ1xYbue1vS26C0dVErteHU793B7OIthh9u0CM1zQRE2y4LNG0aSJ\naB8LvBYOp9Y8hcTkEz35Vv+oovJ4YynnNO7k8qPr9QkrmrZA6nBCOJiZUsA4R0oes+HLN8MkATRV\n44B3CG/O+hkRycm8yz1MrMpDtid99zqQYEyySEw734VFlti0LoCqdk3kS0NNHHcP0x+IWPh+QQh8\nb2EKk+lD7mELfndjiAkleYYP1goYP8KYITaxGJeNdrFqbyuKJOn9MIUjzxT4/rHgs1qRxiJr5k5W\nU0TTLPguFKPoDtoffon63f9MbVSyrw9kPFfT+G/5DFwWjf/ca2xoUmKp+YLQ/fC62yVt0s4m8KFg\n4tqylfq6KGte9XKk1cOMLb/gLM/H5Dn191kaMwEmTYFJU5BGj+vQeC0WiekXuFBVjc3ruybypZXj\nqB87RX9gZrQU9ClC4HsB7fjRuIWl7flIjyQwLPh4+bRusqcxSGWJM8MHSzQaz8N9WnEeJU4rm5oT\nAi+lCHw/WfBm0eit7yXaTmTBW62ZFrz5Gvt393Zv9es0ZkkNbG4c27/rhM891Bphq2UoC0d4keMT\ncSwzZ0zcRZNqwccXXLNMyD4tn3f3FPPBxiCTzsxj5hltFHoPpG50mliF/L1Hkb/3KNLpZ3VwxGCR\nJWbMdhOJaGx9N9DpUorD51zEMatR+ENE0vQLQuB7AW3Vi/rGIoBPdqO9tSr+g1V/dm+PXGN3Y4jK\nkuTMg4YryCInxUdb+XRlEa/UxnTRMHe9mkLRiyGcJ8R8L379cEI0knPRpO9ktedl+rmNc9THvtsX\nPU7ciSVj3F2YJfXaY/0hLxdEj+C0ykgLvot0yWdSdqHGSfHBZ3HpJYl+7LYH2THxi6wfs4CSIpV5\nV3gor7An8tW4PZ0eYjZkWeLcOW6CAZUPNgY7JfJl+TaO+wyr3eEQsfD9gBD4HkDbsh7N15ZoCAXQ\nkiNmZEvix6l1fyNJSzBGKKYyPN+WEAlTrE0Xh5FsbM6YAna2qDTIrkSecVOsenj7v7b1XbS25pOf\nmOwH9rYaT1YTKRfSF1kdeZk7Wfs65C6bwKsKTKyKl8tLRmtpRF35Z7RQgPWHfZwXPgyyjOX8uVA2\n0hD4dB98XuZGpyQkSUZVNfZ9HKbmk/GoeW4u3Pgjxo9VkWVjgjcm766W28uG1Spx3oX5eFsVtm/u\nuMgPddloCsZQVE1Y8P2EEPgeQP3NY3quEAMtGEgIF+gWqGmRJceld5HdjSEmFOfp4WeGD1a64kYs\n3/9JUu5vXSTyrBYuHGHntaIqPQ5elhOViHp485D660fQ/rX85Ccmx+2bro+UmqxJYq4ouvWX7udW\nYkjnzYXKM7rf8Y6QbWJWVf2zzeKD1957C+3fy6jf8gH1/ihnRI4lvgNmQrV2LfjMvO0aUEs5NS97\nOV4bZea8fM6sfRGHvyn1NayGBT+05wQewGqTOP+ifJoaFD7aGuqQyNtkiaI8Kw2BqP4+CYHvc4TA\n9xQpFnww5ZDkyEtY2D0h8E1BJpQYfnRjq7rkdCFNrNItuEg4JbHUZaNdvD5kCopZ6ccU9g5Ef3QH\nLRZD/cdfMw+YFrzDiWZONu3GwSuGiKZNRoqCNH1mIkqpt2nPRWN3ZJ0otY+3w+jxrN/XwIyR+chK\nLDGxybrAa7EYktxeHHxCtNtaFN49+262xU6napqT8y9yU1AkJyKJUsIkjfe2YEh3R5yBzS5xwVw3\n9XVRdm3rmLulLN/GMV8Uye7IzaItgxwh8D2E5kvaQBIKIn39e0if+g/9sQTEokgz5vRIapo9pv8d\nMm/nrfpWdWyJ4hCnDbFTHPGyqRWQrVge+CXSl27VMwz2Jr5WtH/+LTX1ACQmu4ox0GiE+5kVnczy\ncgZauxa8ogtiX2WZbMdFI9kd2ROhNTcgTTyTDdEiLhiVn1qGT05dJzGJR9EYAh8OqWx9L8C6Gh9l\n9e9ziXsdZSOSin6YkUTJr1EwBMuDv0bqpfUVu8PCBfPyqT0cZfeOk4t8Wb6N436RrqC/6Na3IBAI\nsHjxYhYuXMhdd93F7t278fl8PPLII9x55508+uijBAKdK1mnfbwNdfW/u9OtPkN95XmUXz2sPwj4\niCoav3jrKIFwDGn0eCiv0I+ZOUNOP6tbib60T3YT+/kPEwuskJE1EpsN/F7d6jWxyFxW/z6vNFhB\nlpGGlOjpZXtbHE2LLT1yyLDgpZFjUl00FknPRZO+yOrIZsHH9LjxLJOU9vE2lKce66lRJPqXTnuT\nD0A4SJuriH1yIdOGu/X+muM28+1E08IhnW4I+FBUiT0HZFb/nxerVWL+lR7GHn4Ni5xmHZgWvDU1\nukYaObo7Iz0pjjwLM+flc2h/hL27TizypW7dghcC3z90S+B/97vfcfbZZ7NkyRJ+/vOfM3LkSF54\n4QWmTJnC0qVLqaqqYuXKlZ16Te3oIdjzUXe61WdoO7bCB0aon2ThnYNtvHmgjTdd43Tr0vhCa4oC\n0QhS4ZBuJfrStm2i/uARZItEicv4Uadb8Da7fjeRHDNtsTC74UM+Csi0WZJi4Hvbgg8brirTSjcx\n/csjx2R30aTlopFcngy3l27Bu7JOUtruHXpq3k6G9Z2Q9hZZ23HREArxnlzG1EgdDqslLQWwsW0/\nzYLXKk6j1lfIm1N/SHOrxJxP5VN1thO73YhnT9+klMWC7yvynBZmzs/nk90R9u9uX7jL8u1C4PuR\nLgt8IBBg586dzJ8/HwBZlnG5XGzcuJG5c+cCMG/ePN57770TvUwmqoI2UMKp8pJEVIJ/7mrmyolF\nvFpyFlqeE6nU2KZtWvAFRd1O1bvHU5Gw3iFDJBIWfNJGIItMXjTEWEeMT2x6EWu9jFuqMGnhMMrj\n93SpXynhjiYh/XOMi3i8P4ZglY+KW/eaqiKZLpqURdYYeArQAr7EtVRFnxAcjoxJSvtwY6IObkPa\nxNIdsi2yKqpxd5Hdgn83WsD5wQP6YzVN4CPhlA1NLU0x1m2U2TPmKqZsf5ZzL3CQ70kVdHlM6ial\neMbIHt4l3VGcLgsz57nZszPEwX3ZxbssbsGLVAX9QZcF/vjx43g8Hp566inuvvtufvvb3xIOh2lt\nbaWoqAiAoqIiWltbT/JKaSjKgPkiSEnVmnbLQ2gJKfzXtKEELXb2+DSkqecizbpE/3HHInpscnfG\nJkns8YyisjhJ4DMKLNszBV6WQVUZZYtyQC5MnJduwQd8cDAthUBHCRuTcvL4zIk6fZOQaYkWlSSe\nZ+5kNSz4eDIyRQFPYerEaG5+smeOQVu3OqlPaVZ/d+iEBa/FooQiCh8GbEz3fZLosynwDmPbfixG\nUM5n83o/7671M+o0O3OO/o6hzR9liLb8zIvYZsxJvb4R8y711UJzFlz5MjPn5bNrW4jDn2TeEZaa\nPniHsOD7gy5P/aqqsn//fr72ta8xfvx4fv/73/PCCy9knNfel2/79u1s357IZlhdXY3H4yFksxJV\nYng8PbNRo7PY7fYOX9tvkTB/2v/nOYPrpw6nyG7l0oYtrD4wiemnlRHIy0O2WglFo+QPHUYbkO90\nZtZL7QAhh4M9nlF8eVRxvI8tSgxP0RAkpwsAn9OFHAkRc7nj52iKQquqMMGlsbutEI/Hg1JUhF+J\npoxV8bbgjXXtvVdjEdoAqxLFbTw/IkkEAGtrU7wNwGu3owD5pWV4Y3ofIg4HUbsdR2Eh/uZGeGQh\nnl/8Hi9gHzqMcDiYGE8wQKtsxTOkmNak/trtdixN9ZgR8i6HA2sPfY9aJQkNUt4bv0XC6ikgpCop\n7S03zWfz0DM5vchK4SchPB4PbZqGu6AQ2eNBKS6hVdH4JDqBfbFRTCjKY+bcAmx2C97n9ffGU1SU\nsVCa/t0MuD1E0vrUH3g8cMmVbl7/93Hcbiejx7nix1xuDW94HxZ3IXJ9Ha4T9LUzv72BSG+Ob9my\nZfG/q6qqqKqqAroh8MXFxZSUlDB+/HgALrjgAl544QWKiopoaWmJ/19YWJj1+cmdMPF6vah+P1rA\nj9fbflrT3sTj8XT42orhgmi25/Ne3ii+PjIPX8Nx5nt3cse+Jr48dQh5qko0EEALBvDFFLA58DY1\nxgW5M8RCYfZ5RlMuh2g76tNzu8eieIMhpJguayoSSnMjmmyNj0PTNFBVylU/q3Dj9XrRYgpqMJgy\nVq2pEVSVttaWTH/vSdAadFdL1OeLv6ba0gxDy4jWHUm5jhKLYbnnZ/jCEbRwSP/cAwGIKSiRKFpr\nM1pI75sSjRC2OVB93sR4/F6QZbyhCAT9tNUdRXJ79InLmwhXDbS1IfXQ90gzLHjzWgBKOExMAy0a\noe3AfqTiofHzNww7k3NLJJSQMb5oBH8wBG1tHD6gsnP8nQyJ+Jnt3kD+5KsJhf2EwqAYriCfP9OV\nl/7dVA3jqb9+K8lYrHDehW42vNlEOBJi+MjEXWWJy8qhiIWRft8J+9qZ395ApLfG5/F4qK6uznqs\nyy6aoqIiSkpKOHpULxb84YcfUlFRwfTp06mpqQGgpqaGGTNmdO6FVXXgJCUydlO+Wn4Bs9t2k++Q\nIRRkiFVjapmbNfvbdHdEJKzfztvshluha7eqRxU7nmgAz4t/QL3rS0bt1czUsprfp98SG0iSBJKF\nUZKfg7j152Vb9DLdJV3ZJeo3vrjJbpFICEaPh9pDut/cxFw3SHaxmClyrUbBCtO9E4tCfrqLxogT\nN+6C1LsXAMZE1tyQel5PYbwn6o/vTLSpqrFgGkO9+7/QWvVdvFFJZlPxZM4rTaovq6o0ea2sXeXj\nkyNWzt71v5yjbcBlS+tjZ4q093HCtZNROETmvAvdbH0vwPHahNuqNN9GPXm9H5YryKBbUTRf/epX\n+dWvfsX3v/99Dhw4wPXXX8+1117Lhx9+yJ133sm2bdu49tprO/x6WiiAdnh/p3x12sG9mXHWfYUS\nIyrJvDJyJlc2GqkJggFwuri8sohX9rSgWWTdt+1w6kJrs2ekTdX27uzQ5fbEnIz3Hk7KJBjVwx6T\nb+WNRVbJnpZOV7bgUcM4Uaj3x7L7ROOi2nlh1BqPQ/HQ1IXbUAhpWJm+uHz4k0S76Y+WrYSxsvu4\nj3XNFsJOT2I9IRbTo48iYb2qEVpCIIwNW3H3nzGpaK3NiURq5nUA7XgtmreTa0HpmEKdthYgOZJ8\n8MYEub1oHOXBekry9WMBn8KmMV9k03Yb4yY6mD0/jyGNH+nP605GzxwTeICiYivnznGzeUOAhmP6\n+1LmtnFMtQ8cw20Q0a3l97Fjx/KTn/wko/2+++7r0utpy38Hm9aBK7/Dz1EfXoj0ua8lNhX1JYrC\n+gu/yOgCF6N3GhEboQA4nEwd7iIYVdktFTDRX58QniwLg+pPf4Dl8f9FKh52wsvtiTqY4D2EJht7\nCxqOZUZQ2Ozg88KotB+/RYZQiLFyiIOtYYaV62GcmqYlCaUh+F2xfBvrYXgFtCblogkHwZ6HNHIs\nWt0RpNHjqfVGeLX4PA5tj3Ho/X00zb6f8g3HyPMX8XepmB/GJOJ7MCNhvU/2PP074fPCkJJ2k3Fp\nrc1QUIR0+Q1o696IT1Tqoltg/GTke37W+XGZxGJ6DpkkN4yeCC1po5PxuW4YdS7n27xEJTu7h1/B\noVU+xvqPcPZF07AOsaNpmhE6G84cR2cWTG25J/AAxUOtTJ/l5v13/MyY7TZ2s1rFIms/kFs7Wf1G\nKFwHvwjaji36H12wOHsEVeFfniqumjQk4dYIBcHpxCJJXDqhiFXqcN3qS07Rm7xTU83uDtGa6tF2\nbUtp2624qGw7DHWH9YbmxswY6GwbnUCPUAn4GGOLcrAlrPvYZWtqX8JJOcY7S+MxpOEVqRZ8OKyH\nkubpSbRagjHuf/0QMU3i4hEO7ptfwV82/Yylc4v5ibqRmc4AP3irmd0eY4NYOKT/czj0SBpvKxFF\n5fVDIfa5h6e+X4f3o0XCYHdguexaKB6WOlH5u+n7VKJYbvo67N2J+vpLRpuSEsGkrXkZVdN4t6CS\nyonnUrNWIiy7mXe5h8pD/0a2GRudjBJ2WsCfsUmpUwLvyE2BBxhaauWcC1xsfNtPiWbleNQKB/ai\nHdzb313rEpqmoW5Y09/d6DQ5JfBaUo3L9oQvGXXJ/fof/ZT29mNrMS0xiRkjXInaocEAUp6+gHrJ\nuELWKUPwBcJJFnxa4YNQkq85CfV3S1Gf+GH8cUzVOKC5Gec7oocdjpuE1tyY3YL3ezN//BYZAn7G\n5KkcaDUmUEdeqruoOxa836cXh44ljS0c1Heb2vMIh6M8suYwF48r4OYjbzBzhJOKAgeyXb91l4J+\nbiiN8o0Zw3h0yn/x1rCz9IneEO2IZwj/3u/jm//Yx5t1ER4afT1//aCe2JWf09+vR+7SBd7Mg24U\npU68oV3P4vnK7maeHzGHdyMe6ixulL89q98tpN1JaKv/xZaP/VxmH4nf5+K8mQ7O2vn/9MIbyakK\nQL+TC/i7tUlJOn8eljse6PLze5thw21MO89FaDcEwjYIB1EfXtjf3eoaPi/as7/o2c1zfUD/7JBo\nj+QfYSSs71Q00D7Zjbb/Yyzzr8p8Xj8J/L89VVw5Qka22lBNqzcUBCNCZojTylSbj7WW4VyeZ4hn\nevFhc2EzvWJROHWz18GWMKVaAKcShrGV+iaq5oZMC9Bq02PK0/2zsowW9DM238KLLabAmzm6C/TH\n3Xe1Ci4AACAASURBVPHBx2J6ZFC6Be9woNrzWNo0lJEj7dw0ZShqcs1Rw2WlBfxYXG4uGFPE0K3P\n8NMpX+HILi/XarB6v5+/l17H2A8/4Z6bPkVloJaGPy7jv0ffxg8s5/Lt/LWMw2tMBkZsuJHyIG4P\nd/CHqX20VZ8gp8xAW/E7tsz/Msu3NTLT7uHleomD027Ba3MzctURSkvmI++R0M74InbZRVnhJOSt\nYSTvNmbOGY80rBg1ZhRgSd7oBPrk6mvLDJfthAUv2WwwZXqHz+8PykbYqDwrD9/GIrzukXj8R/q7\nS11DM0tHxjJ/czlMTlnwKRZXmptGXf47tL/+NvvzpJ4th9cRmoMx3neN5lMj7LplZvY9GEhZ6Lss\nr4VXXRPRzNQBtrTFpviCadoCVNr4dzeGmKDo/m1p0pl6ZElWF41hwabXLDUWe8d4bBxui2TP0R3q\nusCjxIzUAakuH8nh5M/aWFoVC9++YHgixbHZb/P9CPrjmTZP89fy+Pu/ZktDlK/Oup9NR/38oPEN\nFm19lkqPbg0XE+FH8yr4j3EuHpq6gL+NuZRIqPsWvLr0QdTf/gyOHMC3djW/2VDHbecM4eZDq7j/\nwuH8z/qf8P9a/sktjgPM9u7h/GIr02zDqCyZwdCmjyifBp85/CKS1aq7wSTJKHieyEUDQOEQaMoy\nQfdENrocY8I4B++pXjac8wN8RWP6uztdwzRcBlhGzNwS+GS3TPobmVZIQkv+wVr6/kfx2t4WZrV9\nTH6eNZEdEHS3RNKdx1RHiKBkZY9T9xlLNntKuJh6/636H+khZGkW/K6GIBPCegigNHmqvn2/pR0X\nDWT64GUL+H248l0McVqp8xk5upOvY1rwXXHRKNks+BCvet2sV4Zwt2UHlp/fg3a8NtVdYd7RBPzg\nSrxvRVEfDw8/zuIdz3Lf/FFUWo2JMOCPh1lKksT88UUs3vgk+9zl/OBje+LOJfkzgY67aBRFdzWp\nKn8YfxXnjHAzrcSm99f4XF1jxjIhcIyRcjGhQ0MYHm7m4re/xyU7/pcLKxw4Y6GEtW616ZO3qqaW\n4Ssp1Se19Am6H77LvY0kSQRcMYYeepV3p9yF39fHxVp6AvP3OcAWinNL4E9gwdOaVtE+OWlXP2zV\n3loX4PyW3Ua4n54KQFNVI0wyYcFbrFY+Vfsur9vH6g3t5eRID/VMOkdRNTYe8XFOww4sdz4AVefo\ndwl+b6YF6Ezy9ScjWfT3LM/J6EIHB1vCiS3zJuFuCHwsFq+8ZK6fbJFK+GudjR8NPUZBxA97d0Lt\nIV3wzPBAm/F+RCMZk5LN18ZwSe+T5evf1yNYAv60bf9OiiNt3Ot7m5YY7LMbUS6yLXUcnamkZZHZ\n3BBhS/FEbp4yRB+bzYZksSD94o8cc0/kTfVijudP5IJpEc7c+QccUWMR17TW48U9bPp7bLGk7uo2\nKy6dAhY86LHwUe8+xh97g3WrfQT83a9s1qdEU0NhBwoDR+DTrZ2kHYvdWUDrClFFY3djkEneg3o1\nJUlKuGlCqRY8soVZx7fynjQMVdN0EQxl+ZKkW/BJjz88FmCY20bZsb26/12S9NfJskgnOfUQUyl9\nkVWWwe9HynMxpsihL7Smu2hMse+qi8ZqNaKEYhxsCfNkyVy+f4adES4ZzWtM0HkuPfe7KYDm+xGN\nZBYB97bGJyrJ4YAhQyHoSxFQsyC15HRxkdPP23J5YrxdXGT1xzSeOmDl1l0rcCnheErmthaFDZus\n7PSO5vSWGs7d/VsKCtPcg0osdQIK+NBefj7zTssU+H5KFNbXlHnsHM8rZox3E+MmOlhf4yMUHEAi\nH7fghcB3HTVT4DVV1Xdmgh6HbJJswRuCpJlWdC+ztylEuceOOxpIVNAxXAJaKIiUvNlGtlIebMQl\nKexpDOkilbzb0iTdgjesPU1VeOegl9nlDt0KNYsp2/P0DVTpt/guo2JUugVvkSEcRHI6GV1o1y14\nqw2UxHUTYZJd2Dhm1IDFZqPFF+ThmsN8tXY1VWUuvaJVrRHaGQqC3RG3ZqUhQ/VooGiWTT/e1tS1\nBKc704IHpJvvRLLnMcfeyjuU6ouasrXTLhozQuIP5fM52+5nWvNutGCQoF/hwzHVrKvxMXykjYum\ntlLasBXJLLln9rF4mP4+JE9An1uA1lyfmbO9QE/I160wyQFEab6d43lDwGJh3KQ8Ro+zs261j3Bo\ngIi8+fsULppukGxxGbdC6reuR136oC6Mxo9Ua25Efex7iXMNQVKffAD1yd4PG9txPEBVqSvtVtwQ\nlGAg1YI3FtbOtbbx3hGfbrmlZ1eEzG3cxvOi37yB9YfamJUfhqKShDDaHXpoYroFaAp8+iKrMRFI\nTjdjihwcbA1nWrndCZM0LPiw3cWj6xu4eFwBc49t1vvhcMAxPXpCCwXikS6AXju08VhWC15LsuAB\nJJdbjx1P3+hkjOM0tQ1Jgr1N4UTd0/iLpUbRaJpGNKLibVWoPxbl0CcR9uwIsGbqt7ENn8uU4xI1\ns37O/61xsOY9JzIx5l/p4bRKB5aiImhrSUw05oRuNe7iFDWxoOpyQzCYORF7zLTNp4bAl+XbOJZX\nHDdQJpyex4jRdtbV+AiHB4DIm7/PAbbImlv3h6bY2JL81KoK+z9GmnMp2s4P9Lb0WdT8IX+8vWfz\nj7TD9uMBLh5fmGpJaug/+lAgHiYJxI+f6/Dx7BEfX5hUhpos8LIV6dw5mS4aI/RzW9E4hjllymwK\narIwmlvk04XDrPmavshq/LAkTwEjpQDHfFFiFhu2WCzh9Y2E9Od3xUUTi6HKMktP+w9GOCU9HDIc\nisfBxwU2GEgRcqmkFHXvzszqRgAtTak7R50uOLQPxk1KDTk0757qa5ntKuOd/W0MkwoJR1yEP4kQ\nHHMlYXcp4Xf8hIMqoaBGKKRikcDhtJDntJCXJ2GxRFlfOIaLDr3GxKaPyAu34Lz1LqxOG+ofVyHb\njRDdomLwGakP5CQL3rxrSA4Dtdn1u830u5O4wHdjJ+sAosxt5/io0+HIjnjbxCoHqqKxvsbPrPnd\nr1Xcq5hRbgPMB59bAm8uhDldaOFw6nLTxDPhw/eN89Jimk2Xgt0Bwd4VeEXV+KghyO0XlKdakkE/\n6v23wdCy1HwoxvFJzhgNrVHqHUWUNDcaw9CM8EJnplvEcFe9M2wqs8tsoARTrdZ2yrXhNtI82NP8\n2aav2mrDJlsodds46i9gTLLrIhTSn9+VZGNKjD///+29Z5gc1ZmwfZ+qzmG6J0oaCeWskYRQACRA\nAgwmW/DZrGGXYPPCgkVYnDA24LVfWBYbExYbsP2ygGEdMFgs3vWSFslCAZCQLMQooJw1OXTPdO7z\n/aiq7uqeHmmSpJmh7uvSpenqquo6FZ56zhN3p2ixe/nxRJv2Yk4lteMwN0bJ1+CHDNfq1Cgia0+/\n5Grk+tXQ3IAYMRrQNe4RE4m8/irx8plEXZOJb4kSjaSJ1o4k6goQSzkpSZUR3yn4WMzBSRT34QQO\nexGu9lpKRthxuhRcboHLpWCz5wrT/1y/H0fLp8yfX4l8YzlEmlGS7ZD05pxnoaoQKNFmYjYb4opr\n4dA+5CdrdRNNNkpI2O3ISHvH6+TXcw8GUEx1b6jw2amNKzkKmBCCyTNcpFIRPvhrGxdc1n9LBRv1\nrmQ8NqDc4P1LwBvCxuXpoKWLsiGmYlMF+nOCJjh60RKvK+xriRFw2gi6baRSqdzYZtAEmMlEI1QF\nCagOO6dV+ljXLPmiMTZjBlCo+UYySUoofFhWxU9LRabAVobOuvlk2rjlCY68l+LIoJN9jQFGmWc8\n8Sh4fLkJQl3knaKprKlN8K81b2FvLdVCH91ehBBIt0k7i0RyNHhZeQqJ1jBR1xASNQmiEUls8peJ\niFOJ7jtIzD2O2H+16hr3HJwzh+Ns9uGygzsmcXsVgv42HNXv4DqwFedpp3Jn8UV8W9nC2M8+QPnK\n/yX9wisgJcqQryGcpszT3dsRYyZkPn90JMrloc9QFt4LCy8i9ey/aj4Du6Ojpl02RBPwqopyutbB\nLFW9wRRFY4RJOrRZizevvlLmnOQpK4NUg/c7tOcgnFIwFxAXQjBtlptNH0dY/nY9cxa4sNn64TkY\noE7W/iXgDc3R5epohikpy06TDAE/fJRmFjFMCiegut7m2gjTKtx62zjZMYs2Gs3VWI2CUHYHc4f7\nWLariS+a481VI/Ik76WVTFD9hRsob2hiiK0UonnNtY3okvwoGiEQ512WNQF0wqiAk71KEWfn2+BL\nK7pt5vrkSBu/G3oWD80rxr/fR/rxB5BAcsgo2ltSRNs9RIbOJ+oMEotNJDp8HPH/DWVNJfMfwxlt\nxLU5hsslcLkV3PYkwdp1uEaBe+EYXC4FVU2TvvUGxHVLoHkryqlaFqeMR0g3bYVIDcoXLuGseh+r\ndgUZu/UTqDmkKQ4VldBYC8NO0bZJpUj/y7dQfvo8IlhKOJ5iZ2uKGbEj2XPp9iLbwwi3t6OT1B9A\nktcn1WbTXmxCyVb4NEw0geLc7YVAnH85FOUuVy6/Bjl1VrfO/0BACMEQF9QIN/l3phCC6bPdbN6Q\nYO37bcw724va34R8QjOHitIhJ/tIukX/EvCG4LY7Otq6AiWQ0NO+jfUCxYhzLwWjgNEJEPDVte3M\nGe7THGlGiKSZZJ4t2XB62uycVunlFx8eISpVPKlUNqPTbs/JbjXqvK8eeQYLat+G+Ckda5mY7b55\nKNfc0vHA1dyZxsigg/cUP6RM+QXxqHa8XYiikVISjUhCrSk+2BDm76IRjux0sKfyemL+vyPqDKIA\nzlVtuFwCZ+kMnLFm3PFmgrEa3NPnZkwl4pEfw94dqF9/I7P/dKQJWfMhwjcTJdObVM8MjcfznKwK\nxKIop4xBjBjDAk+Uf93s4x9AizSyO6C0HLnyHcRXvq5tY0RebfsUcfpC1h9qY1oROO2m8+QPaOG4\ngZICCWUFTCuqXvs/pz6/XVtWYH3lqzd3WCZGjkWMHNth+WCgwimoUzxMLPCdEIJ5Z5fw/rs1rNOr\nUKpqPxLyiTjinIsQ0wbWy7d/CXhjGmTvmAwkbDbNHJJKZrVdozenocHnx1H3MVJKNte2c8Os8txp\nOKDcfh/p5x6DSHuu0NcFvLA78DpUJpS6+KR8CmfEY1qIomoDb1FevfQkKdXOBwfCPBI/qJ2LVCcm\nmi4Wq1Kuu13TYHVGBp3swwspkz8gGkX4gznn3izIQy0pwq1a5EmoNYWiCPwBlVibpCK0j6GVs3C5\nIjhefgxnvBnb+Imo1z6kDel3z2o79J8BqRRqRfa4UwWEn3A6NeOFJ8/5ZtOKVuU6WbVStMZsZkyx\nE5FOs8s3nAnNDVpY5pwFyP96BQwBb4SH6tE9aw+GmVuUyr2H/AHNDFMoRr/QvaYfR87LwFjvc2Jr\nPxoVboUapXNnqqIITj3dw8dr2lm/pp3Z8z0o/SWzt1AY7wCgf4VJmgV1oXhTu1070cZ6bk+mSTOQ\n0Wrlnu05m0kpSf/uV72uBHc4lEBRBBVeeweNWsycV3gGYdha9Qd9znAfa8umajOUpFZuVpRVIBtq\nstskk3xaMp4hPjtD1IQmYFJ5ETOd2eA7QZSUIcZPzXwe5nPQhIOo3upPJuJE3SXUuceyq7WcjWvb\nef+V3bz5p2ZWvB1ix5YY7eE0gWKVKTPcnHdpEV9cHGDGAjcrUy3M2Pknho92Ujo6iDdSgy0V6yic\nAaIRRFeEpWGCym9taLNr5y4/TDIW1ezdaNrgguQhVlfM0GLsXW7EjHm5eRbGPRRqIZWWbDgUZo43\nlnsN/UUQatUc/vmJY4UEtmpDxgpo8Ob/P8cM8ajUqj5ke5tWLfXdNzqsoyiC2Wd4SKclGz5oJ50+\n+dUb1x0M816777grkMeDfqrB20nHo7y6qZ4tM26CMRMRy/Yjp1wHK49QHLdxa+Uo7DfeBVs3Zis5\n6hdAflaNGJ11npFMIN/7L8SlV2vdhXrI5jot/l0IoSUF5ceaF3KQGUJOf8DnjfDxp8B40rEoiqJo\nQjs/Nj6VZHX5DOaP9MNuvdpiOo0wv1AMG297uFtjkFISaU8Tak1xhuJkbdsU1HdDhFpSKHP+Gb9M\n4Us0EChWqXzlafwXX4jrvAs63d/upiijg05UYzZiCmsUhQR8pF0LMzRTSFgaYZ7D84pT2XUBb97G\nsIObXoALLpjPI+/s4LqGai1KyePN7cZkmGhCLWypi1Dhs1MqYzmhqMIfJB1qRsSjBfIKChyzzVbA\nRGNp8AZDPDb+ZvPB1o3IzRtg7w74whUd1lNUwZwFXj56v42NH7Vz6umejqbQE8hr1Q1ckoiCz33s\nlfsZ/UvA65p4tKiMJ5ITaDvSxpcOrka58lyEUEiv+hvilFN5aZNK9YhZzPL6kGYNPpXUeoDm25CN\nio0Ntb0S8NW1EaZseBM5bbFeHCtPgBXqp5n31h/md+CVcXY2RJhQ7NSEQWkFNNRluiulYnE+LJ7C\noyP9WnGyeFwrUZJnRweQzY0Fj7Uz00o41IIQ4A+oVCiCiIwyd4YbX6oR2xP/rIX8bfsUZfwcUs3b\nEHLhUc/JrsYYY4OObAs9syBz50WOqDYtyii/E9HRNKOyPKeWza5dz0DHUFRhs2diUsZWFiPsdna1\nJhjrcmu/IdPIRFybQRiO5JCWgDZ3uA8ZiefOLnQNXitDnCfgj2qDt3VYT1gCngqvjVp7EXL7ZsSs\nM5B/+6jTdVVVMPcsLx+tCPPJuggz5rhPmJBPL30ZMWoc4rQz2dUYpSac4PTYfnBPOPbG/Yz+ZaJR\nbdT/+N/5vnM+/lSEfz57GHOatzN3RBFzhvuYnapljifGeb4wKxwjtW1cntwepW5PpwJe1nfMIO0O\nm2vbmbJ9Dezd2YmA77hN5qY0RcnMjRxgbW0iY4MXTpcmHPQQz0/rolQkWhjic2TrxZhL7JqQzY1E\n2tPUHkmwc1uUjWvbWfluiDeXthQ0rVx+9TC+uDjA/HN9uNR9HEq3UFphwyGjWns9txdpDjU9RkTN\nrsYoYwP2HKGm3POI9ocvG9es/Ow3mkM8Gu0gHEUhYTlhKsqjL3Z8qA0Bn2ODNyJWTLHqQrDA1syq\nRBCcLm0/bm82jNZkotEEvL/jOXa5NXt/LNrR/FZAYAvVppuPzJE1lgZvMMTv0AR8cyOMGJM7oyqA\nzSaYd7aPUEuK6g2RE9ZsQ/7lFdKvPAfAf3/WxMUTg6jt4cIz0n5OvxLw24rHcM+aZs4rS/ONplXY\n0/HcpBg9quEsV4iP1CHEU2lNoLebHtpCSUNGU+Zf/YT08r/kfCWTSVI//T7HoqE9QVsizYj2Wk0w\nm+qXZzmKhlGUDQ6bkzjM2sa0LlDsOWMDWHUoyvyQ7kewOyARQyZTRFV/jiBffdZDvFP1o6PayOef\n62P6bA+jxzsprbDhcmWFz0h7nH0pXTONxTQzRL4p4xgCfmdTlLF+JVcwVgzNjsk4M0VBsOsCMP9F\nNaZjXIUQApEXWgiAzaaZx/KdrHQMGZ3vi7DaORJpJJ55fKZ7JQHBUg41R4i0RxlX4uzYzMHhyvaF\nzbfBd+JklW/9Sauhk7+eZYPH7bTjkEmaI0lEcZnWE/gYSXU2u+D0c3w01qfYsjF64joqNTfQGk2y\nZl+IC8cHted9AAr4fmWieWTStdw+bwhzogdIr9HbtZnT2v0BZKiZknSMMSLMuoNhzvSYtbKEVugr\nvzuSoeEDbN8Ciy4B0BxikTB89qnWkegoESnVtRGmlDpRkMhoRIt17qDBFxbwyi9fz9rMgUlKiPo4\n1LclKTF+U+85miwbysbaFOdLyc5tUULqPEKNAcL4UexJ/Fti+IsUAsUqwy+ahD+g4nR1NN10hVGO\nJPvCuvAz7Myd2KoLEUumqQknOMUr8mL0tZeGKMqLeFZt2u+oeRr8eZdp2n1XsDu0WUBBG3zufse4\nJSKdYrdrCBNAe/mHWmGoPq5AMetGLWK22qL5VfIio7SWhlHtPsy3wRcS2Dab5kS+/vbcZVDQvPa5\nQ7VREWumNqlS4vVpylmkDXxFR93M7hCcsdDLmmVhFBUmTz9+tvBMsUJV5e0dLZx+ip+Ay0aqva2j\nyXEA0K8E/JddozmyOsX/iKEoI/8JdbmCMuN+1DdbUVWB4v8SykEVlRRnqrDjbzF8FS7EkIuxfRJB\nFJ+N6ilFSaWx7Yxp26ig1AnE5C+gHt6DWjIOW2sKZcsGxG+ewHbztxBCRcSiCFvnF3BzbTvTArqQ\nDrVoU+98Ad9J60CRt9zmdDLLFWNtnYvTvONp2xYlNGwxtZuCtK1v4SJKaSyZhz+cJuCXDF/+S3ye\nFM7Jk1HOvak3pziHMnuaNlTCsRTeqC7gzWYMOKqA39Mc45SAA3siTtpswjD+zn9wjeJmBZKzupzB\nWTBMsrCAFw4H59Ss50+jZ/JdKcHjJf2H/4d632OZqKR19mFcvu5V0sUNWlu2/GSyeKygiUaMmYjM\nv95GqQVv1jSVMTENsBomxwWbjYpII7VpB5M93qwycQwBD+BwKpyxyMfqZWFUVTBhquuY2/SIxjoo\nCpIKh/nLZ038YJHeAL49bGnwveWST+5FPPhLUocPk3z2p8ivfYvkb1+CL/2QVEqSXLWHdDxJyu6i\nJA3PR5zMC3hRw7VIVZKSELP5SCdSpBtSpFNSyxxv8pEacj7p0X7SsQSp98Ok20eQOuNfSG/zkDr3\n18j/SqCqzai2VhRFoqgCVdXCtlQbuBpUAj6VDVVLUFuGat/bK1E/iWReJKJsPqq9AdueOIqqOYpU\nVYsKSCZlxtnZ6l/MxFgJ0RrYFTiDZF2cjfZiDsRCnHeqm3PVOtQ//gfq1x4FZpFu/wS54k1Qp/Xp\n+VZsKiNlG/taYkyORzVfgFMTapmpcEtDp9vvbIwyptilPRTFpugZQ/A58zQtcxOMnmK3a929csIk\nC5tocDi5ct8y7h0zn7d2NPPFK64l/erz2nfJJGG7l51pDzOadkDNGM3ZbY5U0m4ALZs1z8kqxkxE\n/eXrhcdXIFxW7tnRs/EOJlSVIZFGahR9pujxdqu0iNOlcOYiH6vf0zT5cZP6XsjLz6oRE6bxYW2S\nCrdgXIn+G5aJpg+wO1AUgfA4USLNKGqMtAyhBjXNKF2UgP27wR4Ep4IvOIEDjjjn1q1AGX0d6QN/\nQYz9ItQcRJl3Rma36VVroO5TGH8q8rnHEJdfA2oCueJVxLyFyI/+Cj9+Flk2DLfHS2tLmFRKkk5B\nKiUJR1O8urKBC8ol6VUfk/JNJu0vIe30kLYJ0ilJIgEpZwWpQDHycIJUCtJp/QWTlKg2kTGtVNq3\nobjSLAlNYEKqkSP1Xr5s280tvgjOyV9GbjtA2mwCsOv1TPq6OYRqY6QMsbc5xuRYVBPudqeWKarb\nRuWq/0Ve8hVERWWHzXc1RhlX4kLW1SLKKnK/rKjsGAFTIJyx22Ti4As5WXPt4sLhwJlO8m3ffr6/\nsYgJU+yMNpzdySR/c49gmiuBM53QnPXJZEdTisMFoZaOcfCdHRt0KPQmrro+t4T05xXVRnmilT2u\nMm2m6PXn+iu6gMutcOa5upBXBGMm9HH2+v7dMHo8f1GDXDrUtDy/DPgAoX8JeOMB0bVI4vFcW6fd\nqUWjJBLg9bFwdBH/s72Zcz1ebQplRNHk13WJRrRkF49XC6OLxzLx4/LwPgCUZAxhF7hcKvGWCERD\niHLtCm8/EKGoTGFYzQdI9kP1FsScBVA6AsU0VUy99mc4chD1m1866jDT26PQFubykiil+w5x/uUL\nUd/ekOsAzDEVOLS6N70RjIVQVUamWtm37wjU7daEmZFkZm4Cnu/T0NnVFOUL44KwtTbbocjY9UPP\nFvw9oHcavM2m2eC7osHr4ZjDvTZunjGER9cf5icpiR8glWStawRzg9kKpiTiHV+iDmfHxiOdYdQg\nygsDVS7+chcHN7gRQjCkyMlHSgnC7kCUViAb6rpd2M7tUThzkZdVy8KoKowc24dCPhZhtzqGI84A\nZzh1GaEHbRSM9urn9Ksomowwdzg1Z1winjvdtesx73rq+OxKHzsbozQGhuoNGLQoGmmKoll/KExz\nWM+qNKJegiVaM4nyoXBov7bMZCOVy/+CfP0/Mp+rayNMrfAg316KWHQRSIlsqOvgaFOuvRVx413H\nHqfHB5E2rikOcaE8iF3VQ/iMpKVkXjSHITD62lGn2pgcr2XD7gZS7/23ltJvs2m+hIjJMZ3omFWc\nSEn2t8QZXawLwK7kF5ibo/QQUcgG34mTNaPRu9ycM7qIqlI7z1QsQkpJKpFkg30Yc0p08WK3F/QP\n4HRBY712zY6FEa2TX6rZIsPQM86gtkQr+Kblf9QcfYNO8PhUzlzkY9unUQ7siR97g64Si/LfkSAX\ny4OoehkLYrETUufqeNC/BLzxgKo2TWON5tbRFnaHVjI4pjkEnTaF00f4WVUxE9lYp0fRZDX493a1\n8MSaw9wRnsSLjKU5rmtrDocmlCpHZsMA9QqPiY1rkRs/yravQ3OwTrW3g9ONOP8KbWrZ2tzRJDBl\nJsqC8489TsO5ZK5xYo5e6VCWwJE9L32IUFXG7VqLIx2nOjg2+zsOp3YsgRIYPyWnEJrB/pYYFV47\nLpvSMbywMwyh3JtxmO+R/P3mH4M+HqOF4k1VRRxwlPDWjmY2h6FCtlOq6vdEMtmJiUZPiiotP/ax\nGT6HAZjSfqIYOmcOTTYvbfGU1s2rF7kpPr/KGQt9bN4Y4dD+owt5+el60mvfR+YFDcitn2hdwnRa\nEpI1bS4uGOOHbZu0hYUS3QYI/UvA27O1RHC6tF6sZm3IbteEYiybOr5wdBEr3GNge7UmmPRqiJtq\n2nhhQy0PfWEkj7ctI25zccdmB7+ZfCXNMakVBRuqe8iFyNS+aXv4u7BrWya0sjWaZF9LjPE12xCT\nqrRj83ihtanHUzatDG2bJjgNIWS0o0NrLpCT+djNwmJdRrUhGmq58PBHvF15elYwOZzZfq+dAgYh\nmgAAIABJREFU1AXa1RTNOqAKdZbq5PeA3sWEG+cr30cByNam3HWNmY8u4J0uJ9/e8Sr/sbGe1xs9\nzJV1MHkGDB2ujSG/FSBkoohElzR4T84xWnTErgomlrrYUhdBFBUjW5uPvdFR8AdUTj/Hx6frIxw5\n2HkV1PST/4z81U/hs09zl//sPuRbSzOf31VGcEYgTXDsGOQhzXyL4Z8agPRawKfTae655x4eeUTL\nXgyHwzz44IPcddddPPTQQ7S3t3d9Z/lCLRzKTR3X66bLWBSha0vTh3hoFC4ObPgEJkwDu4ODePjp\nykN8e0ElpwSclLbWcMs4lScuHUO8chR31I3k98HZpAwBHyzVYuLNRCOEYil++N5+LptUgnPHJq2r\nFGj22paOGnyXMXwG5jh/c3hiKjejMnMO+txEo+3vnPB2/lY8kWZVF9gOh15m165dh/xmJGQdrICu\n+XZFwOthhL3R4A1buMkmboQipuvzpvuGoM10v3IwPHSYm+cM4eOIi7miEWG3I05fqPkZCploCoy9\nM0QnNniLXKqGeNhU065nCvc+fDRQrDLvbC8b17ZTe7ijkJfmrmWuAjH0RrJ5SvKmewKXViqZXsFS\nSm12/3k10fzlL39h+PDhmc+vv/4606dP58knn2TatGksXbr0KFvnkqOVOZwQbs0VojaTBq8/TKoi\nWFCU4P3gFERFJS3YeKj8Aq4/tZwZQ3Wbe6gF/EWUeezc7NjP44HtbHZX8q8tI2hXnZot0BQaKL52\nF6F4mgf+dx8zhnr5h5llyKaGjNNVuL2aEO6pJurWyyskTLa9/CzLnJfd8THRGPvzOm2cXl/Nsphe\nBMzh1GZPNjvC4UQW1OBjjCnWjl2mjp4kZpAVgL3R4J25/+soD/0Szz9+t/C6xkNtt0Eiwdmj/Dxc\neoCxqm6GM+oZ5Sc6Acqt96B87yddOzbDRDNAhcGJomqIh09rNJNnThJiLwiW2Jh7lpcNH7ZTX5Mn\n5M2zhEL5FnpY71s7mhgRa2RciVMz9RoO9liBRLcBQq8EfENDAxs2bOD887N253Xr1rFwoVagatGi\nRaxdu7brO8zX4NtCuQLe6HwUi+bYxBaWSd6vmEXc6eHhLZL5rdu16A6DUAv4sk2Oy9JRHvjsZUqK\n3Hx/1jeoKx+lhUFFtIbZ4bHT+edTFjNjqJcbZ5VrGmLcLIyNJh491OCNGzueb4M3OVlzClZ1rzRw\nlzGEmdvLBYc/5J32ItJSmkw09oLtBFNpye6mGGO7q8EbmYC9GYdx3fOmzKJiGEp+lUqTkxX07kuK\nAqkUk5Vw9qVksyPfXqqVmc47NjFqPGLc5K4dW2am0L+C0/obE0tdHGiN06Y6uyTg0+/8J+kVbx1z\nvZIyG7Pne/l4TTsNdSZbe2Nd9u9CiXuKQnsixSufNnDdkb9mn/NSvS1j/HPqZH3xxRe57rrrcgpC\ntbS0EAxqwjUYDNLS0o04V7MwdziRhQR8Mq5FUZja4o0Paif/gcgESlwK1x5Zkbtfc6q5aoNUEls8\nxm1zyrlw7ni+5zmHzfsbINRCW2AIP1wXYkbzzqxwN/bhMAnj/OPtDi6XNgZzlJARGgodo2gMu3Ow\nQG2W3mB6uUxs3YdDQdOszALe0VHAHw7HCbhUfA7VdLxdEGqZF2NvTDSGBt8FjcqRK+ABPRIrnmtv\nN871/t29e/kYJqhB2le1r7CrimaHb1MydaKOhnzlOeRrL3Rp32UVNk47w8O6VW00NejCvM1UUtsU\nYZeJtpPwp+pGZld6GdN6MHtvGYlYhYrNDRB6LODXr19PIBBg9OjRRy0A1K2bvYOJJl/A6w0/Yrle\nbeF2c+6RdaAo3DWnBKXuCHLLxux2ZpOH0QEqEUc4nFx+2incOd3HI7ZT+e8drfxw7FeYMczL9Z/9\nJ/K3plhu81s808Sjh6YGp1uL5Tbb4PUEo0xLQrMQNNbp636QzuyNLIAvlsR5c3uzPnvSbfB2R4co\nml2NMcYWu5CpFKmbr9Aegq4IRlP7wh7TiYmmIKpNq/GTI+Ad2aYxxjk232O9EfCmEgUWR6dqiIdP\nm1MQ7WIBsW4oU+VD7Zw6z8NH77fR0pTUakcZmDX4iOYfbIimeHN7E9fOKM9VBp0uiMWQRpb3AKTH\nd/PWrVtZt24dGzZsIB6PE4lEeOqppwgGgzQ3N2f+DwQKN3+urq6muro68/nqq6/G4fHg9msPSdjr\nI11zCIffj0tflk4lCCUTkEzgKytD0cvRpkrLuGrfMv7+yrNxjxxF2/zzsDU34PT7kek0LakU/uJi\nhBBEvT7S4VbiQJE+0zi7ahSlv/kpP/HdzrxUPUsWXkTLsyBXvIX/Vs2u25JM4CsuRfH7iZUPIQJ4\ng8Wo/p491M12O7ZYFHtREQ59H82KwO9xE1NVpNebORepQIAQ4B81pmM3pG7icDjwG/stLiEEOALF\nxIEvjnDzH5+00+YpJhhqhmAJis+PEGSuAcCBcDNThhbhqTtEGGD3Z3iKAtiOcS6kKmiBLq3bGfFA\nkHbAX1rWodibeWyZ33zm1Rz/QIvDic/hIKYqCJcPl99P3O/HCAVw+3yZ69Ft/H7ky+90yR/REwqN\nb6Aybww8s3of2Gz4nQ6E09Xp+JoBxenq1tj9k8DhcPHR+00sKHHgXngp6ZZm7DY7dl1BSzU1EVYc\n/DExgkunVzCyLEhLMo03WIqw2WjzFGFDIKVCyhfE3aF6bPdQhK3X++iMV155JfP3tGnTmDZNK2vS\n4zvx2muv5dprrwVg8+bN/PnPf+aOO+7g5ZdfZvny5SxevJjly5czZ86cgtubD8IgnkiSDIUASCsq\nsrWZWFqS0JfJWExrfhGPEk4kEcbyVBoFSUJCMhQiXVRMsqmBeCikOQhtdsJhbZqWTiYzMewhY/t4\njBGth3lqTDNq3dbMuoyfkl0nGiWcSCBCIaRuE2+LxzPH0G2cLhJN9SRTkpixD7uDUEO95uB0ujLn\nQupBAOFoDKIFWhl2A7/fnx2T3q4vofsSVJKcPiLIO+2nsHjfcsS4KSCBcGvmGgBsqWll8eQS2j7d\nkFnW3oVzYUQztEejPT5vUm/hFoonEKncfZjH1un2qo1wc5MWkupTSYRCSFOmbjSRyF6PfkZXxjdQ\nGOFOs7cpSpsngFJfiygqPur40qqt22MvLoOpM1389cOxpG1joVTCJhWq9QSmZBK58GmGKTYc2+DV\nbQfhrH+D3+nRWO5rYEtK89so0+Clg70ZMgKBpO/LHd98Z4Crr7664Hd9rmosXryYxx9/nGXLllFe\nXs7dd9/d9Y2lKZzJsAPn2+Cj7aAouXHiRvRCpu63N2t3S+Y1y1VtyEgkd5kRRRGPIJwuJCBu/jas\nX5Ndx2yi8Rdlj6enuNzQ2oJw5I0vHu8YJhkoRv11x/6VvcaZ7zS2c9GEII/vHMkVDXWop56hHZOp\nXoiUUmvyUeLSin65PXqdnGOHcGaKkOWXkugO+j5ET0NGjVwKk4lGmmve97Uj26IgGTt88TjmRSNQ\nlPUvyfawVlpEMV3jHj5rw0c5GLbpXS0Mtr4Gpp+Gcsa5AKQeu59/GfJFpocOcsnXroKmBtL/8m3U\nx18GIP37XyOX/RkA5bbvIU6b38PRapyMF3Sf3M1Tp05l6lStobPP5+P+++/v2Y7MLzenU4tLzg+T\nlLKjgy2TgWmKKTdiovNDDm02zbFjioARRm/UtnDG1iYcTtK6c1Emk9rLx3j4jYic3oT7Od3QVJ9r\nSzZizvOdrMeLjE9BT9CxO5hY6sIhJJ/ahzDTH9A7TWVzGerakthVhWK3jXSoVQsxPbCnQ433Tikb\n0rWs0E7ppQPT64eWJt3Jqh+z2Yls1W0/YVQN8VAdHMu8SG6uTPquaxFfvQVx/mXZhb1JHotGtOuu\nh8kaVKeL2KcU8Z3mN5Hv2pBbP8mtGGl+NsdN6fnvn0T6VyarWcIbJ9fc8MNw2OY9hFlHrv6/Oe0/\nkScsVZsmsPKFs92hhWU6Tck+xoOfiIPdmf0do5FFT8MkQdPg86OEHHolx/xiY8cJkV/DxW5HCMGF\n9nrerjwd4Q8gSsuRpobgO5uijDXi30Mt2SJjXbQ7qw//Wuvu1GN6N8UV46cgP6vOdbKanciWBn/C\nqBri4VPvKbkzRCPxKb+McG9my3qxQVR7pjSJlJIXA3P5+6Fx7KEm5JZPoKEut0ub+V7o1T178uhf\nAj7dUcCLLr65xZnnaSnn5Kb950ekCJtdb/yct1+bXcucdZqyEY2wxUQsV4NwexGzF/RO23OZXiQG\nens+kr1IouoJRhSD/gJb6A7xt5KJHLb5s7HAOjkZrKEWhFES+ETFfo+dhDj7wh5vLkZPQB7YnRO7\nL2bORXzhCm2F/HaPFseNiaUuDtoChFtMZosjB7T/88sI92ZGG4tqM2a7PRNFs3x3K2kpOXt8qTaj\n27FZ+9+swZtMdwM19LV/CXizduY8StZjumMfR+Xr/5QVzjnNlfNMNKqqVUrMF/C6Bi8KafB51eSE\nECi33tO7i24OjzRwOE6oBp/B7PsAvG471+x+m+9stfPsbq21oNE7c1d9O2Ob9iB3bNYeQkODP0HH\nK7x+FHNLvO5SFNSO2/TiFyXlKH/3f7Tv28NH2diiL7GrChNEmC2NppdqqybYzbNGoFcmGhmNaAXn\nVBuxRJL/9+YnvPi3Wv7xs9dQKiqzZUPym3ocox/xQKB/CXhZyERTIN75GI16cXmyGXKJvJryNpuu\nwXc00UizicZcZCse71rcdTcQxrg6aPDxY/aH7XPSacQNd0DFMP2YnFx6cBW/OCeIx2njm7Pv5NlV\n+6hrS7CrNsTo135O+pHvQXsborhU22agZG/6iyDcWvAci//zLagqHPVlcXyockX5tC07E86U8dY1\n+Ez5kN4oEHqG+mYR5O6msTRvrubJc0qZEKnRGrl4fDB8lPY75qJyupxRvvVgz3/7JNO/BHxOiVxD\nwBfQ4I8l4B0m4dxBg7dpU7YOtcPzTTSmBJ/jkapsCPYONvhY18vv9hWKinLWBVmbvD7WQMDPDbMq\neKpmKe5EhH/6y27iUlAe1as2mqMfBort2qc1N89xsuoopy/sWucmiz6jqgiqEyatOdSiOeINW7yR\nmJROd9y4E9L/+2etrLhOLBrjuSMuHo2P53q5g7u3/I6iUH3W3l4UQFSdpv1dwAYvJs/o9rj6C/3q\nqRSXfTX7wWGyhedTwESTg1n7TuRH0eh/57ff0sMBsyYaUxXFeKzvy4Xa8yJ/0Ovdx2P6MZ+YS6N8\n/1E4ZUzuQkPw6WGnweIA17uPcOXl57Dv/VXZOJZUEry6xjNQNHi3R3vpR9oHzjEPYiaWuDhQ46Et\nntI6bYVatE5PRhScEcl2rGdeR7aFkL//NaJiGEyfQ204wQOVVzEhbeOJwGaKDu5GAvLQftBrFyk3\n3AlCaGWDTSYacfnfaZVGBzD9SoMXppRycTQN/lhvc7P9PN9hadhd8xvo2u15UTR66YC2MOlHv9/3\nTRwchWzwRpjkibPBizETc3MKIGN7zMStl5ZDQy0Bl41p3jy7pHGdBkh4oRBC0+KbGywB3w+wBwJM\niNaypU43qYZatPvNPAOHY8/addIv/QIAuWMLiZTkJysP8oWa9Xzz9HKKHIqWRAiwf1fGfyTGT8kK\ndrOAd3kQI8f2boAnmX4l4HPIj203EF04ZLP2nW+icXe8kIAW8hhpRzFsykZEy+H92X32Jcb0zywY\n3R7NP2BqaHJSyHcuef2mWvV5D5p+bnOSUvo7bg+EWk+sGcyiMP4A00J7tPrwgGyq1xrxZEw0uoDv\nqolm6ybE5V9FbtvEb/5WS9Clsnj3u9pzb7NpShwg9+/ObRSfX2dqkNCPBXzHOHgAJlXBmIlH31a1\nQVoiUylkMq87khHDnn8hdS1fMWq+G71J9ReF6GsBXwi3Hr8fixZuTHCCEIG8srsOpxZJBB3b9w3E\nIkwut57sZmnwJx1/EVV1W7UqpqAlKFaOhGiE1E/vNWnwXYxoSacRZ3+Rj8JO1uwLceesIMLh1BQp\nmz1bG37/7txG8UY3uXzFb4DTf+9ws7PThPJPPzrmpkII3Uyj27PtBTT4/JmBriGIQDEYtWhGjUfu\n2KL9fSJMJh6vFnNuJGacJETVaShPv5pd4MzLCTCv6/HmrjsQMM7tQHEMD2bcXiY07eFAa4xQNK5l\nd+tKFp9Va4mK0CUTjUynIRqhRvXyzITFfH+qA38ySloX2qK4FNlUr60caUOYq7PmlwIfJPR/DT5v\nGi1UtWt1SIwoGHNja0wJC3k3jCguA19RTmy7mFiF3LRO+9ANL36PMTJwYydXwAM5VSuF04XUm5IX\nasDd2wqXJxzj3Foa/ElHCIHd62VCwMambQfAF8i9nzImmi7Y4KPtJNxeHl19hCsjW5mUbIBIOCu0\n88ttm000hi/M3YXeuwOI/i3gbfaso6/b2zu06Vi4FXwFyozmTfmU676RKTJkICZNh92faR/6WsAX\nqIGtNeMOa7XinSdXwOfgcGZtook44srrYPzArM0BZPr5Whp8P8Ht5tQA/HXzQc3haaY7Nvj2Nl4e\nczFBl40r3I3IhhpNYTJm7UYNpJKy3M/ovjBVtTT4E4bXjzjtzJ5v31hP+kd36v1Y8+pITJyGmDrr\n2PsYNyn7dxfDtHqFx6ulS9tsPa+WeDxwuEwmmjg4HIhFlyD0qnwDjowGbzlZ+wVONxeWJvmgReXI\n6Om53yUTmrJWqNVeHh/uD7EmOIm7zhyGqKiEQ/s1AW+YaBxOGD0BsehSCJZqfVdNiNPmg6+oz4bV\nH+i3Al7Y7Sg3f7v3O9IbbptRv/NwR02h0DGYbgApT5CJpqn+pJtnOuA0O1m1pC/l9IUoN3WjFHR/\nwjLR9C9cbvypKBdHtvNaanjud4mEpmAUULDk4QOZv9sTKZ7dnuDulvfxO1XEhKnI7dXI9rYcx6n6\ng5+hXPz/of70+Q77U275DuJE1oA6AfRbAd9XyFALwle4q1S36GMTjTjzXMQXvpS70OXRzEr9TcA7\nnBDPmmgKJp8NJAw3S36ym8XJwaU1ob/84Co+DDk4EoqDUXs9GdcCLvKeP5lOkX7gG8hGzWn6n1sa\nme5JMEXoARKjx0PNYS0qZ5CFPnaHQS/gCbVkQyN7Q18L+GGnoPzdTbkLnS7NNt+f7O+gHdeRg8gN\nHyDrjnS5wmd/RR7SchsGm7Y2UBFONzIawVu7j4vGB/hjdYNWUM7t1bptOZwdo2ia9XIZTfU0RZL8\n97Ymri0JZcKZhc0O4yYhP1k76Ozq3WHQCnhhmA/MTpZeoFx907FX6i1G5JCrn8WW62Uj0k//C+zc\nqvVCG8AoX/4ayjf/78k+DAsDlxtaGkFR+FJVBR/uD3EkLvTS2Qnt+/w4eL3apKyv4feb6jl3bIAh\nMppb+mNiFezdYQn4wYg4fZGW9Rpt730yzrjJWm2L441R76a/mWjy6/CMHHdyjqOPEEOHI6bMPNmH\nYWHgckNzI8Ltwe9UuXhiMa9ua9W09kRMe37rjiAP7s1sIhu0WjUHli9n1b4QX6kq09Y1mQ/FJN1h\na5loBh9CCE0wtbf1SsArP/4Fyq339OGRdY5QtGw70c9MNMLhRFyiNfVVbr3nxJYythj8OF2agNd9\nIldMLtG0eF+FVhROf37Tv340u01bGGbM5WVXFVeeolLkVPWy3ibz4diJiOtvR8ycdyJH068YtAIe\n6LzcQTcQw05BBEv76IC6gMPZ/zR4NKcwkHV+WVj0FW4PsrkB4dbue0OLf23keVqf5EJlQmJRtg6d\nys7SsVwS2aEti8dykxoVFeXsC3vZInJgM7gFvF4Aq8fJUicDp6t/Cvihw1EeenbAti6z6L+IEaM1\n345p5nrF5BI+LJ7MkeZIwX6oMhrjxdRorvE14KzTwyUT8Y4lSD7nDCDJ1wMGkmA3cDr7XxSNjqio\nPNmHYDEYGTsZIKcooN+pclHzJ7yaHJap255JtgM+jHmJobKw0oWs19v7HYfOawOdwW1MHYhv835q\norGwOF4YXbRkW2vO8suTe7jDMY3vtrk45R+eZMSqNxh1MMyIIgcvpUZyU3kLtvJhpI3+rXlOVovB\nrsEPxLe5o3+aaCwsjjcylCvgi0qDPP3BI9w0GiZXBmlQPbzxp/e49519nJIOMcufhrKhsHcHqZuv\n6OhktRjsGnw/iyfvCk5Lg7f4fJIOt5JTgal0CJ5UjMmVQaYMKya1488AqHe8QeoXr6C4FiFMZUhk\nqHngVTY9zgxuDX4ANlAWYydrHW0sLD5HiEuuxnnJV3KXjZsE/gAU50axyfY2vSaSpsCJsy7Qvvh0\n/YDPsu5rBrcGPwC7DSlXXHOyD8HC4oSjXPkPuP1+QqFQZpmYOgv1sZc6rrxtk9YzQTfBKjfcQWrl\nOwDIaBQrzivLoBbwyoVXIi1t2MJiUCCuuBb59lKtZAbkKHDiS9ci//YRYuykTrb+fNJjAd/Q0MDP\nf/5zWlpaEEJw/vnnc8kllxAOh3niiSeoq6ujoqKCu+++G4/n5FTtE+MmI8ZNPim/bWFh0bcol3+V\ndN1h5Jpl2gKTCVa57Ktw2VdP0pH1X3os4FVV5YYbbmD06NFEo1HuueceZs6cybJly5g+fTpf+tKX\neP3111m6dCl///d/35fHbGFh8XnF3JAjvzm8RQd67GQNBoOMHj0aAJfLxfDhw2loaGDdunUsXLgQ\ngEWLFrF27do+OVALCwsLIzsdQLitev7Hok+iaGpra9m7dy8TJ06kpaWFYFBLLQ4Gg7S0tPTFT1hY\nWFhkUL7/s5N9CAOCXgv4aDTKY489xo033oirQB1zq3aJhYVFn+HzAyDGTDjJBzIw6FUUTSqV4mc/\n+xnnnHMOc+fOBTStvbm5OfN/IFC4m1J1dTXV1dWZz1dffTWVlf2j1onf7z/Zh3BcGczjG8xjA2t8\nfP0O7d8A5Xhdv1deeSXz97Rp05g2bZr2QfaCp556Sr7wwgs5y1566SW5dOlSKaWUS5culS+//HJv\nfkL+4Q9/6NX23eWBBx44ob9nja/vGMxjk9IaX18z2McnpZQ91uC3bt3K+++/z8iRI/nud7+LEIJr\nrrmGxYsX8/jjj7Ns2TLKy8u5++67e/VmyryJThDl5eUn9Pes8fUdg3lsYI2vrxns44NemGgmT57M\nH/7wh4Lf3X///T0+oHxO9EWoqKg4ob9nja/vGMxjA2t8fc1gHx8M9lo0PeBEX/QTzWAe32AeG1jj\nG+icjPEJKaU84b9qYWFhYXHcsTR4CwsLi0GKJeAtLCwsBimDupokwDPPPMP69esJBAI8+uijAOzd\nu5df//rXxGIxysvLufPOOzNJWsZ3kUgERVF4+OGHsdlsrF69mqVLl5JOp5k9ezbXXnvtyRxWhu6M\nb+XKlbzxxhsIIZBSsnfvXn7yk58watSoQTG+RCLB008/zf79+0mn05xzzjksXrwYYFCML5lM8qtf\n/Ypdu3ahKAo33ngjU6dOBfrn+HpSkHDp0qUsW7YMVVW58cYbmTlzJjA4xhcOh/nZz37Gzp07WbRo\nEV//+tcz+zpu4zvhgZknmC1btsjdu3fLb33rW5ll3/ve9+SWLVuklFIuW7ZM/v73v5dSSplKpeS3\nv/1tuXfvXimllKFQSKbTaRkKheRtt90mQ6GQlFLKX/ziF3LTpk0neCSF6c74zOzdu1fecccdUko5\naMa3bNky+cQTT0gppYzFYvIb3/iGrKurGzTje/PNN+XTTz8tpZSypaVF3nPPPVLK/nv9mpqa5O7d\nu6WUUkYiEXnnnXfKAwcOyJdeekm+/vrrUsrcXJn9+/fL73znOzKZTMqamhp5++239+vnr7vji0aj\ncuvWrfKdd96Rzz33XGY/x3N8g95EM3nyZLxeb86yI0eOMHmyVkZ4+vTpfPjhhwBs3LiRUaNGMXLk\nSAB8Ph9CCGpqahg2bBg+nw+AqqqqzDYnm+6Mz8yqVauYP38+wKAZXzAYJBaLkU6nicVi2O123G73\ngB/fRx99BMCBAweoqqoCoKioCK/Xy86dO/vt+LpbkHDdunXMnz8fVVWpqKhg2LBh7NixY9CMz+l0\nMmnSJGy2XMPJ8RzfoBfwhRgxYgTr1q0DYM2aNTQ0NABw+PBhAB566CG+973v8cYbbwAwdOhQDh06\nRH19PalUirVr12a26Y90Nj4zq1ev5qyzzgIGz/hOPfVU3G43t9xyC0uWLOHyyy/H6/UO+PHV19cD\nMGrUKNatW0c6naa2tpZdu3bR0NAwIMbXlYKEjY2NlJWVZbYpKSmhsbFx0IyvM47n+Aa9Db4Qt912\nG88//zyvvfYas2fPzrxRU6kU27Zt4+GHH8bhcPDjH/+YsWPHUlVVxc0338zjjz+OoihMnDiRmpqa\nkzyKzulsfAY7duzA5XIxYoTW7crr9Q6K8a1YsYJ4PM6vfvUrwuEwDzzwANOnT6eiomJQjO+8887j\n4MGD3HvvvZSVlTFp0iQURen316+3BQmt8fWcz6WAr6ys5Ac/+AGgae0bNmwAoLS0lClTpmSmSrNm\nzWL37t1UVVVx2mmncdpppwHw7rvvoij9d/LT2fgMVq1axYIFC3KWDYbxffbZZ8ybNw9FUSgqKmLS\npEns2rWLioqKQTE+RVG44YYbMuvdf//9DBs2DOi/1687BQlLSkoysxXQnJglJVpTj8EwvqNxvMbX\nP87ScUZKiTTlc7W2tgKQTqd57bXXuOACrSv7zJkz2bdvH/F4nFQqxebNmzNarrFNOBzm7bff5vzz\nzz/Bo+icro7PWHfNmjUZ+3v+NgN5fJWVlWzatAnQtKrt27dnKpQOhvHF43FisRgAn3zyCaqqMnz4\n8Jxt+tv4nnnmGUaMGMEll1ySWTZ79myWL18OwPLly5kzZw4Ac+bMYfXq1SSTSWprazly5Ajjx48H\nBsf4jsbxGt+gz2R98skn2bx5M6FQiEAgwNVXX00kEuGtt95CCMG8efNyQpJWrlzJ0qUkztMUAAAF\nEElEQVRLEUIwa9asTLvBJ598kr179yKE4Mtf/jJnnnnmyRpSDt0d3+bNm/ntb3/Lgw8+2GE/A318\niUSCZ555hr179wJw7rnnctlll2X2M9DHV1dXx0MPPYSiKJSUlHDrrbdmbNb9cXxbt27lhz/8ISNH\njkQIkSlIOH78eB5//HHq6+szBQkNR/PSpUt57733sNlsOWGSg2V8S5YsIRqNkkwm8Xg83HfffQwf\nPvy4jW/QC3gLCwuLzyufCxONhYWFxecRS8BbWFhYDFIsAW9hYWExSLEEvIWFhcUgxRLwFhYWFoMU\nS8BbWFhYDFIsAW9hYWExSLEEvIWFhcUgxRLwFp9L0un0yT4EC4vjzuey2JjFwGbJkiVccMEFrFix\ngubmZubOncvNN9+MzWbj448/5g9/+AN1dXWMGDGCm2++OVPff8mSJVx44YWsXLmSQ4cO8dJLL3Va\n1GnJkiVcdNFFrFixgvr6embOnMntt9+OzWajra2Np556ih07dpBOp5k4cSK33HJLpjDWj370IyZN\nmkR1dTV79+6lqqoqUyHy448/Zvjw4Xzzm9/MlBk4ePAgzz//PLt27cqUK+gPqfgWAx9Lg7cYkKxc\nuZL77ruPp556ikOHDvHaa6+xZ88enn32Wf7xH/+Rf//3f+eCCy7gkUceIZlMZrZbvXo19957Ly+8\n8MIxK/Z98MEH/OAHP+DnP/85e/fuzRSQklJy3nnn8cwzz/D000/jdDp57rnncrZds2YNd9xxB7/8\n5S85cuQI9913H+eddx7PP/88lZWV/PGPfwQgFovx4IMPcvbZZ/Pcc89x11138dxzz3Hw4MG+PWEW\nn0ssAW8xILnooosoKSnB6/Vy1VVXsXLlSt59910uuOACxo0bhxCCc845B7vdzvbt2zPbXXzxxZSU\nlGC324/5GxdffDHBYBCv18vs2bPZs2cPoHX6mjdvHna7HZfLxZVXXsmWLVtytl20aBEVFRW43W5O\nPfVUhg4dSlVVFYqicOaZZ2b29fHHH1NRUcHChQsRQjB69GjmzZvHmjVr+uxcWXx+sUw0FgOS0tLS\nzN/l5eU0NTVRX1/PX//6V/7nf/4n810ymaSpqangdsfC6MoDWru15uZmQCvb+8ILL7Bx40ba2tqQ\nUhKNRpFSZpo7mGuAOxyODp+j0SgA9fX1bN++na997WuZ79PpNGeffXaXj9PCojMsAW8xIDG3NKuv\nr6ekpITS0lKuuuoqrrzyyk63O1Z3na7wxhtvcPjwYR5++GGKiorYs2cP99xzT46A7yqlpaVMmzYt\n0+DDwqIvsUw0FgOSt956i8bGRsLhMH/605+YP38+559/Pm+//TY7duwAtKYf69evz2jLfUU0GsXh\ncOB2uwmHwxl7ek+YPXs2hw4dYsWKFaRSKZLJJDt37rRs8BZ9gqXBWwxIFixYwIMPPkhTUxNz587l\nqquuwuFwcOutt/Lcc89x5MgRHA4HkydPZurUqUD3tPejrXvppZfyb//2b9x0002UlJRw2WWXZZpk\ndxeXy8V9993Hiy++yG9+8xuklIwePZrrr7++R/uzsDBjNfywGHAsWbKE2267jaqqqpN9KBYW/RrL\nRGNhYWExSLFMNBYDjr5wlNbX1/PNb34zZ1+Gk/Sxxx7rVrSNhUV/xTLRWFhYWAxSLBONhYWFxSDF\nEvAWFhYWgxRLwFtYWFgMUiwBb2FhYTFIsQS8hYWFxSDFEvAWFhYWg5T/H/3mFuqzyHpHAAAAAElF\nTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We can graph these ALL ON THE SAME PLOT!\n", "# we store the 'ax' from the first .plot and pass it to the others\n", "ax = df.plot(y='val', label=\"Monthly\")\n", "df.resample('A').median().plot(y='val', ax=ax, label=\"Annual\")\n", "df.resample('10A').median().plot(y='val', ax=ax, label=\"Decade\")" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cat_indentis_adjval
per_name
1963-12-310046.0
1964-12-310048.5
1965-12-310048.5
1966-12-310040.0
1967-12-310043.5
1968-12-310042.0
1969-12-310039.5
1970-12-310042.5
1971-12-310055.0
1972-12-310062.0
1973-12-310054.5
1974-12-310044.5
1975-12-310046.0
1976-12-310055.0
1977-12-310069.5
1978-12-310069.0
1979-12-310061.5
1980-12-310044.0
1981-12-310036.5
1982-12-310035.0
1983-12-310050.5
1984-12-310054.0
1985-12-310057.5
1986-12-310058.0
1987-12-310055.5
1988-12-310057.0
1989-12-310055.0
1990-12-310046.0
1991-12-310042.0
1992-12-310052.0
1993-12-310056.5
1994-12-310056.0
1995-12-310056.0
1996-12-310065.5
1997-12-310069.0
1998-12-310075.0
1999-12-310077.0
2000-12-310072.0
2001-12-310075.0
2002-12-310083.0
2003-12-310090.5
2004-12-3100101.5
2005-12-3100109.5
2006-12-310088.0
2007-12-310067.0
2008-12-310043.5
2009-12-310031.5
2010-12-310025.5
2011-12-310025.0
2012-12-310030.5
2013-12-310034.5
2014-12-310036.5
2015-12-310042.0
2016-12-310049.0
\n", "
" ], "text/plain": [ " cat_indent is_adj val\n", "per_name \n", "1963-12-31 0 0 46.0\n", "1964-12-31 0 0 48.5\n", "1965-12-31 0 0 48.5\n", "1966-12-31 0 0 40.0\n", "1967-12-31 0 0 43.5\n", "1968-12-31 0 0 42.0\n", "1969-12-31 0 0 39.5\n", "1970-12-31 0 0 42.5\n", "1971-12-31 0 0 55.0\n", "1972-12-31 0 0 62.0\n", "1973-12-31 0 0 54.5\n", "1974-12-31 0 0 44.5\n", "1975-12-31 0 0 46.0\n", "1976-12-31 0 0 55.0\n", "1977-12-31 0 0 69.5\n", "1978-12-31 0 0 69.0\n", "1979-12-31 0 0 61.5\n", "1980-12-31 0 0 44.0\n", "1981-12-31 0 0 36.5\n", "1982-12-31 0 0 35.0\n", "1983-12-31 0 0 50.5\n", "1984-12-31 0 0 54.0\n", "1985-12-31 0 0 57.5\n", "1986-12-31 0 0 58.0\n", "1987-12-31 0 0 55.5\n", "1988-12-31 0 0 57.0\n", "1989-12-31 0 0 55.0\n", "1990-12-31 0 0 46.0\n", "1991-12-31 0 0 42.0\n", "1992-12-31 0 0 52.0\n", "1993-12-31 0 0 56.5\n", "1994-12-31 0 0 56.0\n", "1995-12-31 0 0 56.0\n", "1996-12-31 0 0 65.5\n", "1997-12-31 0 0 69.0\n", "1998-12-31 0 0 75.0\n", "1999-12-31 0 0 77.0\n", "2000-12-31 0 0 72.0\n", "2001-12-31 0 0 75.0\n", "2002-12-31 0 0 83.0\n", "2003-12-31 0 0 90.5\n", "2004-12-31 0 0 101.5\n", "2005-12-31 0 0 109.5\n", "2006-12-31 0 0 88.0\n", "2007-12-31 0 0 67.0\n", "2008-12-31 0 0 43.5\n", "2009-12-31 0 0 31.5\n", "2010-12-31 0 0 25.5\n", "2011-12-31 0 0 25.0\n", "2012-12-31 0 0 30.5\n", "2013-12-31 0 0 34.5\n", "2014-12-31 0 0 36.5\n", "2015-12-31 0 0 42.0\n", "2016-12-31 0 0 49.0" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Which year had the worst month?\n", "df.resample('A').median()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cyclical data\n", "\n", "It seems like winter might be a time where not very many houses are sold. Let's see if that's true!" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
is_adjvalcat_indent
1044.50
2050.00
3058.00
4059.50
5058.00
6058.00
7055.00
8056.00
9050.00
10051.00
11043.00
12039.00
\n", "
" ], "text/plain": [ " is_adj val cat_indent\n", "1 0 44.5 0\n", "2 0 50.0 0\n", "3 0 58.0 0\n", "4 0 59.5 0\n", "5 0 58.0 0\n", "6 0 58.0 0\n", "7 0 55.0 0\n", "8 0 56.0 0\n", "9 0 50.0 0\n", "10 0 51.0 0\n", "11 0 43.0 0\n", "12 0 39.0 0" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Group by the month, check the median\n", "df.groupby(by=df.index.month).median()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEECAYAAAAifS8cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X98zvX+P/DH870xZpddpqFhDZG6bFFEx49hNDFRakI6\npBT9EN9T1EkqOrWjko+F+tTp6HTO6UyfLL/SD7PQDxmTNc2R/AqxsDEz+/F+ff+4zllh7Np2Xdfr\nut7X4367dYt5/3i8jIf39b5e1+stSikFIiKyHEN3ACIi8gwWPBGRRbHgiYgsigVPRGRRLHgiIoti\nwRMRWVSwKxsVFxdj8eLFOHDgAEQEkyZNwuWXX45XX30V+fn5aNasGaZOnYrQ0FBP5yUiIhe5dAX/\n9ttvo0uXLpg3bx7mzp2Lli1bIj09HbGxsZg/fz4cDgeWLVvm6ax1kpubqzuC13HMgYFjDgy1GXO1\nBV9cXIy8vDz069cPABAUFITQ0FBkZWUhPj4eANC3b19s3ry5xif3Jv6BCAwcc2DgmF1T7S2ao0eP\nwmazYeHChdi3bx/atm2LcePGobCwEHa7HQBgt9tRWFhY88REROQx1V7Bm6aJPXv2IDExESkpKQgJ\nCUF6evoF24mIRwISEVHtSHVr0RQUFOCpp55CamoqACAvLw/p6ek4cuQIZs2aBbvdjoKCAjz77LOY\nN2/eBfvn5uae89IiOTnZzUMgIgoMaWlplT92OBxwOByX3L7aWzR2ux1NmzbFoUOHEBUVhZycHLRq\n1QqtWrVCZmYmhg8fjszMTHTt2rXK/asKcejQIVfG4lY2mw2nTp3y+nl14pgDA8ccGKKiomp8gezS\nNMnx48djwYIFKC8vR/PmzTF58mSYpol58+Zh3bp1iIyMxNSpU2sVmoiIPKPaWzSewCt4z1OHf0KD\n40dQ0iEWUq++7jheE2jfZ4BjDhRRUVE13selK3jyD0opYMc2mJ8tB/bvRmmrGJh/mQ+JHwTpezOk\ncRPdEYnIi1jwFqBKz0Jt+hzqs+WACGTALZDJTyAsoilO7syFWrsC5szJkM49IANvgbRqozsyEXkB\nb9H4MVVwHCpzNdT6j4GY9jAGDgM6xlVOWf3tmNWpk1Dr10BlrgZatIIxYBgQez3EsNZyRFb8PlfH\nymMOCwurcgp2UFAQKioqNCTyPKUUioqKLvh6bW7RsOD9kNq/G+rT5VDbv4HcEA9JGApp0fKC7aoa\nsyovg8r6wnm1f6YYMmAo5Mb+kAYNvRXfo6z0fXaVlcds5bFdzMXGzHvwFqbMCuDbzTA/+xDIPwLp\nPwTGnfdCGtlqdBwJrgfp0ReqezywawfMtcuhlv8D0nMApF8SpGmkh0ZARN7GgvdxqqQYauNnUBkr\ngbDGzvvr1/0OEly3b52IAB0cCOrggMr/GSpjJcznpkCu6ew8R7uObhoBEenCgvdR6pcjUBkrob7M\ngHSMgzFhmsdKVyJbQEbeC3XLaKgvPoX55stAY/uv/5gEBXnkvETkWSx4H6KUAnZ/D/PT5cDOHEjP\nATBmzoM0beaV80vDUMiAYVD9k4Bt38D87EOo99+G9E+C9LoJ0ijMKzmIrOqrr77Cww8/jKysLK+c\njwXvA1R5OdSWL6A+/RA4c9r5pun4RyAN9DxARYwg4LobEXTdjVD7foD6bDnMJydCuveB9K/6DV0i\nco03F2ZkwWukTp+C+nwN1LrVQPMoGEkjgbiuzoL1EXLFlZAJ06AKjkGtWw0zZTrQ9ioYA245Z0om\nEfkeFrwG6vBPUGuXQ23eALm2O4yHZ0Ki2+qOdUlibwq5dSzU4GSoTetg/vMNICjIeZ/+hj4BtRwC\n0cKFC7Ft2za88cYblV97+umnATgXWFy0aBEOHz6Myy67DJMmTcJdd92lJScL3kuUUsD325z31/f9\nAIm/GcZzCyHh/rV8gISEQPoMguqdCORmO+/Tf/AOJP5mSN9BXA6BAsKwYcMwb948FBcXIzQ0FKZp\nYuXKlXjrrbdw4sQJvPPOO4iOjsamTZswZswYdO7cGZ06dfJ6Tha8h12wjEDCUMjkJ/z+ildEgE7X\nIajTdVCH9v+6HEKXHpD+Q4HmNf9QhjuoRnzweyCpuO8Wtxwn6H+X12j7li1bIjY2Fh999BFGjBiB\njRs3omHDhujSpcs523Xv3h3x8fH45ptvWPBWZL72JwAKxsh7gauvteQ9a4mKhox9EGr4WKj1a2C+\n9jxQdFJDEoVTLVoBD/4REsEPbAWCmhazOw0bNgzp6ekYMWIE0tPTceuttwIAMjIyMG/ePPz4449Q\nSqGkpARXX321lowseA9SB/cBB/fCePFNSHA93XE8TmyNIUOSgSF6ntqllEL99WtQ8uJ0GI/M5KJq\n5FFDhw7F7NmzcfjwYaxZswYrVqxAaWkpJk6ciAULFiAxMRGGYWDChAnQsCIMABeeyUq1pzJWQfoM\nCohy9wUiggZJyZA7xsN85WmoHdt0RyILi4iIwI033ohp06YhOjoa7dq1Q1lZGcrKyhAREQHDMJCR\nkYHPP/9cW0YWvIeo00VQWRsg8YN0Rwk4RrfeMB6YDvPNl2F+maE7DlnY8OHDsXHjxsrbM40aNcJz\nzz2H+++/Hw6HAx9++CESExO15eNqkh5ifpIO7NsN477/57Vzni/QV+JThw/AnP8spNdAyJBkS77/\nAVj7+2zlsV2MO1eT5BW8ByizAipzNaT/EN1RAppc3hrGjD9DZX8N9bfXoCy6fjjRxbDgPSFnCxAa\nBrS9SneSgCf2CBiP/QnqxC8wU+dAlZzRHYnIa1jwHmBmrHQu0GXRWwL+Rho0hPHgUxB7BMy5T0IV\nntAdicgrWPBupg7/BBzYA+nWW3cU+g0JDobc/RCkc3eYLzzm/D4RWRwL3s3UupWQ3omQepwa6WtE\nBMbQOyFDR8Gc+wTUv3N1RyLyKBa8G6kzxVCb1nNqpI8zeibAmDAN5uIXobI26o5D5DH8JKsbqS/X\nQq6+FhJxme4oVA1xdIHx6LMwF8yGHP8FMnAY3zPxQUop2GwXPnc4KCgIFRadFeXOmesseDdRpgmV\nsQrGuEd0RyEXSXRbGDP+DPN/ngWO5wPJ9/jUWvwEFBUVVfn1QJwfXxu8ReMuO7KBkBDgSj2LClHt\nSNNIGNNfhPppL8zFKVClZ3VHInIbFrybmBmrODXST0loGIwpz0DqhcB8ZSbUKR0rYRK5HwveDdTR\nQ8DeXZAb+uiOQrUk9epBJkyFdHDATJkOlf+z7khEdcaCdwO1bjWk5wBI/RDdUagOxDBg3PZ7yICh\nMFNmQO3ZpTsSUZ2w4OtIlZyB+modpO/NuqOQmxh9B8O4axLMBc9BfbtZd5xLUkUnufwCXRRn0dSR\n+mod0MEBadpMdxRyI+ncHUZ4E5iv/QlyYiQMH/kHXCkFHNgDlZMFlZMF7PsBxV16ABMf1x2NfBAL\nvg6UUlDrVsEYfb/uKOQB0qYDjMdfgDn/WZjHj0KGj4UY3n/Rq86WAN9/+59S3wIEB0PiusEYOgpo\n0wEVz08D8rZDOsZ5PRv5NhZ8XXz/LWAYwFWxupOQh0izy51z5VNnA3+ZB4x7xCtP6FL5P0Ntz4LK\n2QzszgNi2kNiu8IYOAxo3vKc2Voho+9H8b/egjHzFc7jp3Ow4OvAzFgJ6TeEUyMtTmyNYUybA/PN\nl6FefQbG5CcgoWFuPYcqLwd+2OG8St+eBRQXQTpdD6P3TcDExyGhjS66b73ufYBVaVBfrIX0vsmt\nuci/seBrSeX/DOz+HnLfH3RHIS+QkBAYk6ZD/estmCkzYEyZBYmIrNMx1ckCqO+2ANuzoL7fBkRe\nDonrCuOeqcAV7Vy+HSQiMEbeC3PBHKhuvSANQuuUi6zDpYJ/8MEHERoaChFBUFAQXnjhBSxduhRr\n165FeHg4AGDUqFHo3LmzR8P6EpX5EeR3CZCQBrqjkJeIEQTceR/waTrMF6fDeHgmpHUbl/dXpgkc\n+PE/t16ygJ8PAldf6yz1URMh4U1qn+2KKyHXdIZa/T7ktrtrfRyyFpcKXkQwa9YshIWd+7I0KSkJ\nSUlJHgnmy9TZs1BffgbjyZd1RyEvExHITbfCbHIZzHlPw7h3GuSaLhfdXpUUAzu+hdq+2Xm13jDU\neS/91rFA+2vcej9fbhsL85lHoPokQi5r7rbjkv9yqeCVUlWucKbhed0+QW3KBNpdDYlsoTsKaWJ0\n6w0V3gTm4hTI7eNg/C6h8tfUkUNQOZud99L3/Btoe5Wz1AffDmlW8wcnu0rsTSEDhkL93xLI/Zw2\nSTW4gp8zZw4Mw0BCQgIGDBgAAFizZg3Wr1+Pdu3a4e6770ZoqPXv/SmloDJWwki+R3cU0kw6dILx\n2J+c0ygP7gfMCmepl5Y4C73fEGDyk5AGDb2XaeCtMJ+eBLVrB6T9NV47L/kmUS5chp84cQJNmjTB\nyZMnMXv2bEyYMAFRUVGw2WwQEbz33ns4ceIEJk2adMG+ubm5yM399ck5ycnJWpb5rF+/PkpLS+t8\nnLLcbTjz1jzYXv6rz8+ecdeY/YmOMZsnjuHMP15H0OWtEdylB4JirvTqn43zx1y68TOcXf0+wuYs\n1DJv3xsC8c+2zWZDWlpa5c8dDgccDscl93Gp4H9r6dKlaNiw4Tn33vPz85GSkoKXXnrJpWMcOnSo\nJqd0C3etH12x6AVIxzjn1ZmPC8Q1szlm56tM84XHIP2GwLixn8ZknhOI3+eoqJrf3qv2n/ezZ8+i\npKQEAFBSUoLt27ejdevWKCgoqNxm06ZNaN26dY1P7m/UsXwgLwdi0b80ZA3/nTapPnjH+SlYCljV\n3oMvLCzE3LlzISKoqKhA7969ce211yI1NRV79+6FiCAyMhITJ070Rl6t1OerITf24zxj8nnSriOk\ngwPq4w8gt4zWHYc0qfEtGnfwx1s0qvQszBn3wnj8RUiLlm5M5jmB+DKWY/6VOpYPc86jMGbOt9xz\nggPx++yRWzTkpDZvAK640m/KnUiaRkLib4Za9o7uKKQJC94FlVMj+wfeh7rIv8mgEVB5OVB7/q07\nCmnAgnfF7u+BkhLAcfFPLBL5ImnQEDL8Lpj/ejNgP5gYyFjwLlAZqyD9Blt2TjFZm9zYDygrc95m\npIDCxqqGKjgGlZsN+c1H0Yn8iRgGjJETnNMmS8/qjkNexIKvhvp8DeSGPpdcj5vI10mHTsAVV0J9\n+qHuKORFLPhLUGVlUOs/hvT3/U+tElXHuH0c1GcfQhUc1x2FvIQFfwkqayPQ8grI5db/lC5Zn0S2\ngPQcCJX+N91RyEtY8JfAqZFkNTIkGeq7rVD7duuOQl7Agr8I9eNO4FQhENdVdxQit5GGoZBbRsFM\n47TJQMCCvwiVsRLSfwifUk+WI70GAsWngeyvdEchD2PBV0EVnoDKyYL0HKg7CpHbiREEI3kCzPf/\nClVWpjsOeRALvgpq/ceQrr0gjcKq35jID8nV1wJR0VAZK3RHIQ9iwZ9HlZc55777wQM9iOrCuH08\n1JoPoE4WVL8x+SUW/HnU1q+AFi0hrWJ0RyHyKGnREtKjL9SH/9AdhTyEBX8e59RIXr1TYJCkO6Gy\nv4L6aa/uKOQBLPjfUPt+AE78AlzbXXcUIq+QRmGQpJEw097itEkLYsH/hlq7EtJ3MCSIUyMpcEif\nQUDBcWB7lu4o5GYs+P9Qpwqhtm2C9LpJdxQir5LgYBh33ANz6V+gyjlt0kpY8P+h1n8Mua4HxNZY\ndxQir5PY64HI5lCZH+mOQm7EggegKiqcUyO57gwFMOOOe6BWL4UqOqk7CrkJCx4Atn0NNG0GiW6n\nOwmRNhIVDenaE2rFe7qjkJuw4AGYGSt59U4EQIaOhvpmPdThA7qjkBsEfMGrn/YAR3+GdOmhOwqR\ndmJrDLn5dphL39YdhdyABZ+xChI/CBIcrDsKkU+Q/kOAIwehvtuqOwrVUUAXvCo6CbXlC0ifRN1R\niHyGBNeDccd454efKip0x6E6COyC3/gpJO4GSGO77ihEvuXa7kB4E6gNH+tOQnUQsAWvzAqozI/4\n5ipRFUQERvIEqOX/hCou0h2HailgCx7fbgYa2yFt2utOQuSTpHUbSOfuUKvSdEehWgrYgufUSKLq\nyfAxUF+uhTpySHcUqoWALHh1cD9w+ACka0/dUYh8mjRuArnpNpjv/1V3FCiloA7uh/nJMlQc2q87\njl8IyLmBat1KSJ9ESHA93VGIfJ4MGAr19BqovO2QjnFePbcqPQvszIHangWVkwUoBVzWHCUH9wHj\nH/VqFn8UcAWviougNm+A8exruqMQ+QWpVx/G7eNg/ustGDNfgRieXU5bHcuHytkMtT0L2JULtG4D\nie0G4+GZQFQ0cKYY5U9OhBQcg9ibejSLvwu8gv9iLaTT9RB7hO4oRP7jut8Ba1c4//70du+S2qqi\nAvhx56+lXngC0uk6SI++kAnTII3Czt0htBGCf9cPZZ9/DBk22q1ZrCagCl6ZJtS6VTAmTNMdhciv\n/HfapJk6B6prL0jD0DodTxWddH5SNicLKjcbiLjMeZU+9kGgTftqXyWEJN6K0tnToIbcwVutl+BS\nwT/44IMIDQ2FiCAoKAgvvPACioqK8OqrryI/Px/NmjXD1KlTERpat2+6x323BQgNA9pepTsJkd+R\nmPaQa7pAfbQUctvva7SvUgr4aS/U9s3Oe+kH9wFXxULiusIYMQ4ScVmNjhfUKgaIiobK+gLSo2+N\n9g0kLhW8iGDWrFkIC/v1pVJ6ejpiY2MxbNgwpKenY9myZRgzZozHgrqDc2rkEIiI7ihEfkluGwvz\nmUegeidCIltcclt1tgT4/luonCyonC1AcDAktiuMpDuBqzpB6tWvUxaj/xCYq98HWPAX5dI0SaXU\nBQ/kzcrKQnx8PACgb9++2Lx5s/vTuVHFof3A/h8h3XrrjkLkt8Te1Dmr5v+WVPnrKv9nmBkrUTH/\nGZh/+D3Mz5YDzaNgTH0OxvOvwxg10Xl/vY7lDgCI6wacLIDa8++6H8uiXL6CnzNnDgzDwIABA5CQ\nkIDCwkLY7c41XOx2OwoLCz0atK7OfpwO6X2Te/5gEQUwGXgrzKcnQe3aAbTpAOz+/tdpjEUnnVfp\nvQYC9z0GCW3kuRxGEKTfYKiMlRC+r1Yllwp+9uzZaNKkCU6ePIk5c+YgKirqgm18+baHOl2Eso2f\nQZ6erzsKkd+TkBDIbb+H+XoKUFYKRF7uLPXxU4ArroQY3vv8pPQaCPPJiVAnT0AaN/Haef2FSwXf\npInzN65x48bo1q0bfvjhB9jtdhQUFFT+Pzw8vMp9c3NzkZubW/nz5ORk2Gw2N0R3XfG/3oTRsz8a\nXNHGq+fVrX79+l7/vdaNY/YOlTAE5U0iENT2KhhNvD8XvXLMNhuKe/SF8XUmGoy42+s5vC0t7dd1\ngRwOBxwOxyW3F3X+zfXznD17FkopNGjQACUlJXj++edx++23IycnB2FhYRg+fDjS09Nx+vRpl99k\nPXTIe+taqN15MBe9iMYv/xWnLzlS67HZbDh16pTuGF7FMQeG345Z/bQX5vxnYLzwpqUf3FPVnZPq\nVPu7UVhYiLlz50JEUFFRgd69e+Paa69Fu3btMG/ePKxbtw6RkZGYOnVqrUJ7kqqogPnuQsgd42GE\n2YAA+0tAFAikVQzQLAoq+ytOojhPtQXfrFkzzJ0794Kvh4WFYebMmR4J5S5q7XLAFg65oY/uKETk\nQUb/JJiffQiw4M9h2dUk1bF8qI/ehzFmkk+/AUxEbtC5O3A8H2r/bt1JfIplC9587w1I/6GQ5jW/\nb0VE/kWCgiDxN0NlrNQdxadYsuDVtq+Bwz9BBo3QHYWIvER6J0Jlfw116qTuKD7DcgWvSs7A/Ocb\nMO6aBKnHRYiIAoXYGkM694Da+InuKD7DegW/4p+QDrFefzABEekn/ZOgMlc7lyAmaxW8OrAH6qt1\nkDvG645CRBrIFe2AiEhg2ybdUXyCZQpemRUw//YaZPhdkMZ23XGISBPpnwSTb7YCsFLBr/8ECAqC\n9BqoOwoRaSRdbgSOHoL6aY/uKNpZouBV4QmoD//unPPuxYWOiMj3SHAwJH4QVMYq3VG0s0QbqrS3\nID0HOD+yTEQBT/okQm35Aup0YC9P4vcFr3ZkQ+3Ogwy9U3cUIvIR0rgJJK4b1MbPdEfRyq8LXpWV\nwvz7Yhij74eENNAdh4h8iPRPglq3CsoM3CmT/l3wq5cCrWIgcd10RyEiHyNtOgCN7cD2LN1RtPHb\ngleHf4LKXA1j5H26oxCRj5L+QwJ6yqRfFrxSCubfF0GGjIREXKY7DhH5KLm+F3BoP9Sh/bqjaOGf\nBf/VOuDMaUi/IbqjEJEPk3r1nIuQrQvMKZN+V/Cq6CTU//0Vxl0PQoKCdMchIh8n8YlQ32yAKj6t\nO4rX+V/Bf/AO5PqekDbtdUchIj8g9qYQRxeoLwNvyqRfFbzatQMqJwsy/C7dUYjIjzinTK6GMk3d\nUbzKbwpelZc5H6CdfC8ktJHuOETkT9p1BBqEArlbdSfxKv8p+E+XAxGXQbr21B2FiPyMiATkKpN+\nUfAq/2eoTz6AMfoBPkCbiGpFbugN7NsN9fNB3VG8xucLXikF859vQAYMg0S20B2HiPyU1KsP6TUQ\nKnO17ihe4/MFj61fAb8cgSTeqjsJEfk56Xsz1NeZUCXFuqN4hU8XvDpTDPO9/3U+QDuYD9AmorqR\niEigY6zzw5IBwLcL/sO/QxydIR066Y5CRBZh9E+CylgVEFMmfbbg1b4foL5ZDxnBB2gTkRu1dwDB\nwcD33+pO4nE+WfDOB2gvhIwYB7E11h2HiCwkkKZM+mbBr/sICAmB/K6/7ihEZEFyQzzw406o/J91\nR/Eonyt4VXAMauV7MO6azDnvROQREhIC6Zlg+VUmfa/g33sT0mcQ5PLWuqMQkYVJ38FQX2VAnS3R\nHcVjfKrgVc4WqP27IUPu0B2FiCxOLmsOXHkN1NeZuqN4jM8UvDp7FuY/FjuXI6gfojsOEQUA55TJ\nlVBK6Y7iEb5T8Kv+BWnTAdLpOt1RiChQdIxz/n9njt4cHuITBa8O7ofa8AkkeYLuKEQUQEQE0s+6\nD+bWXvDKNJ3rvN8yCmKP0B2HiAKM9OgL7MqFOnZUdxS3C3Z1Q9M0MWPGDDRt2hTTp0/H0qVLsXbt\nWoSHhwMARo0ahc6dO9c4gPpyLVBeBokfVON9iYjqSho0hPToD7VuNeT2cbrjuJXLBb969Wq0atUK\nZ86cqfxaUlISkpKSan1ydaoQ6oN3YEx5BmLwAdpEpIf0GwzzhcegbhllqUkeLt2iOXbsGLKzs5GQ\nkHDO1+v6zrNa+jakezzkinZ1Og4RUV1Is8uBNh2gNn2uO4pbuVTwS5YswdixYy/4ZOmaNWvw2GOP\nYfHixSgurtn6ympnDlTedsiw0TXaj4jIEypXmbTQlMlqC37r1q0IDw9HTEzMOQNPTExEamoq5s6d\nC7vdjiVLlrh8UlVWBvPdRTDuvBfSILR2yYmI3OmazkBZKbBrh+4kblPtPfi8vDxkZWUhOzsbpaWl\nOHPmDFJTU/HQQw9VbpOQkICUlJQq98/NzUVubm7lz5OTk1E/cxXKo1qjUZ+bvLbeTP369WGz2bxy\nLl/BMQcGjtl9zt48AuUb1qDR9T3cfmx3SEtLq/yxw+GAw+G45PaiavB6ZMeOHVixYgWmT5+OgoIC\n2O12AMDKlSuxe/duTJkyxaXjHBjZD8ZT8yBNm7l66jqz2Ww4deqU187nCzjmwMAxu48qKYY54z4Y\nT8+HRFzm9uPXRVRUVI33cXkWzfneffdd7N27FyKCyMhITJw40eV9ZdAIr5Y7EZErpEEopHs81Odr\nILfepTtOndXoCt5dDu7fDwmu9b8ttcKrnMDAMQcGT45Z/XwQ5p9nwEh5C1KvvkfOURu1uYLX8klW\nb5c7EZGrpEVLILot1OaNuqPUmfalCoiIfI1VVplkwRMRna/T9UBxEfDjTt1J6oQFT0R0HjEMSL8h\nUH6+yiQLnoioCtIzAeq7LVAFx3VHqTUWPBFRFSQ0DHJDH6j1a3RHqTUWPBHRRUi/IVDrP4YqL9Md\npVZY8EREFyFR0UBUNNSWL3VHqRUWPBHRJRj9/ffNVhY8EdGlxHUDCk9A7d2lO0mNseCJiC5BjCBI\nv8F+eRXPgiciqob0Ggj17TdQJwt0R6kRFjwRUTWkkQ1yfU+oDZ/ojlIjLHgiIhdIwlCotSugfj6o\nO4rLWPBERC6QlldAbh0Lc8FzUEUndcdxCQueiMhFRu+bIF1uhLnwT1Blvv/hJxY8EVENyG13A7Zw\nqL+l+vxywix4IqIaEMOAcc80qEMHoFalVb+DRix4IqIakpAQGA89BbXhE5jfrNcd56JY8EREtSD2\nCBgPPwX13v9C7c7THadKLHgiolqSVm1gjJ8Cc9ELUPk/645zARY8EVEdSGxXyOA7YC6YDVVcpDvO\nOVjwRER1ZPRPglzTGebiFKjyct1xKrHgiYjcQJLvAYLrQf1jsc9Mn2TBExG5gRhBMCb+AWrPv6E+\nTdcdBwALnojIbaRBKIyHZ0J9uhwq+2vdcVjwRETuJBGRMB58EuY7qVD7ftCahQVPRORmEtMextgH\nYaY+D3U8X1sOFjwRkQfIdTdCBtwCc8EcqJJiLRlY8EREHiI3DYe0aQ/zjZegzAqvn58FT0TkISIC\nGf0AUF4GlfYXr5+fBU9E5EESHAzjgelQudkw163y6rlZ8EREHiahYTAeeRpqVRpUzhavnZcFT0Tk\nBRLZAsYDM2C+/SrUT3u8ck4WPBGRl8iVV0NG3uucWVN4wuPnY8ETEXmR0T0e0nsgzNQ5UGfPevZc\nrm5omiamT5+OlJQUAEBRURHmzJmDKVOm4Pnnn0dxsZ55nkRE/kaGjIS0aAnzL/OgTNNj53G54Fev\nXo2WLVtW/jw9PR2xsbGYP38+HA4Hli1b5pGARERWIyKQux8GThZALfubx87jUsEfO3YM2dnZSEhI\nqPxaVlYW4uPjAQB9+/bF5s2bPZOQiMiCpF49GJOfhNr6JcwNn3jkHC4V/JIlSzB27FiISOXXCgsL\nYbfbAQCGTwB6AAAIjElEQVR2ux2FhYUeCUhEZFVia+xcfXLZ36C+/9btxw+uboOtW7ciPDwcMTEx\nyM3Nveh2vy3/38rNzT1nv+TkZNhstlpErZv69etrOa9OHHNg4Jj9nO1qlD36DIr/5zk0evpVBLWM\nvuimaWlplT92OBxwOByXPHS1BZ+Xl4esrCxkZ2ejtLQUZ86cwYIFC2C321FQUFD5//Dw8Cr3ryrE\nqVOnqjut29lsNi3n1YljDgwcswVEtwNuHYtTL06H8cRLEFvjCzax2WxITk6u0WFF1eDZUjt27MCK\nFSswffp0vPvuuwgLC8Pw4cORnp6O06dPY8yYMS4d59ChQzUK6Q6W+wPhAo45MHDM1mF+8A7UrlwY\n02ZD6tU/59eioqJqfLxaz4MfPnw4cnJyMGXKFHz33XcYPnx4bQ9FREQAZPhdkPAIqL8ucMtzXWt0\nBe8uvIL3Do45MHDM1qJKz8J86Y+QTtfDuGVU5de9egVPRETuJ/VDYDz0R6gv18L8OrNOx2LBExH5\nGGncxDl9Mu0tqB921Po4LHgiIh8kLa+Acc9UmItToI4ertUxWPBERD5KOl0HSRoJc8Fztdq/2nnw\nRESkj9F3MMzi07Xb171RiIjI3YzBd9RuPzfnICIiH8GCJyKyKBY8EZFFseCJiCyKBU9EZFEseCIi\ni2LBExFZFAueiMiiWPBERBbFgicisigWPBGRRbHgiYgsigVPRGRRLHgiIotiwRMRWRQLnojIoljw\nREQWxYInIrIoFjwRkUWx4ImILIoFT0RkUSx4IiKLYsETEVkUC56IyKJY8EREFsWCJyKyKBY8EZFF\nseCJiCyKBU9EZFHB1W1QVlaGWbNmoby8HOXl5ejatStGjx6NpUuXYu3atQgPDwcAjBo1Cp07d/Z4\nYCIick21BV+vXj3MmjULISEhME0TM2fORF5eHgAgKSkJSUlJHg9JREQ159ItmpCQEADOq3nTNBEW\nFgYAUEp5LhkREdVJtVfwAGCaJmbMmIEjR45g4MCBaNWqFQBgzZo1WL9+Pdq1a4e7774boaGhHg1L\nRESuE1WDy/Di4mI8//zzGDNmDFq1agWbzQYRwXvvvYcTJ05g0qRJLh3n0KFDtQ5cWzabDadOnfL6\neXXimAMDxxwYoqKiaryPS1fw/xUaGoouXbpg9+7duOaaayq/npCQgJSUlCr3yc3NRW5ubuXPk5OT\naxXUHWw2m5bz6sQxBwaOOTCkpaVV/tjhcMDhcFxy+2rvwZ88eRLFxcUAgNLSUuTk5CAmJgYFBQWV\n22zatAmtW7eucn+Hw4Hk5OTK/3T57W9MoOCYAwPHHBjS0tLO6dLqyh1w4Qq+oKAAr732GpRSUEqh\nd+/eiI2NRWpqKvbu3QsRQWRkJCZOnOiWQRARkXtUW/DR0dFV3n556KGHPBKIiIjcI2A+yerKyxmr\n4ZgDA8ccGGoz5hrNoiEiIv8RMFfwRESBhgVPRGRRNZoH74+OHTuG1NRUFBYWQkSQkJCAwYMH647l\nFaZp4oknnkBERASmT5+uO47HFRcXY/HixThw4ABEBJMmTUL79u11x/KYZcuWYcOGDTAMA9HR0Zg8\neTKCg633V3rRokXYunUrwsPD8dJLLwEAioqK8OqrryI/Px/NmjXD1KlTLfVJ+qrG/O6772LLli0I\nDg5G8+bNMXny5GrHHPTMM88844W82pSWlqJjx44YOXIk4uPjsXjxYsTFxaFx48a6o3ncqlWrUFFR\ngfLycvTq1Ut3HI974403EBcXhwceeAADBgxAaGgo6tWrpzuWR+Tn5+Ptt9/Gyy+/jEGDBuHLL79E\neXk5YmJidEdzO5vNhv79++Obb77BTTfdBMA5J7x169Z49NFHcfz4cWzfvh1xcXGak7pPVWMGgLFj\nxyIxMRF79uzBzp07ERsbe8njWP4Wjd1ur/xD36BBA7Rs2RLHjx/XG8oLjh07huzsbCQkJOiO4hXF\nxcXIy8tDv379AABBQUGWuqI7X8OGDREcHIySkhJUVFTg7NmzaNKkie5YHtGxY0c0atTonK9lZWUh\nPj4eANC3b19s3rxZRzSPqWrMcXFxMAxnZbdv3x7Hjh2r9jjWez13CUePHsW+ffss/bL9v5YsWYKx\nY8dWfgrZ6o4ePQqbzYaFCxdi3759aNu2LcaPH4/69evrjuYRYWFhSEpKwuTJkxESEoK4uDhLXcFW\np7CwEHa7HYDzIq6wsFBzIu9at24devbsWe12lr+C/6+SkhK88sorGDduHBo0aKA7jkf9995dTExM\n5SeQrc40TezZsweJiYlISUlBSEgI0tPTdcfymCNHjmDVqlVYuHAhXn/9dZSUlGDjxo26Y2kjIroj\neM0HH3yAoKAgl267BkTBV1RU4OWXX0afPn3QrVs33XE8Li8vD1lZWXjooYcwf/585ObmIjU1VXcs\nj4qIiEDTpk3Rrl07AECPHj3w448/ak7lObt378ZVV12FsLAwGIaB7t27Y+fOnbpjeY3dbq9cD6ug\noKDyyXJWl5mZiezsbEyZMsWl7QOi4BctWoRWrVoFzOyZ0aNHY9GiRUhNTcWjjz6KTp06WX5pCbvd\njqZNm1YuRZ2Tk1P53AIrioqKwq5du1BaWgqlFHJyctCyZUvdsTzm/Fei119/PTIzMwE4S69r166a\nknnO+WPetm0bli9fjscff9zlyQOW/yRrXl4eZs2ahejoaIgIRCSgnh+7Y8cOrFixIiCmSe7duxev\nv/46ysvLXZ5G5s+WL1+OzMxMGIaBmJgYPPDAA5acJjl//nzs2LEDp06dQnh4OJKTk9GtWzfMmzcP\nv/zyCyIjIzF16tQL3pT0Z1WNedmyZSgvL69cJrl9+/a49957L3kcyxc8EVGgCohbNEREgYgFT0Rk\nUSx4IiKLYsETEVkUC56IyKJY8EREFsWCJyKyKBY8EZFF/X950MSWraZvKgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Group by the month, check the median, plot the results\n", "df.groupby(by=df.index.month).median().plot(y='val')" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX7B/Dvc9iRQURwQRIQd1xQMTEUEffENFPMNbcs\nlzQt03pDxCW3ykxcyiU139xK0RAtN9wqFVFAcM81FRFBUXbO/fuDn/M6CXpAZg4M9+e6uGTOzHme\n7xnGuefMec5zBBERGGOMMQUktQMwxhgrO7hoMMYYU4yLBmOMMcW4aDDGGFOMiwZjjDHFuGgwxhhT\njIsGM7iQkBDUqVNHr32sWbMGZmZmeu2jNHFzc8MXX3yhdgxWDnDRMKBhw4ahc+fOBd4nSRJ++ukn\nAydSjxBC7+3ruw81zJ49G25ubnprPyEhAYGBgahbty5MTEwwatSoAh+3cuVKNGnSBBUqVICrqytC\nQkJQ0ClfK1asgKenJ6ysrFC5cmX07NlTe19mZiZ69OgBFxcXWFlZoVq1anjzzTdx9uzZ52bMy8vD\nZ599hubNm8PW1haOjo7o2rUrjh8//sxjIyIi0KxZM1haWqJWrVpYuHBhsbZXlmXMnTsX9evXh6Wl\nJapVq4axY8c+N6exMlU7AGNMOSLSazFMT0+Hi4sLevbsia+//rrAx6xYsQITJkzA999/jzZt2uDM\nmTN49913kZubi5kzZ2ofFxQUhJUrV2LBggVo3bo1cnJyEBsbq71fCIHOnTsjKCgI1atXR1JSEoKD\ng9GhQwdcuXIFFhYWBfaflZWFY8eOYfLkyfD09AQRYf78+ejYsSNiYmK0RTUqKgq9evXCJ598go0b\nN+LYsWN47733UKFCBW1xULK9APDOO+/g2LFjWLBgAZo2bYq0tDRcvXq1qE+vcSBmMEOHDqVOnToV\neJ8Qgv773/9qb9++fZv69etHdnZ2ZGVlRX5+fhQVFaW9PzIykoQQ9M8//+i0Y2pqSmvXrtXenj17\nNtWqVYssLCzI0dGRunbtSpmZmdr7f//9d/Lx8SErKyuqUaMGDRs2jJKTk5+7HStWrKAGDRqQpaUl\n2dvbU7t27bQ5UlJSaNCgQVSzZk2ysrKievXq0VdffaWz/vTp06lOnTo6y16UIz4+nrp06UJ2dnZU\noUIFatiwIa1fv77QjGvWrCEzMzPau3cveXh4kKWlJbVq1YpOnz5NRERpaWmk0Whow4YNOutduXKF\nJEmiI0eOFNjuk+c9IiKCWrduTVZWVuTl5UUJCQkUGxtLPj4+ZG1tTa+++iqdPXtWZ92dO3dSixYt\nyMLCgqpUqUJjxoyhx48fa+8fOnQodezYkb7//ntycXEhW1tbeuONN+ju3bvabRJCkCRJ2n9DQkKI\niMjV1ZWCg4NpwoQJZG9vT1WrVqWJEydSXl5eoc/Ri/j5+dG77777zPI2bdrQ6NGjdZYtXLiQbGxs\nKD09nYiILl26RCYmJrRnz54i9RkTE0NCCIqNjS3Senl5eVSpUiUKDQ3VLhswYAD5+PjoPG7y5Mnk\n5uZWYBuFbe/+/fvJzMzsmb9necVfT5VSPXv2xIULFxAREYETJ06gatWq6NSpE+7fv699zIs+cW7d\nuhXz5s3D4sWLcenSJezduxfdunXT3r9//3706tULAwYMwJkzZ7B9+3Zcu3YNb731VqFtRkdHY/To\n0fjPf/6DCxcu4NChQxgyZIj2/qysLDRu3Bg7duzA2bNnMW3aNEyfPh1r164ttM3CcvTu3Vv7mP79\n+8PBwQF//fUXzpw5g6+//hqVKlV67vbn5eVhypQpWL58OU6cOAFHR0cEBAQgKysLNjY2GDBgAFas\nWKGzzqpVq9CgQQP4+Pg8t+3PP/8cc+bMQXR0NMzMzPD2229jzJgxmDVrFqKjo2Fubo5hw4ZpHx8b\nG4uePXvCz88PsbGxWLduHcLDwzF69Giddk+cOIHIyEhERETg999/R1xcHD7++GMAQL9+/TBlyhQ4\nOzsjMTERt2/f1t4HAIsXL4aTkxOOHz+O0NBQhIaGPvd5L67MzExYWlrqLLO0tER6ejqioqIAANu2\nbYO5uTnu3r2LRo0aoUaNGggICEB8fHyh7aalpWHFihVwd3dHvXr1ipQpPT0d2dnZqFChgnbZ0aNH\n0bVrV53Hde3aFdeuXcOtW7cUt71161bUqlULv//+O+rUqYOaNWuiX79+uHHjRpEyGg21q1Z5MnTo\nUDI1NSUbG5tnfiRJ0u5p7N27lyRJonPnzmnXzcrKourVq9PMmTOJKP8TryRJz93TWLhwIdWrV49y\nc3MLzOPn50effvqpzrJr166REIJiYmIKXGfbtm1kZ2dHaWlpird7woQJ1LlzZ+3tf+9pKMlRsWJF\nnT2oF1mzZg1JkkQHDhzQLktJSSEbGxtavXo1ERFFR0eTJEl06dIlIsr/tOrs7EyLFi0qtN0nexo7\nduzQLtuyZQsJIWjbtm3aZdu2bSNJkrR7EoMHD6ZWrVrptLV9+3aSJImuX79ORPmvj6pVq1JOTo72\nMfPmzSMnJyft7VmzZhX4SdnV1ZV69uyps6xbt240YMCAQrflRQr75B0UFESVK1emo0ePEhFRQkIC\n1atXjyRJoo0bNxIR0ejRo8nc3Jzq1KlDu3btoqioKAoMDCR7e3tKSkrSaW/KlClkY2NDQgiqW7eu\n9u9RFCNGjCA3NzedPTdzc3NasWKFzuPi4+NJkiSdvfYXbW+3bt3I0tKSvLy86ODBg/Tnn39S+/bt\nqXbt2pSVlVXkrGUd72kYmLe3N2JjYxETE6PzQ08dRExISEDlypV1Pm2Zm5ujVatWz/2k9m+BgYHI\nzs5GzZo1MWzYMKxfvx6PHj3S3n/ixAl888030Gg02h8PDw8IIXDx4sUC2+zUqRPc3Nzg6uqK/v37\nY8WKFUhOTtbeT0SYO3cumjVrBkdHR2g0GixfvhzXrl0rNKeSHB9//DFGjBiB9u3bIyQkBKdOnVL0\nHHh7e2t/t7OzQ4MGDbTPYbNmzdCiRQusXLkSQP5B0+TkZAwePPi5bQoh0KRJE+3tatWqQQiBxo0b\n6ywDgLt37wIA4uPj4evrq9NOu3btQERISEjQLqtfvz5MTf93qNHJyQmJiYmKttXT01PndlHWLYrP\nP/8cgYGB8Pf3h5mZGdq1a4fBgweDiCBJ+W8psiwjNzcX3377Lbp27YoWLVpg3bp1kCQJ69ev12nv\nk08+wenTpxEZGYl69eqhY8eOSElJAQCMHj1a+5qwtbXFzZs3n8kzdepU7NixA7/++iusra1fmJ+K\nOEerLMvIzs7Gjz/+CF9fX3h7e2PTpk24cuUKIiIiitSWMeCiYWBWVlZwc3NDrVq1dH6K6sl/zqf/\nA8iyDFmWtbednJxw/vx5/PDDD6hatSpmzZqFevXq4Z9//tE+fsqUKc8UsIsXL+p8jfW0ChUq4OTJ\nkwgLC0O9evWwfPly1K5dW/sm/uWXX2LevHn48MMPsXfvXsTExGDkyJHIzs4udFuU5Pj8889x8eJF\n9OvXD/Hx8fD29sa0adOK/Lz92/vvv481a9YgLy8PK1euRO/evV/4tRcAneG8T74mLGjZ038PJczN\nzXVuCyEUv8kVtG5R+1faz9KlS5Geno5r167h9u3baN68OYQQcHd3BwBUr14dANCwYUPtehYWFnB3\nd3/mA4S9vT3c3d3h6+uLX375BcnJydi4cSMAYObMmdrXw+nTp+Hk5KSz7vjx4/HDDz9g//798PDw\n0LmvevXquHPnjs6yxMRECCG0+ZSoXr06hBCoX7++dpmjoyMcHBye+2HIWHHRKIU8PDyQnJyMc+fO\naZc9GTHy5NNslSpVQEQ6382eOnXqmTcYMzMzdO7cGXPnzkVsbCzS09MRFhYGAPDy8kJ8fPwzBaxW\nrVrP/cQmhECbNm0wffp0nDx5EtWrV9cOFz58+DC6du2Kd955B02bNkWtWrVw4cKF526v0hyurq54\n//33sXnzZsyYMQPLli174XP5119/aX9PTU3F2bNndd5c3n77bWRmZmL58uWIiIgodMjly/Lw8MCh\nQ4d0lkVGRkKSpGfe7J7H3NwceXl5JR2vWCRJgpOTE0xMTPDf//4Xbm5uaN68OQCgbdu2AKDzGs7O\nzsaVK1fg6upaaJtEBCJCbm4uAMDBwUHn9fD0nsywYcPwyy+/4ODBg2jUqNEzbfn4+OC3337TWbZr\n1y64uLg8U3yep23btiAinddxcnIy7t2799xtMVZcNEohf39/tGzZEgMGDMAff/yBM2fOYMiQIcjK\nysL7778PAKhduzZcXFwwffp0nD9/HkeOHMGkSZO0/6kAYPXq1Vi5ciViY2Nx/fp17ddTT96kZsyY\nge3bt+Ojjz5CTEwM/v77b+zevRsjR45EVlZWgdl27NiBb775BtHR0bhx4wa2bduGmzdvatusV68e\nIiMjERkZiYsXLyIoKKjA8fNPe1GOx48fY9y4cThw4ACuXr2KU6dOYffu3YrebD/55BMcPnwYcXFx\nGDJkCGxtbdG/f3/t/dbW1hg4cCA++ugj1KpV65mvkApS0Cf/Fy2bPHkyoqOjMWnSJJw/fx67d+/G\n+PHjMWjQIDg7O7+wzyfc3Nxw584d/PXXX0hOTkZGRobidZXIycnRfqp/9OgR7t+/j5iYGJ1zJy5f\nvox169bh4sWLiI6OxpgxY7BlyxadIu7v749WrVrhww8/xOHDh3H+/HmMGjUKRIRBgwYBAA4ePIjl\ny5cjNjYWN27cwNGjR9GnTx+YmJjoDIL4t7y8PPTr1w/h4eHYvHkzKlWqhMTERCQmJuLx48fax02c\nOBHHjx/H559/jvPnz2Pt2rUIDQ3Fp59+WqTt7d+/P1xdXTF8+HCcPHkSsbGxGDRoEOrWrVvoHrlR\nM/xhlPLreUNunz4QTkR0584d6t+/P1WqVImsra3Jz8+PoqOjddY5fvw4eXl5kbW1NXl6etKRI0fI\nzMxMe8B469at9Nprr5G9vT1VqFCBGjduTD/88INOG0eOHKFOnTqRra0t2djYUMOGDZ87VPPQoUPk\n7+9PVapUISsrK6pbty7Nnz9fe/+DBw+oX79+VLFiRXJwcKBx48bRtGnTdA7eFjTk9nk5MjMzacCA\nAVSrVi2ysrKiqlWr0ttvv003b94s9Ll+MuR2z5492uHB3t7e2iG3T3syzPPfQ4MLUtAAhCNHjpAk\nSXTt2jXtsr/++oskSaLLly9rl+3atYu8vLzI0tKSqlSpQmPHjtUOUSUq+PWxfv16kiRJezsnJ4cG\nDhxI9vb2OkNu3dzcaPbs2Trrjhw5ktq3b6+9/cMPP5AQQifnv129elU7nPfpn6f/fhcuXCAvLy+y\nsbEhjUZD/v7+BQ5RvnfvHg0ZMoQqVapE9vb21K1bN0pISNDef+zYMfLz8yMHBweytLQkV1dXGjx4\n8AuHtl69evWZfE9+njwfT0RERJCnp6e2/W+++abI20uUPxS7Z8+epNFoqGrVqtSvX7/nvv6MmSAy\n3JX70tPTsXz5cty4cQNCCIwePRrVq1fHN998g6SkJFSpUgUTJ05UdDCLsZISERGBt956Czdu3ICD\ng4PacfRm2rRp2LZtG2JiYnT2SBkrCoO+cn744Qc0a9YMCxcuxIIFC1CjRg2EhYWhcePGWLRoETw8\nPLBt2zZFbRVlFFFJUqtfNfs21m3OyMjA1atXERISgkGDBukUDGPc5oiICCxdurTQgsGvL+PvtyT6\nNljRSE9Px7lz59C+fXsAgImJCaytrREVFYV27doBAPz8/HDixAlF7fEf2/j71Xff8+fPR506dWBu\nbo65c+carN8X0VffUVFR2gPUhuz3RYzxuS6t/ZZE3wabe+ru3bvQaDRYunQprl27hlq1amHo0KF4\n8OAB7OzsAOSPo3/w4IGhIrFyLjg4GMHBwWrHYKxMMdiehizLuHLlCrp06YJ58+bBwsJCO/TzacY4\nMyljjBkLgx0IT01Nxeeff47Q0FAA+eO3w8LCkJiYiODgYNjZ2SE1NRUhISHPTF8M5O9SPb1bFRgY\naIjYjDFmdDZv3qz93cPDo0jnChns6yk7OztUrlwZt27dgpOTE+Li4uDs7AxnZ2dERkaiV69eiIyM\nhJeXV4HrF7RhRZl0rKRoNBqkpaUZvF81++ZtLh99l7d+1exbzW12cnJ6qQ/dBr2exrBhw7B48WLk\n5uaiatWqGDNmDGRZxsKFC3HgwAE4Ojpi4sSJhozEGGOsCAxaNFxdXTFnzpxnlgcFBRkyBisCun0T\n2fGJoLqNIczMX7wCY8yo8ZX72DOICEg4DXnvDuD6ZWQ7u0JevQiiXVcIv24Qti+e0I8xZpy4aDAt\nys4CHTsI2rsDEAKi4xsQYz6FjX1lPDwfD9r3K+SgMRCe3hCd3oBw1t+1qhljpRMXDQZKvQ+KjAAd\n+g1wrQPp7XeB+k10hj8Lp5oQg8eCeg0GHdoNeVEIUM0ZUseeQOMWEDwtBWPlAheNcoyuXwbt2QGK\nPQ7xajtIn8yFqFbjuesIjS1E90BQlzdBUUch/7oB2LwKomMPiNb+EJZWBkrPGFMDF41yhuQ8IOYE\n5L3bgaRECP/ukN4eCVFBU6R2hKkZhLcfqFU74GIC5H07QDt+gvDpCNE+AKKyo562gDGmJi4a5QRl\npoOO7AXtDwdsbPOPVzR/DcL05V4CQgigrgdM6nqAku6A9odDnjEBoqFnfh/u9V/cCGOszOCiYeTo\nXiJofzjoj/0Q9ZtAGjFJb2/kwrEaRL+RoDcGgI7ugbzyK8DW7n8FysREL/0yxgyHi4YRIiLg8lnI\ne3YA5+MgfDpCCloIUbmKQfoXVtYQHXuC/AOA08ch790O+vkHCP8AiDadISrYGCQHY6zkcdEwIpSb\nCzp5FLRnO5DxGKJDD4hh4yEs1bmolZBMgOatYdK8NejaJdDeHZA/GwXRyhfCv8cLD7ozxkofLhpG\ngB6ngQ7uBh2IAKo6QQroBzTxyn/TLiWES22IEZNAqcmgAxGQ500BatWD1PGNZ4b3MsZKLy4aZRjd\nvgnatwN04jBE01aQPgiCqFlL7VjPJewqQ7w5GPR6IOjYAcgbvgdMTPKPe7zqy1OVMFbKcdEoY4gI\nOHs6/3jFtUsQ7bpBmrEUomLZmtpDWFhA+HYFte0CxJ/KP+6xdR1Eu24Qfl15qhLGSikuGmUEZWch\na/8hyOGb86f46NADYsynZf6TuRACaNQcJo2ag25d/99UJc28Ifx7gNzrgrIyDZ6LKqhzHIix0o6L\nRhkhL/kCOSYmkPqNBBo0NcpjAM9MVbJkNh48TgMMc52wpxDSqjkDY/8DYc8nKTL2NC4aZQD9cw34\n5yoqLNmERxmG/9RtaE+mKkH3QFUuVkNEMD+0G5lzp0AaH8QTMzL2FJ5lrgyg/TshfLtCmJqpHaVc\nEELAMiAQou8wyF9PAyWcVjsSY6UGF41Sjh4/AkUdhmjXVe0o5Y7Usi2k96dAXvkV5D/2qx2HsVKB\ni0YpR0f3QjTyKnOjo4yFqNsI0uQvQDt+ghy+KX/0GmPlGBeNUozkPFBkBIR/d7WjlGui+iuQps4H\nnfoL9OMSUF6e2pEYUw0XjdIs7iRgbQPUqqd2knJP2Nnn73Gk3IMcOguUmaF2JMZUwUWjFJP3h+dP\n8meEw2vLImFpBWns5xB29pAXfAZ6kKJ2JMYMjotGKUW3bwI3rkC0bKt2FPYUYWoKMWQchGcryHMm\n5/+dGCtHuGiUUnQgHKJtFwgzHmZb2gghIPV4G6JHf8gLPgVdiFc7EmMGw0WjFKKMdNCxQzzMtpST\nfDpAGjEJ8vK5oKgjasdhzCC4aJRC9Mc+iAZNIewd1I7CXkB4NIP0YQjkTasg/x7GQ3KZ0eOiUcqQ\nLOefAd6hh9pRmEKiZq38IblH94I2rQTJPCSXGS8uGqVNwinAwgKo3UDtJKwIRGVHSFPmgm5ehbx8\nHig7S+1IjOmFoqKRm5uL69ev49y5c7h+/Tpyc3P1navckvfv5GG2ZZSwtoE0YTqEmQXkr4NAaQ/V\njsRYiXvuLLfR0dH4/fffcebMGZiYmMDKygoZGRnIy8tDo0aN0KlTJ7Ro0cJQWY0e3b0FXL0I8f4U\ntaOwYhJmZsCIiUDYj5DnTYE0IRjCsZrasRgrMYUWjaCgIFSoUAFt2rTBqFGjYG9vr73v/v37SEhI\nwJ49exAWFoaZM2caJKyxowMRED4dIcwt1I7CXoKQJIje70C2d4Q8byqksf+BcKujdizGSkShRePd\nd99FzZo1C7zP3t4ebdq0QZs2bXD9+nW9hStPKDMD9OcBSEEL1Y7CSojk9zrIrjLkxTMgvTMeomlL\ntSMVih49BJnx5XXYixX6KimsYBT3cez56M8DQF0PiMpV1I7CSpDwbAWpYiXIS76ASOkHya+b2pEA\n/P+15m9cAcVFgeKigGuXkN7MGxj1idrRWCmn6EB4eHg4rl69CgC4cOECRo8ejbFjx+L8+fP6zFZu\nEBHowE5I/gFqR2F6INzqQvpkDmjPdshb14JkWZUclJUJOn0M8o9LIE8ZAXn5XCDtAaQe/SF99SPy\nrl0GnYtVJRsrOxTtj+7cuRP+/v4AgA0bNiAgIABWVlZYu3YtvvjiC70GLBfOxgCSBNRrrHYSpiei\nSnVIU+dDDp0JrF4IDB1vkCsxUtIdUGwUKO4EcPkc4FoHorEXpE49gao1dEbpWQx4D+mbVkEK+hpC\nMtF7NlY2KdrTSE9Ph7W1NTIyMnD16lV069YN/v7+uHXrlr7zlQvy/nCI9t15mK2RExpbSJNmgbKy\nIH8zHZT+qMT7oNxc0LlYyFtWIy9oDOS5nwDXL0Nq2xnSvNUw+WgWpM69IKo5P/N6M2vlC1hZgY7u\nK/FczHgo2tOoXLkyzp8/jxs3bqBBgwaQJAnp6emQJD438GVR0h3g8lmIdz9WOwozAGFhAWn0FNCm\nVfkjqyYEQ9g7vlSb9DAVdOYkEBsFOnsacKwO0cQL0vCJgIs7hML/p0IISP1GQl48C9SyDYSl9Uvl\nYsZJUdEYNGgQvv76a5iamuKjjz4CkH8OR+3atYvU2dixY2FtbQ0hBExMTDBnzhxs2bIF+/btQ8WK\nFQEA/fv3h6enZxE3o+yiyF0Qr3WAsLBUOwozECGZAG+/C+wJgzx3CqQPgiBecVO8PskycOPv///a\nKQq48w/QoGl+oeg/6qUuDSxcakM09ARF/AzRe0ix22HGS1HRaN68Ob777judZd7e3vD29i5SZ0II\nBAcHw8bGRmd5QEAAAgLK30FgysoC/bEX0mdfqR2FGZgQAqLzm5ArOUBeOA3SyEkQDZsV+njKTAcS\nYkCxJ/L3Kqys849NvDkYqNOwRI+PiN6DIU8fD/LtAuFQtcTaZcah0KKRmJioqIGqVZW/qIiowFlA\ny+vMoHQsEnBvwGcMl2NSy7agipUgL58H0WcopNc6aO+jxFuguBOg2CjgygWgVr38QvF6H4gqTnrL\nJOwqQ3TsAfplLcR7PASX6Sq0aIwfP15RA5s2bVLcmRACs2bNgiRJ6NChAzp27AgA2L17Nw4dOgR3\nd3cMGTIE1tbG/10qEYH2h0MKHK52FKYyUbcRpMlfQF4UAvmf68gwMUHeyT+A7Mz8ItG+OzDmMwhL\nK8Nl6vQm5GmjQRcTIOo0NFi/rPQTpOBj/oEDBxAXF4e+ffvC0dERSUlJ+Pnnn9G4cWP4+fkp7iwl\nJQWVKlXCw4cPMXPmTIwYMQJOTk7QaDQQQmDjxo1ISUnB6NGjn1k3Pj4e8fH/u0JaYGAg0tLSFPdd\nUszNzZGdnf3S7eTEn0bGqoXQfLVG8aipkuq7qNTqV82+1ehXTklGxk/fwdzZFaJJS5i41jboiLp/\nb3P2kb3IivgZNrOWKj6YXhL9GlJ5en09odFosHnzZu1tDw8PeHh4KF5fUdF4//338e2338Lc3Fy7\nLCsrCxMmTMDy5cuLGDnfli1bYGVlpXMsIykpCfPmzcOXX36pqA01hvxqNJoSKVZ5y+ZA1G+S/ynS\nwH0XlVr9qtk3b3P+3rA8ZzJE++6QWrc3WL+GVFqea0Nycnq5rzYVfXwgIty9e1dnWVJSEuQinNma\nlZWFzMxMAEBmZiZiY2PxyiuvIDU1VfuYY8eO4ZVXXlHcZllFyUnAuTgIPf5HZOxlPRmCS1vXgbIy\n1Y7DSglFo6e6d++OGTNmwM/PDw4ODrh37x4OHjyI7t2Vf0p+8OABFixYACEE8vLy0LZtWzRt2hSh\noaG4evUqhBBwdHTEqFGjir0xZQUdjIBo3Z7HwbNST7jXh6jrAfptK8QbA9SOw0oBRV9PAcDp06fx\n559/IiUlBXZ2dnjttddUP5+iLH49RdlZkKeOhPTJXIhqNQzad3Hx1wflo+/C+qXkJMizPoQUtEgv\n163n59qwXvbrKcVzIXt6eqpeJIwBnTgMuNQucsFgTC2isiNEu26gbesgRkxSOw5TmaKikZubi8jI\nSFy9elV7XOKJcePG6SWYMdIOs+01WO0ojBWJ6PoW5KAxoCsXINzqqh2HqUjRgfDQ0FDs3LkTlpaW\nqFq1qs4PK4LLZ4HMTMCj8DN/GSuNhKUVRK9BkDetLLcn47J8ivY0YmJiEBoaigoVKug7j1Gj/Tsh\n2r+u1zHvjOmLaN0etD8cdOIwxKu+asdhKlH07uXg4ICcnBx9ZzFqlJoMij8F8dQ0EYyVJUKSIPUb\nkT8ENztL7ThMJYr2NHx9fbFgwQJ069YNdnZ2Ovc1atRIL8GMDR3cDfGqL4Q1762xskvUbQS41Abt\n2Q7RPVDtOEwFiorG7t27AeRfte9pQgiEhoaWfCojQzk5oEO/Qfp4ttpRGHtpUp+hkL/4COTTEcLO\nXu04zMAUFY0lS5boO4dRo6gjQA0XiOrGf7Y7M37CsRqETydQ2I8QQyeoHYcZGB+RNQDaHw7Jv/xd\nL4QZL9E9EHQmGnTtstpRmIEp2tNIT0/Hli1bkJCQgLS0NJ0hd8uWLdNbOGNAf58H0h4ATbzUjsJY\niRFW1hBv9Ie8eSWkj7/g69uXI4r2NFauXIkrV66gT58+ePToEYYPHw4HB4cizT1VXtH+cAj/7vmX\n+GTMiIiU7l42AAAgAElEQVQ2nYD0x8CpP9WOwgxIUdGIjY3FRx99hJYtW0KSJLRs2RITJ07E4cOH\n9Z2vTKMHKaC4KAifTmpHYazECckEUuAIyD+vAfGQ/HJD8dToT66mZ2lpifT0dNjZ2eHOnTt6DVfW\n0aHfILzaQFSwefGDGSuDRIOmgFNN0P5f1Y7CDERR0XBxcUFCQgIAoH79+li5ciVWrlyJ6tWr6zVc\nWUa5OfnnZhThIkuMlUVSn2Gg3VtBD1Nf/GBW5ikqGu+99x4cHR0BAMOGDYOZmRkeP37MkxU+B0X/\nCVSrAeHsqnYUxvRKVKsB4e0H2v6T2lGYASgaPfX0xIQVK1Ys8BreTBftD4fUuZfaMRgzCBHwNuSg\n0aD2r/MHJSOnaE/jyJEjuHnzJoD8Cx8FBwcjJCQE//zzj17DlVV07RKQcg9o2krtKIwZhKhgAxHQ\nD/LmVTwLrpFTVDQ2bdoEG5v8g7nr1q2Du7s7GjRogJUrV+o1XFlF+8Ih/F6HMOFhtqz8EL5dgdT7\nQGyU2lGYHikqGg8fPoSdnR2ys7Nx/vx59O/fH3369MHVq1f1HK/sobQHoNPHINp0VjsKYwYlTE0h\n9R0OectqUC4PwTVWioqGra0t7ty5g9OnT8Pd3R1mZmY8VXoh6NBvEM29ITS2akdhzOBE4xaAY1VQ\n5C61ozA9UVQ03nrrLUyZMgXLli3DG2+8AQCIi4uDi4uLXsOVNZSXlz/MlueZYuWY1Hc4KGIL6NFD\ntaMwPVA0esrPzw+tW7cGAFhYWAAA6tSpgw8//FB/ycqi038BlatA1HRXOwljqhFONSG8fEC/boTo\nP0rtOKyEKdrTkGUZZmZmMDMzgyzLkGUZGo0Gtrb8FczT5P3hvJfBGADRYwDo+CHQ7RtqR2ElTNGe\nRv/+/Qu9b9OmTSUWpiyjm1eAu3cgmnmrHYUx1QmNLUS3PpC3/ACT8dPUjsNKkKKi8e+r86WkpCAs\nLAxeXjzd9xO0fydEu64QpoqeUsaMnvDvDjq4C3QmGqJRc7XjsBKi6OspR0dHnZ+6deti3Lhx2L59\nu77zlQn06CHo5FEI3y5qR2Gs1BCmZpD6Dss/4S8vT+04rIQU+8p96enpePiQR0cAAB3ZA9HkVQhb\nO7WjMFa6NG0FVKwEOvyb2klYCVH0XcrixYt1rsyVlZWFs2fPom3btnoLVlaQnAeK3AXpvSlqR2Gs\n1BFC5F9zY+E00Ku+ENZ8mYCyTlHRqFatms5tCwsLdOrUCU2aNNFLqDIl5gRgawfhVkftJIyVSuIV\nNwjPVqCdmyH6Dlc7DntJiopG37599Z2jzOJhtoy9mOg1EHLwOJBvV4iqTmrHYS9B8VCfAwcO4NCh\nQ7h//z7s7e3h6+uL9u3b6zNbqUf/XAdu34Dw8lE7CmOlmrCtBNG5N+Sf18Bk7GeqZiEi4NYNUPxJ\n5LX2AzSVVM1T1igqGlu3bsXBgwfRo0cPODg44N69e9ixYwdSUlLQu3dvfWcstehAOIRvFwhTM7Wj\nMFbqiY49QNN2g87FQtQ37FfblJ0FnI8DxUaB4qIAIsChKjL/uQYM45ktikJR0di3bx+mT5+uvXof\nADRt2hTBwcHltmhQ+iPQicOQQpaoHYWxMkGYmUPqMxTyplWQgr6GkPR76QBKTgLFnQDFRgEX44FX\n3CAat4T0QRDgVBPISEfuZ6MgUpMh7CrrNYsxUVQ0srKynpkyRKPRIDs7Wy+hygI6ug+iUQsIO3u1\nozBWdjR/Ddj3a/7/n7Yle/kAyssD/j7/v0LxIAWiUXMIbz+IEZMgKvxr5JZ1BZi+1h45B3+D6Dmg\nRLMYM0VFw9PTE99++y0GDhwIBwcHJCUlYcOGDWjatKm+85VKJMugAzshjZikdhTGyhTtENzQWSCv\nNhBW1i/VHj16CDoTDcRFgeJPAfYO+XsTg8cCbnVeuDdj0eVNZM+cBOrel79mVkhR0Rg+fDhWr16N\njz/+GHl5eTA1NYW3tzeGDy/a8LmxY8fC2toaQgiYmJhgzpw5ePToEb755hskJSWhSpUqmDhxIqyt\nX+6FpHdnTgLWNkCtemonYazMEa51IBo2A+3aAtH7nSKtS0TAzaug2BP5xyb+uQbUawzRxAvSW0Mh\n7B2K1J6JsyvgVBMUdRTC269I65ZXioqGtbU1xo0bhzFjxiAtLQ0ajQaSVPSTyYUQCA4O1l46FgDC\nwsLQuHFj9OzZE2FhYdi2bRsGDhxY5LYNKX+YbXedEx4ZY8qJ3oMhTx8PatsF0Gie+1jKygTOxoDi\nokBxJwFTU4jGXpAC3gbqNYIwM3+pLJJ/d8gRPwNcNBRR/M6fnp6Ov//+Gzdu3EBCQgLOnDmDM2fO\nFKkzInrmovNRUVFo164dgPzrdpw4caJIbRpa3q3rwPW/IVry2fCMFZewq5w/muqXtQXeT0l3IO8P\nR96i6ZA/fgfy3h1AVSdIE2dAmv0dpP6j8o9XvGTBAAA0aQk8TAVdufDybZUDivY0IiMjsWrVKlha\nWsLc/H9/JCHEMzPgPo8QArNmzYIkSejYsSM6dOiABw8ewM4uf84mOzs7PHjwoIibYFhZv4VBtO1c\nMi9Wxsox0elNyNNGI/dcHKiqM3D57P+GxD56mL830aYT8O5kCOsK+sshmUC0fx20PxyCj1O+kKKi\nsWHDBkyaNAnNmjV7qc5mzpyJSpUq4eHDh5g1axacnJ49M7Q0f+VDjx8h58heiGmL1I7CWJknLCwg\ner+Dx99Mzz+PwrF6fqEYNgFwqQ1RjK/Ai52lTSfIn40CPUyBsOWT/Z5HUdGQZblERkpVqpT/x7C1\ntUXLli1x6dIl2NnZITU1VftvxYoVC1w3Pj4e8fHx2tuBgYHQvOC70JKWvmklJB9/WLq4GbTfJ8zN\nzQ2+zWr2q2bfvM2GQR26A45VQDXdIVUy/LkS2m3WaJDu7Qfpr0hYvjXEcP2qZPPmzdrfPTw84OHh\noXhdQf8+yFCA8PBwZGRk4K233irWAXAg/1wPIoKlpSUyMzMxe/Zs9OnTB3FxcbCxsUGvXr0QFhaG\nx48fKz4QfuvWrWJlKQ66fA7ysrmw/WoNHr/wGdMPjUaDtLS0ctOvmn3zNht/v//um25ehbxoOqQ5\nK/V+MTU1t7mgb3iKotBnZvTo0Tq3U1NTsWPHDp2RTwCwbNkyRR09ePAACxYsgBACeXl5aNu2LZo2\nbQp3d3csXLgQBw4cgKOjIyZOnFiMzdAvysuDvH4pRN9hkGw0gEp/bMaY/ghnV6CKE+jUnzzQ5TkK\nLRoffPBBiXZUpUoVLFiw4JnlNjY2CAoKKtG+Shrt2wFoKkK86qt2FMaYHkn+AZD3bge4aBSq0KLR\nsGFD7e9//vknWrdu/cxj/vrrL/2kKkUoOQm062dIUxeU6oP0jLES4NkK2LwSdP0yRE13tdOUSooO\nUCxfvrzA5d99912JhimN5I3fQ/j34GsAMFYOCBMTiHbdQPvD1Y5Saj23aCQmJiIxMRGyLOPu3bva\n24mJiYiNjdU5Z8MY0em/gNs3Ibq+pXYUxpiBiLZdQKf+AqU9VDtKqfTcIQLjx4/X/v7vYxx2dnZG\nfUU/ysyAvOF7SMM+hDDjicwYKy+ExhbC0xt05HeIbn3UjlPqPLdobNq0CQAQHByMkJAQgwQqLejX\nDRB1Gxv8YjGMMfUJ/wDIS2eDOr8JYaLf636UNYqOaZS7gnHjCujPAxB9h6kdhTGmAuHiDtg7AqeP\nqR2l1DHcefplBMl5kH9cAtFrEIStndpxGGMqEf4BkPmA+DO4aPwLHfodMDGBaNNJ7SiMMRWJZq2B\nu7dAN6+oHaVU4aLxFHqQAtr+X0gDRxt0sjTGWOkjTE0h2nUF7d+pdpRSpcjvjLIs6/wYE9q8CsKn\nY/50Aoyxck/4dgGdPAp6zFMHPaFoVq6///4bq1atwvXr15Gdna1z35MRVmUdJZwCXT4HKUT59UEY\nY8ZN2FaCaNISdGQvRJc31Y5TKigqGkuWLEGLFi0wevRoWFhY6DuTwVFONuT/Loc04D0IC0u14zDG\nShHhHwD5u/mgTm9ASDz8VlHRuHfvHvr372+0cy9RxBbA2RWiSUu1ozDGShnhVhewtQNio/Lnpirn\nFB3TaNmyJWJiYvSdRRV0+yYoMgJSv3fVjsIYK6WEf3cefvv/FO1p5OTk4Msvv0T9+vW11/N+Yty4\ncXoJZghEBPm/yyC694Owd1A7DmOslBIt2oB+XgO6dR3CqabacVSlqGg4OzvD2dlZ31kMjv48AGQ8\nhmjfXe0ojLFSTJiZ5U9keGAnxMDRL17BiCkqGsY4MSE9egj6ZQ2kcUE8twxj7IVEuy6Qgz8AvTkE\nwrqC2nFUU2jRSEhI0F6I6cyZM4U20KhRo5JPZQC0dR1ECx8ItzpqR2GMlQHCrjKERzPQH3shOvZU\nO45qCi0aq1atwldffQWg8OuACyEQGlr2zmugiwmguChIIUvUjsIYK0OEfwDkH74B+fcot7NGFFo0\nnhQMIP88DWNBuTmQ1y+FCBxZrncxGWPF4F4fsLQG4qOBxl5qp1FFuSuVtGcHYO8A4eWjdhTGWBkj\nhCj3s98WWjQ+/fRT/Pnnn8jNzS3w/tzcXPzxxx/47LPP9BaupFHSHdDvWyENeN9oT1RkjOmXeLUt\ncO0y6M4/akdRRaFfT40dOxabNm3CypUr4ebmBicnJ1haWiIzMxO3b9/G33//jUaNGmHMmDGGzFts\nRAR5w/cQHXtCOFZTOw5jrIwSZuYQbTqBIiMg3i5/JwUXWjScnZ3x0UcfITU1FbGxsbh+/TrS0tJQ\noUIF+Pr6Yty4cahYsaIhs76c6D+Be4kQYz5VOwljrIwTft0gz/gQ1GsghKW12nEM6oXnadjZ2cHX\n19cQWfSGMtIhb1wB6d2PIEzN1I7DGCvjhL0jUL9x/mWhy9nJweXiQDht/y+EhydE3bJ5TgljrPSR\n/ANA+3eCjOy6Qi9i9EWDrl0CHT8E8dYwtaMwxoxJHQ/A1BQ4a5yTuRbGqIsGyXmQf1wK8dZQCI2t\n2nEYY0akvA6/Ne6icWAXYGEB8Zq/2lEYY0ZIvNoO+Ps8KOmO2lEMptAD4fv371fUgL9/6XxDptRk\nUPhGSJ/M4XMyGGN6ISwsIHw65M9+GzhC7TgGUWjROHz4sPZ3IsL58+dhZ2eHypUrIzk5Gampqahf\nv37pLRobV0L4doWo/oraURhjRkz4vQ559iRQz4Hl4nLRhRaN4OBg7e+rV69Gy5Yt0b37/4aWRURE\n4M6d0rlLRnEnQdcvQxr+odpRGGNGTjhUBWo3BP0VCdGuq9px9E7RMY3Dhw+jW7duOsu6du2qszdS\nWlBWFuSfludPFWJuoXYcxlg5kD/8NhxEpHYUvVNUNOzs7BAVFaWzLCoqCra2pW9EEu3cBOFWF6JR\nc7WjMMbKi/pN8v89H6duDgNQdOW+YcOG4auvvsKOHTtQuXJl3Lt3Dzdv3sSkSZP0na9I6J/roMO/\nQwr+Vu0ojLFyRAgB0b475P3hMHlSQIyUoqLRpEkTLF68GKdPn8b9+/fRvHlzNG/eHBqNRt/5FCNZ\nzr9Oxhv9Iezs1Y7DGCtnhLcfaPt6UPJdiMpV1I6jN4qKBgDY2tqWyBxUsixj6tSpqFy5MqZMmYIt\nW7Zg37592skP+/fvD09PzyK3S3/sA3JzysWBKMZY6SMsrSC8/UEHIiD6DFU7jt4UWjSmTZum6PyG\nkJCQInUYEREBZ2dnZGRkaJcFBAQgICCgSO08jdIegLaugzRhOoRkUux2GGPsZYj2r0OeMxn0Rn+j\nHYhTaNHQx/kXycnJOHXqFHr37o3w8P+dev+yIw5oyw8QrdpBuLi/bETGGCs2UaU64FYXdOwgRNvO\nasfRi0KLhp+fX4l3tnbtWgwePBjp6ek6y3fv3o1Dhw7B3d0dQ4YMgbW18vnp6Xwc6FwspBmhJR2X\nMcaKTPIPgPzLWlCbTkY5G4XiYxoHDhzAoUOHcP/+fdjb28PX1xft27dX3FF0dDQqVqwIV1dXxMfH\na5d36dIFffr0gRACGzduxNq1azF69GhFbVJODuT1yyC9PbLcXQiFMVZKNfQENq4ALiYAdT3UTlPi\nFBWNrVu34uDBg+jRowccHBxw79497NixAykpKejdu7eijs6dO4eoqCicOnUK2dnZyMjIQGhoKMaN\nG6d9TIcOHTBv3rwC14+Pj9cpNoGBgTCP3Ilcp1dQwbezwSq6ubm5aqPG1Oqbt7l89F3e+tVn31nd\n3kLu4d2o0MLboP0qtXnzZu3vHh4e8PBQXtwEKTigMHbsWEyfPh2Ojo7aZUlJSQgODsbSpUuLGBdI\nSEjAr7/+iilTpiA1NRV2dnYAgPDwcFy+fBkTJkxQ1M6Nfu0hfb7QoMPbNBoN0tLSDNZfaeibt7l8\n9F3e+tVn35SZDnnqu5CmLYKwdzBYv0o4OTm91PqK9jSysrKeOftbo9EgOzv7pToHgPXr1+Pq1asQ\nQsDR0RGjRo1SvK7o+pZRj4dmjJVNwtIaolU70MHdEG8OUjtOiVJUNDw9PfHtt99i4MCBcHBwQFJS\nEjZs2ICmTZsWq9OGDRuiYcOGAKDz9VRRiQ5vFHtdxhjTJ9G+O+T5U0EBgRBm5mrHKTGKisbw4cOx\nevVqfPzxx8jLy4OJiQlat26N4cOH6zvfcwlTxcfxGWPMoES1GkDNWqATR4zqQnCK3nWtra0xbtw4\njBkzBmlpadBoNJAko77oH2OMvTTJPwDyjg2g1u2NZvitonf+mzdvIjU1FZIkwcLCAj///DO2bNmC\nrKwsfedjjLGyq1ELIP0R8Pd5tZOUGEVFY9GiRdoT8tatW4ezZ8/i4sWL+P777/UajjHGyjIhSRDt\nu4P2h7/4wWWEoq+n7t69CycnJxARjh8/jq+//hrm5uYvdRCbMcbKA+HTAXL4RlDqfaOYgVvRnoa5\nuTkyMjJw6dIlODg4wNbWFmZmZsjJydF3PsYYK9OEtQ3Eq76gQ7vVjlIiFO1p+Pj4YMaMGcjIyEDX\nrvlTj1+5cgVVqvA5Eowx9iKifXfIXweBXu8LYWqmdpyXoqhoDB06FDExMTAxMUGjRo0A5F+p6p13\n3tFrOMYYMwbCqSbgVBN08g+IVu3UjvNSFJ/o8O8T+dzdeRpyxhhTSvLvDnnXL0AZLxp8sgVjjBlC\nk5bAgxTQ1YtqJ3kpXDQYY8wAhGQC0f71Mj/8losGY4wZiGjTCRRzHPKDFLWjFFuxisaZM2eQkJBQ\n0lkYY8yoiQoaiBY+yN6/U+0oxaaoaAQHB+PcuXMAgLCwMCxatAiLFi3C1q1b9RqOMcaMjejQA1m7\nt4Lu/KN2lGJRVDRu3LiBunXrAgD27duH4OBgzJ49G3v27NFrOMYYMzaihgss+42AvHgG6NFDteMU\nmaKi8eTifnfu3AEAODs7w8HBAY8fP9ZfMsYYM1IW/t0hmrWGvPQLUBmbWUNR0ahXrx5Wr16NH3/8\nES1btgSQX0DUvMYtY4yVZaL3EEBTEfRjKBRcdbvUUFQ0xo4dC2tra7i4uCAwMBAAcOvWLbz++ut6\nDccYY8ZKSBKk4ZNAt26Adm5WO45iis4I12g0GDBggM6y5s2b6yUQY4yVF8LCAtK4zyHPmQy5SnVI\nr/qqHemFFO1p5OTkYMOGDRg3bpx2vqmYmBjs3m0cszYyxphahJ09pA8+B21cAbp8Tu04L6SoaKxd\nuxY3btzA+PHjtZcsfOWVV/D777/rNRxjjJUHwtkN0rAJkJfNASXdUTvOcykqGsePH8f48eNRt25d\nbdGwt7fH/fv39RqOMcbKC9HYC+L1vpAXzwSlP1I7TqEUFQ1TU1PIsqyz7OHDhzx6ijHGSpDkHwDR\n0BPy8nmg3Fy14xRIUdHw9vZGaGgo7t69CwBISUnBqlWr8Nprr+k1HGOMlTcicDhgagb6aXmpHIqr\nqGgMGDAAVapUwUcffYT09HSMHz8elSpVQt++ffWdjzHGyhUhmUAa9THoygXQnjC14zxD0ZBbU1NT\nDB06FEOHDtV+LfXk2AZjjLGSJSytIX0QBHnOJyDH6hDNvNWOpKVoT+PmzZtITU0FAJibm2PLli3Y\nsmULsrKy9BqOMcbKK2HvCGnsZ5DXhYKuXVI7jpaiorFo0SKkp6cDANatW4ezZ8/i4sWL+P777/Ua\njjHGyjPhWgfS4LGQQ2eD7iepHQeAwqJx9+5dODk5gYhw/PhxTJw4EZMmTUJMTIy+8zHGWLkmmreG\n6PgG5MWzQJnpasdRVjTMzc2RkZGBS5cuwcHBAba2tjAzM0NOGZudkTHGyiLRuReEWx3I338JkvNU\nzaKoaPj4+GDGjBlYsmQJ/Pz8AABXrlxBlSpV9JmNMcYYACEExID3gdwc0ObVqmZRNHpq6NChiImJ\ngYmJCRo1agQgfyOezEPFGGNMv4SpKaT3p0Ce8wnkAzshte+uSg5FRQMAmjZtqnPb3d29xMMwxhgr\nnLC2gTR+GuR5U0AO1SAatzB4BkVFY9q0aYWelxESElKigRhjjBVOOFaD9P5UyEu/gDRpBoSzm0H7\nV1Q0/P39dW6npqbiwIEDaNu2rV5CMcYYK5yo3QCi30jIi2dB+uxLiIqVDNa3oqLx5OD307y9vbF0\n6VL06dOnpDMxxhh7AalVO8hJtyGHzoL08RcQFhaG6be4K9rb2+PatWtFXk+WZUyZMgXz5s0DADx6\n9AizZs3ChAkTMHv2bO1JhIwxxp5PdO8HUa0G5NULQf+aiVxfFO1p7N+/X+d2dnY2jh07hrp16xa5\nw4iICNSoUQMZGRkAgLCwMDRu3Bg9e/ZEWFgYtm3bhoEDBxa5XcYYK2+EEMCQD0BfB4G2/Qjxlv5H\ntCra0zh8+LDOz+nTp1GvXj2MHz++SJ0lJyfj1KlT6NChg3ZZVFQU2rVrByD/a7ATJ04UqU3GGCvP\nhJkZpDGfgaL/gHxY/1dTVbSnERwcXCKdrV27FoMHD9b5CurBgwews7MDANjZ2eHBgwcl0hdjjJUX\nQmObPyvu/E9BDlUhGjR98UrFpPg8jdu3b+Po0aO4f/8+7O3t4ePjg+rVqyvuKDo6GhUrVoSrqyvi\n4+MLfVxhQ3vj4+N11gsMDFTlyoHm5uaqXbFQrb55m8tH3+WtXzX71ku/mgbI+XA60r+dgQrTvoFJ\njZqFPnTz5s3a3z08PODh4aG4G0VFIyoqCosXL0bz5s3h6OiIW7duYerUqfjggw/g5eWlqKNz584h\nKioKp06dQnZ2NjIyMrB48WLY2dkhNTVV+2/FihULXL+gDUtLS1PUd0nSaDSq9Ktm37zN5aPv8tav\nmn3rrd+a7sCbg5E2dwqkT7+E0NgW2HdgYGCxu1BUNDZs2IDJkydrpxAB8j/5r169WnHRGDBgAAYM\nGAAASEhIwK+//ooPPvgA69evR2RkJHr16oXIyEjF7THGGHuW5NMRcuItyEtnQ5o0E8LMvGTbV/Kg\n+/fvo0GDBjrL6tevj+Tk5JcO0KtXL8TFxWHChAk4c+YMevXq9dJtMsZYeSZ6DYKoaA9as7jErzOu\naE/D1dUVv/76q84benh4OFxdXYvVacOGDdGwYUMAgI2NDYKCgorVDmOMsWcJSQKGfwj5y/8Av26E\neKN/ibWtqGiMHDkS8+bNw65du1C5cmUkJyfD3NwcU6ZMKbEgjDHGSo4wt4A07j+Qv5gMuUp1SN5+\nJdKuoqJRo0YNLFy4EBcuXEBKSgrs7e1Ru3ZtmJoqHnzFGGPMwIRtpfyhuF99DnKoAlG74Uu3qfhd\n38TE5JnjGowxxko3UcMF0vCJkJfPg/TJXMDJ6aXae27ReN6U6E/w1OiMMVa6iUbNIQL6QV48A1i1\n/aXaem7R+PeU6KtWrcKIESNeqkPGGGOGJ/m9Djn98Uu389yi8e8p0deuXVvgNOmMMcZKP+n1vi/f\nRgnkYIwxVk5w0WCMMabYc7+eOnPmjM5tWZafWfb01CKMMcaM23OLxrJly3Ru29jY6CwTQiA0NFQ/\nyRhjjJU6zy0aS5YsMVQOxhhjZQAf02CMMaYYFw3GGGOKcdFgjDGmGBcNxhhjinHRYIwxphgXDcYY\nY4px0WCMMaYYFw3GGGOKcdFgjDGmGBcNxhhjinHRYIwxphgXDcYYY4px0WCMMaYYFw3GGGOKcdFg\njDGmGBcNxhhjinHRYIwxphgXDcYYY4px0WCMMaYYFw3GGGOKcdFgjDGmGBcNxhhjinHRYIwxphgX\nDcYYY4qZGqqjnJwcBAcHIzc3F7m5ufDy8sKAAQOwZcsW7Nu3DxUrVgQA9O/fH56enoaKxRhjrAgM\nVjTMzMwQHBwMCwsLyLKMoKAgnDt3DgAQEBCAgIAAQ0VhjDFWTAb9esrCwgJA/l6HLMuwsbEBABCR\nIWMwxhgrJoPtaQCALMuYOnUqEhMT0alTJzg7OwMAdu/ejUOHDsHd3R1DhgyBtbW1IWMxxhhTyKB7\nGpIkYf78+Vi2bBnOnj2LhIQEdOnSBaGhoViwYAHs7Oywdu1aQ0ZijDFWBIJU+m7o559/hoWFBXr0\n6KFdlpSUhHnz5uHLL7985vHx8fGIj4/X3g4MDDRITsYYMzabN2/W/u7h4QEPDw/F6xpsT+Phw4dI\nT08HAGRnZyMuLg6urq5ITU3VPubYsWN45ZVXClzfw8MDgYGB2p+nN9qQ1OpXzb55m8tH3+WtXzX7\nVnubn34vLUrBAAx4TCM1NRVLliwBEYGI0LZtWzRu3BihoaG4evUqhBBwdHTEqFGjDBWJMcZYERms\naNSsWRPz5s17Zvm4ceMMFYExxthLMpk+ffp0tUMUV5UqVcpVv2r2zdtcPvoub/2q2XdZ3WbVDoQz\nxhgre3juKcYYY4px0WCMMaZYqT+mMWTIELz55psG669fv36IiorCnj17sHfvXjRr1qzQM9QTEhKw\natUqtGnTpkT6TUxMxKuvvgog/+z5kSNH4ty5cyXSvhLHjx/HpEmT4OPjA41Go9e+SsP2AoZ/fRW1\n/+votTAAAAsySURBVJCQENSsWROVKlV66b4M+ff9t61bt2LlypXYu3cv9u3bBzc3N9jb2xuk7/v3\n72Px4sXYvHkzdu3ahcTERDRu3BiSVPBn5oiICLi4uMDExKTYffbr1w+ZmZlo2rQpAODXX39FXFwc\nGjZsWOw2lfYbFRWF3bt3Y9++fcjKykKdOnUghCixPgw6jUhxlOTGKmFpaVngKK/ClFQ+CwsL3Lhx\nAzk5OTAzM0NsbCwcHByK1IYsy4X+R1Dijz/+QPPmzXH06FH07dtXr/2WxPaWBEO/vtTsv7h/35d1\n4cIFnDp1CvPnz4eJiQkePXqE3Nxcg/X/5ZdfokuXLmjXrh2ICN999x02bNiAQYMGFfj4nTt3wtfX\nF+bm5sXu09TUFMePH8ebb76pnWPPEJ5+/3r48CEWLVqE9PT0Ej0ZutQXDQDIysrC/Pnz8fjxY+Tl\n5aFfv37w8vJCUlISvvjiC9SvXx8XLlyAvb09PvnkE5iZmRW7r4LGBciyjJ9++gkJCQnIyclBly5d\n0LFjRwBAeno65s6dizt37qBRo0YYOXJksftu1qwZoqOj0apVKxw5cgQ+Pj44e/YsAODSpUtYs2YN\ncnJyYG5ujjFjxqB69eqIjIzE8ePHkZmZCSJCcHBwsfrOzMzExYsXERISgtmzZ6Nv375ISEjApk2b\nYGVl9cz2DRkyBB07dsSZM2cwYsQI1KtXzyDbGxwcjOHDh8PFxQUAMG3aNIwcORI1a9Ys1nYTERIS\nErBjxw5MnToVALB69Wq4u7ujXbt2GDt2LNq1a4eTJ09ClmVMnDgRTk5OxeqrOP2XlML+voX1Gx0d\njR9//BGWlpaoW7cuEhMTtY8rqtTUVGg0Gu0n9ydvon///TfWrVuHrKwsaDQajBkzBnZ2dggJCYGL\niwsSEhIgyzLef/991K5du1h9nzlzBubm5trnUgiBd955B+PGjUNgYCA2btyImJgYSJKEDh06gIiQ\nkpKCkJAQaDQaTJs2rVj9mpiYoEOHDggPD8fbb7+tc19SUhKWLVuGtLQ02NraYsyYMbCyssLkyZOx\nZMkSAPnveR9++CGWLFlS7A+Ctra2eO+99/Dpp58iMDDwue9jYWFhOHLkCCRJgqenJwYMGFBou2Xi\nmIaZmRkmT56MuXPnYtq0aVi3bp32vjt37qBbt2746quvYG1tjWPHjr1UX9n/1965hUTVtXH8N+Mh\nHUNBTKREchQp0/FUmZrmodCKii4KuqnQIKiLArWJushOHgMJ1C40jcKyC2+KIjGVPEwiCSKeMGTK\ns44ReRp1dOa7iNlffjq9OmOvxrd/V+69tuu/nrXWXs/az9qz9twcSqWSa9euCduZVFdXI5PJSE9P\nJyMjg6qqKjQaDQA9PT0kJSWRm5vL8PCw2foSiYTw8HAaGhrQ6XT09vYuulHc3d25c+cOWVlZnD59\nmufPnwtparWalJQUsx0GwKdPnwgICMDFxQVHR0fUavVv7ZudncXHx4fs7GyzHIa59sbFxVFTUwPA\n0NAQOp3ObIfxv+UxhZOTE1lZWRw6dIhXr15ZrLVa/bXAVPsup6vT6SgsLOTmzZtkZGQwPj5uUfkU\nCgVjY2NcvXqVoqIiOjo6WFhYoKSkhOTkZDIyMoiOjubFixfC/8zNzZGdnU1SUhKPHj0yW7uvrw+5\nXL7onL29PS4uLrx//56xsTEePHhATk4OkZGRHD58GGdnZ27dumW2w4Cf9ZqQkEBdXR1arXZRWnFx\nMdHR0eTk5LB//36Ki4uRyWRs376djo4OAJqbmwkMDLQocgA/X63V6/WMj4+bHMdaWlpobm4mIyOD\n7OxsTpw48ds8/4onDYDS0lK6urqQSCR8//6dHz9+AD8rxThoyOVyRkdHLdLZtGnTkvBUa2srvb29\nNDY2AqDVahkaGsLa2hpvb2+2bNkCQEREBF1dXYSGhpql7eHhgUajoaGhgeDg4EVpU1NT5OXlMTQ0\nhEQiYWFhQUhTKBQW7wxcX18vfNMkLCyM+vp6QkJCTNonlUrNttOIOfbu27eP8vJyzp49S01NDdHR\n0RaVYSUY113kcjlNTU1/XO9PYKp9l2NgYAA3NzchXBgREUFVVZXZ2saQSWdnJ21tbTx8+JCTJ0/S\n29vLvXv3hF0ifl23iYiIAGDnzp3MzMwwPT295rtfGzdMNTpEBwcHYO0+1WBnZ8eBAwd4+/btolBX\nd3c3qampAERFRVFaWgr8bBeVSoWvry8qlYr4+Pg1KYcRU+NYa2srMTExQoTGWA+m2PBOw2AwUFtb\ny8TEBFlZWUilUi5fvoxOpwNYFIqSSqXC+bUuQ2JiIgqFYtH5jo6OJTMwS2eMISEhPHv2jLS0NCYm\nJoTzL1++xM/Pj5SUFDQaDbdv3xbSjN8pMZfJyUna29vp6+tDIpGg1+uRSCRLBnL4r322trZrMjte\nrb22trb4+/vT1NTEx48fV7X+ZAorKyv0er1wPDc3tyjd2MekUukiZ71W/JO+pZhq3z179pjUXeuf\nb0kkEnx9ffH19cXDw4OKigo8PDy4e/euyet/LYu5fc3d3V0YJI1otVrGxsaEydCf5MiRIyiVSmJi\nYoRzpmzZvXs3ZWVlTE5Oolar8fPzs1h/ZGQEqVSKo6OjyXGspaVlVXn+FeEprVaLk5MTUqmUtrY2\nxsbGhLS17tzL5RcQEEBFRYUwYAwNDQk32OfPn9FoNOj1elQqFTt27LBINzY2llOnTi3ZuHF6elp4\n28QYnlkrGhsbiYqKIj8/n7y8PAoKCnB1daWzs5Oenp5l7bO03i2xNzY2lpKSEry9vS2efRr3POvv\n72d+fp6pqSna2tosynOj6ZtqX71ez8DAwBLdrVu3Mjo6KtxnKpXKIv3BwUGGh4eF4y9fvuDu7s74\n+Djd3d0ALCws0N/fL1xj1Ozq6sLBwQF7e3uztP39/Zmbm6O2thb4uT759OlToqOjCQwMpLKyUnCc\nk5OTAMhkMmFzVXMx9u/NmzcTFhZGdXW1kObj40N9fT0AdXV1wj1lZ2eHXC7nyZMnBAcHm+Uof70v\nx8fHKSoq4vDhw8Dy49js7CwKhYKamhphTDPWgyk29JOGXq/HxsaGyMhIMjMzSU1NRS6Xs23bNuGa\ntY4FL5dfXFwcGo0GpVKJwWDAyclJeLz09vbm8ePHjIyMsGvXLiGUYa6us7MzCQkJS9KPHz9Ofn4+\n5eXlyz4BWIJKpVoSx9y7dy+VlZV4eXkta5+l9W6JvXK5HJlMtmj2Zg56vR5ra2ucnZ0JCwsjOTkZ\nV1dXPD09l5TzT7AS/bVgufYNDQ1FpVItq2tra8uFCxe4f/8+dnZ2eHl5WVQPMzMzlJSUMD09jVQq\nxc3NjYsXL3Lw4EGKi4uZnp5Gr9dz9OhR4cNsNjY2KJVKFhYWuHTpkvnGA6mpqRQWFlJeXo7BYCAo\nKIgzZ84glUoZHBwkJSUFa2tr4uLiiI+PJy4ujvT0dJydnc1e1/i1vo4dO0ZFRYVwnJiYSEFBAa9f\nvxYWwo2Eh4eTm5u7KJKwGnQ6HUqlkvn5eaysrIiKihLCkqbGscDAQL5+/cr169exsbEhKChoyeL9\nIgwbGLVabbhx48Z6F+P/lvb2dkNmZuZ6F2MJ3759M1y5csXifNa7f623/u/QarXC34WFhYY3b978\na9ppaWmGnp6ef01PZHVs2CeNyspK3r17x/nz59e7KCIbiNraWsrKyjh37pxF+ax3/1pv/X+iqqqK\nDx8+MD8/j6enp/BqpoiIuGGhiIiIiMiK+SsWwkVERERENgai0xARERERWTGi0xARERERWTGi0xAR\nERERWTGi0xARERERWTGi0xARERERWTH/AW6NnGhZUEeLAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Group by the month, check the median, plot the results\n", "ax = df.groupby(by=df.index.month).median().plot(y='val', legend=False)\n", "ax.set_xticks([1,2,3,4,5,6,7,8,9,10,11, 12])\n", "ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])\n", "ax.set_ylabel(\"Houses sold (in thousands)\")\n", "ax.set_title(\"House sales by month, 1963-2016\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# More details\n", "\n", "You can also use **max** and **min** and all of your other aggregate friends with `.resample`. For example, what's the largest number of houses hold in a given year?" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd81dX9+PHX+WQQEkIuNySMRAgbCUsZCijLUbWoYG36\nba2KrVoRR1PbUn6IHVKtExAFa11UO8RqqHsSZFYJoGCYgRAJELIgJJD9Ob8/PnAlZt17c3fez8fD\nB8kdn8/7mOSdkzPeR2mtNUIIIUKO4e8AhBBCeIckeCGECFGS4IUQIkRJghdCiBAlCV4IIUKUJHgh\nhAhRrSb4ZcuWcdttt/HrX/+60XNvv/02P/rRj6ioqHA8lpGRwT333EN6ejpfffWVZ6MVQgjhtFYT\n/JQpU5g3b16jx0tKSti2bRtdu3Z1PJafn8/GjRtZuHAhc+fO5fnnnyeUl9lnZ2f7OwS/kba3T9L2\n4NJqgh88eDAxMTGNHl++fDk33nhjg8eysrIYP348YWFhJCYm0qNHD3JycjwXbYAJxi+4p0jb2ydp\ne3Bxaww+KyuL+Ph4evXq1eDx0tLSBj16u91OaWlp2yJsgb//hxcWFvrt3tJ2/5G2+48/2x+MbXc5\nwdfU1JCRkUFaWprLN/M0f3+zFxUV+e3e0nb/kbb7jz/bH4xtV87UoikqKuKRRx7h8ccf55tvvuHB\nBx+kQ4cOaK0pLS3Fbrfz0EMPkZmZCcD06dMB+POf/0xaWhoDBgxoMtizAw6EXxhCCBGMVqxY4fg4\nNTWV1NRUAMKdebPW2jFZ2qtXL/72t785nps9ezaPPPIInTp1YvTo0Tz11FNMmzaN0tJSCgoK6N+/\nf5PXPDuIMw4fPuxaq/wsNjaW8vJyf4fhF9J2aXt7E6ht79mzZ7Md5FYT/OLFi9mxYwfl5eXMmjWL\ntLQ0pkyZ4nheKeX4ODk5mXHjxpGenk54eDi33nprg+eFEEL4jlNDNL4iPfjgIW2Xtrc3gdr2nj17\nNvuc7GQVQogQJQleCCFClCR4IYQIUZLghRAiREmCF0KIECUJXgghQpQkeCGECFGS4IUQIkRJghdC\niBAlCV4IIUKUJHghhAhRkuCFECJESYIXQogQJQleCCFClCR4IYQIUZLghRAiREmCF0KIECUJXggh\nQpQkeCGECFGS4IUQAU/X1mK+9gL61El/hxJUJMELIQKa1hr996fRn/wXcvf4O5ygIgleCBHQ9Huv\no48cRF18OfrQAX+HE1QkwQshApa5aR16zQcYd82DPgMh/4C/QwoqkuCFEAFJ79+N/uezGHfNR9ni\nUcl90JLgXSIJXggRcHTxUcylD2PMvAd1Th/rwZ69oOAQuq7Ov8EFEUnwQoiAoitPYT69AHXFDNSI\nsY7HVYcO0KUrFB72Y3TBRRK8ECJgaLMe87lHUf3PRV1yTeMXJKfIMI0LJMELIQLH3h1wrAT1f7ej\nlGr0tEpOkYlWF4S39oJly5axZcsW4uLiePzxxwF49dVX2bx5M+Hh4XTr1o0777yT6OhoADIyMsjM\nzCQsLIyZM2cyYsQI77ZACBEy9P49qMHDUeFNpyaVnIK59iMfRxW8Wu3BT5kyhXnz5jV4bPjw4Tzx\nxBM89thj9OjRg5UrVwKQn5/Pxo0bWbhwIXPnzuX5559Ha+2dyIUQIUcf2GMth2xOUm+QtfBOazXB\nDx48mJiYmAaPDR8+HMOw3jpgwABKSkoAyMrKYvz48YSFhZGYmEiPHj3IycnxQthCiJCUuxfVUoLv\n2g1OnkSfqvBdTEGszWPwmZmZnHfeeQCUlpbStWtXx3N2u53S0tK23kII0Q7o4yVQWw0J3Zt9jTIM\nSOoF+Xk+jCx4tSnBv/nmm4SFhXHRRRd5Kh4hRHuVuxdSBjY5uXo2lZwiJQuc1Ooka3NWr17N1q1b\neeCBBxyP2e12iouLHZ+XlJRgt9ubfH92djbZ2dmOz9PS0oiNjXU3HL+IjIwMupg9Rdoubfe0ykMH\nYNBQOrZy/eq+g6g/uJ9oH38NAvnrvmLFCsfHqamppKamAk4meK11g8nSL7/8krfeeos//vGPRERE\nOB4fPXo0Tz31FNOmTaO0tJSCggL69+/f5DXPDuKM8vJy51sUAGJjY4MuZk+RtkvbPa1+99cYl8+g\nrpXr64TumGs/ot7HX4NA/brHxsaSlpbW5HOtJvjFixezY8cOysvLmTVrFmlpaWRkZFBXV8eCBQsA\na6L11ltvJTk5mXHjxpGenk54eDi33nprq39uCSGENk3Iy4GUAa2/OCkF8vPQpmmNyYtmtZrg7733\n3kaPTZkypdnXz5gxgxkzZrQtKiFE+3L0EHTqjIrt3OpLVUwniImBksIWJ2SF7GQVQgQAvX9Py8sj\nvyspRXa0OkESvBDC/w7sgT5ODM+cppJ7y0oaJ0iCF0L4nc7di0pxrQcvRcdaJwleCOFXuqYajhyE\nXn2dfo9K7iObnZwgCV4I4V8Hc6F7Miqyg/Pv6dYTSovQ1dXeiysESIIXQviVzt2D6uvC8AxY1Sa7\nJcHhb7wUVWiQBC+E8K/cPeDK+PtpUrKgdZLghRB+pXP3oFxYQeMgh3+0ShK8EMJvdMUJqDgB3ZNd\nfq+S4/taJQleCOE/uXuhd3/3Sg6cPvxDDhVqniR4IYTfuD08AxDXBVBQdsyjMYUSSfBCCL/RB/ai\n+gxy671KKRmHb4UkeCGEX2itIXe3SyUKvktW0rRMErwQwj+Kj0J4JMoW7/41knpLD74FkuCFEH6h\nc/eAixucvstaSSMlC5ojCV4I4R+5e3CpwFhTevSCo4fQdXUeCSnUSIIXQviFOyUKvkt16ADxCdaB\nIaIRSfBCCJ/TdXXW2Hnvfm2/WFJv2fDUDEnwQgjfO5QH8YmoqOg2X0r16GWVGxaNSIIXQvictcGp\njePvZyR0h6ICz1wrxEiCF0L43oG9kNLfI5dSid3RkuCbJAleCOFzOm8fqrf7G5waSOghPfhmSIIX\nQviUrq2BwkOQ3NszF+xsg9oadOUpz1wvhEiCF0L4Vv4B6JaEioj0yOWUUtC1GxQd8cj1QokkeCGE\nT+m8HFRvz4y/OyR0h6Kjnr1mCJAEL4Twrbx9nln/fhaV0B0tPfhGJMELIXxKH/BGD14mWpsiCV4I\n4TPfTrCmePS6Vg9eEvx3SYIXQviOhydYHRK6Q6EM0XxXeGsvWLZsGVu2bCEuLo7HH38cgIqKChYt\nWkRRURGJiYmkp6cTHW1tOc7IyCAzM5OwsDBmzpzJiBEjvNsCIUTQ8MoEK1gFx8pK0XV1qPBW01q7\n0WoPfsqUKcybN6/BYytXrmTYsGEsXryY1NRUMjIyAMjPz2fjxo0sXLiQuXPn8vzzz8uBuEKIb3lh\nghVAhUdAnB1KCz1+7WDWaoIfPHgwMTExDR7Lyspi0qRJAEyePJlNmzY5Hh8/fjxhYWEkJibSo0cP\ncnJyvBC2ECIYea0HD5DYAwplHP5sbo3Bl5WVYbPZALDZbJSVlQFQWlpK165dHa+z2+2UlpZ6IEwh\nRLDTtTVW3XYPT7CeIROtjXlksEop5fJ7srOzyc7OdnyelpZGbGysJ8LxmcjIyKCL2VOk7dJ2V9Xl\n7ORUj3PobG/DGawtqErqjS4roaOXvjaB/HVfsWKF4+PU1FRSU1MBNxO8zWbj+PHjjn/j4uIAq8de\nXFzseF1JSQl2u73Ja5wdxBnl5eXuhOM3sbGxQRezp0jbpe2uMndug+Q+Xvt/p+O6YO7cRp2Xrh+o\nX/fY2FjS0tKafM6pIRqtdYPJ0lGjRrF69WoAVq9ezejRowEYPXo0GzZsoK6ujsLCQgoKCujf30vj\nbUKI4JK3z2MlgpuU0F3q0XxHqz34xYsXs2PHDsrLy5k1axZpaWlMnz6dhQsXkpmZSUJCAunp6QAk\nJyczbtw40tPTCQ8P59Zbb3Vr+EYIEXp0Xg7GxO957wYJPaD4KFpryTuntZrg77333iYfnz9/fpOP\nz5gxgxkzZrQtKiFESPH2BCuA6hgNEZFw4jjEdfHafYKJ7GQVQnhf/gFI9MIO1u+S4/sakAQvhPA6\na/275zc4fZcslWxIErwQwvvy9oG3NjidTSZaG5AEL4TwOl/14KVscEOS4IUQXuWLCdYzZIimIUnw\nQog20WY9Om9f8y/Iz7MmWCM7eD8YmWRtQBK8EKJN9NqPMReko7dsaPr5vL2+GZ4Ba3lk1Sl0VaVv\n7hfgJMELIdymT51Ev/VP1E13Yb6yFH1gb+MX+WqCFVCGAfHdoFh68SAJXgjRBvq911FDR2FcfDnG\nTXdhPvMQurSo4Wt8NcF6hpQNdpAEL4Rwiy4qQK/7GDXjpwCo8y5EXXoN5pIF6KpT1mt8OMF6hura\nDS09eEASvBDCTfqN5ahLr0bZvi3/qy6fjuozAPO5x9Fm/ekJ1p6+mWA9Q5ZKOkiCF0K4TO/dgc7d\njbqsYd0ppRTqJ3dAbQ369Ze8e4JTM1Rid7QM0QCS4IUQLtKmifna86gZN6E6NO6Zq/BwjDt+h/56\nM/r9//hsgtVBdrM6SIIXQrhEf/4ZGAZq7MRmX6NiOmHc/QDU1aL6DfZhdFiraI4Vo+vrfXvfACQJ\nXgjhNF1Vic54BSPt59aSxBaoxB4Yj76E6tXXR9Gdvm9EBHS2wXdW87RHkuBFyKh/YDa6pNDfYYS0\n6ndWoPqfi+p/rlOvV2FhXo6oGTLRCkiCFyFCV56CIwfROTv9HUrI0sdKqP7gTdR1N/k7lFZJTRqL\nJHgRGgoOWf82tZNStInWGvPzzzAf+jUdrv4Rqms3f4fUOploBZw4sk+IYKAL8sFmR+fu8XcoIUUf\nzMX811+hugrjF78h6rwLqC0v93dYrUvogc5a5+8o/E4SvAgNBYdQYyeiV7+PrqtDhcu3dlvok+Xo\nlf9Ab16PuvYG1MWXoQw/jae7QSV0Q0sPXoZoRGjQBfmQMgC6doNDef4OJ6iZ6z/FnH8nKDAeXIox\n6YqgSu6AY5JVa+3vSPxKujkiNBTko7olQZ8B1g5LXxa3ChHaNNFvLkd/9QVG+p9Q5/Txd0huUzGd\nwAiDihMQG+fvcPxGevDtlNYafeQg5ocZ6K83+zucNtFmvbUkrlsSpAyEXJlodZWurUU//wR63y6M\nOY8EdXJ3SOgOhe17mEZ68O2Irq2B3V+jt2eht2dBXR2c0we9dSNhQ0f5Ozz3FRdCbJy1bb7vQMxV\n7/g7oqCiT1VgLn0YYmKtnrsvC4N5kUroji4+6vudtAFEEnw7Yb7zGvqjDOjZCzV8DMadcyEpBepq\nMdNvRJ+ssP6sDUZHD0H3ZOvjnr2hpBBdeQrVMdq/cQUBXVqEufiPqHNHoNJ+Fnxj7S2RpZKS4NsL\nveFTjF//GdXrO2PTEZEwYAh6x5eoMRf5J7g20kfyUd2TAKvQFef0sdbDnzvCz5EFNp2fi/nUg6hL\nr0Fddi1KKX+H5FkJ3WHvDn9H4VcyBt8O6NpaOFZi9W6boIaOguwgHoc/uwcPqD6Dmj46TgCg6+sx\nV72D+eQDqB/egnH59NBL7li1cNr7wR/Sg28PCo9A18Rm14aroedjvv8ftNZB+YOuC/IxRp/110ef\nAehNssmlKXr319bGpU6dMe5bgEpq+pd+SLDFw/FSf0fhV21K8BkZGaxduxbDMOjVqxd33nknVVVV\nLFq0iKKiIhITE0lPTyc6WsZC/aogv0EP97tUt54QGQn5B6zhjWBT8N0e/ED06y/6MaDAo0uL0P95\n2Volk/YzOH98UP4yd0lcFygrDdqOiye4PURTVFTEp59+yqOPPsrjjz9OfX0969atY+XKlQwbNozF\nixeTmppKRkaGJ+MVbtBn1oi3QA09PyiXS+pTFVBdDTb7tw927QZ1dehjJf4LLEDo2lrMd1dg/umX\n0K0nxp+WokZNaBcJT0V1tNbCV570dyh+43aC79ixI+Hh4VRVVVFfX09NTQ12u52srCwmTZoEwOTJ\nk9m0aZPHghVuKjgEPZrvwYM1Dq+/3uKjgDyo4BB0T2qQsJRS0Gcg5O72Y2CBQb+3Ar3jS4x5T2Bc\ne0OTJzCFNJsdyo75Owq/cTvBd+rUiWnTpnHnnXdyxx13EB0dzfDhwykrK8NmswFgs9koKyvzWLDC\nPfrooVZ78AwaBnn7rLK7QaS5v05Un4Hodr7hSdfWotd8iPHTWaiE7v4Oxz/i7O16HN7tMfijR4/y\n7rvvsnTpUqKjo3nyySdZu3Zto9c196dgdnY22dnZjs/T0tKIjY11Nxy/iIyMDPiYtdaUFRyiU/9B\nGC3FGhtLxcBUIg/sIXLsxa1eN1DaXllahOrdl6jvxFI7ZATVb/+bTl6IMVDa3pqaNR9R07sfnQYO\n8dg1g6XtZ5zsmkhE1SkiPRBzILd9xYoVjo9TU1NJTU0F2pDg9+3bx6BBg+jUydocM3bsWHbv3o3N\nZuP48eOOf+Pimq4DcXYQZ5QHQxnSs8TGxgZ8zLrsGISFcRIDWonVHDycyk3rqD53ZKvXDZS213+z\nHzVmYqMStrpbEua+XZwoO+7xzTuB0vbW1L//BsZVP/RorMHS9jPMmM7UHT1MtQdiDtS2x8bGkpaW\n1uRzbg/R9OzZk71791JTU4PWmu3bt5OcnMyoUaNYvXo1AKtXr2b06NHu3kJ4QisraM6mho1CZ28J\nrgp8BYdQPZoYounU2TqX88ghPwTlfzp3D5w4DsPb+c9fXBcZonFHSkoKkyZN4ne/+x2GYZCSksKl\nl15KVVUVCxcuJDMzk4SEBNLT0z0Zr3CRLjjk2OXZqu7JgIIjB6FnL6/G5Qm6/nSRscSeTT6vUgai\nD+xBJQV+WzxNr3oHNeWq0Co94A6bHdrxITBtWgd/zTXXcM011zR4rFOnTsyfP79NQQkPcqUHr9Tp\n1TSbUUGQ4Ck5CnFdmi+O1WcA7N8DEy71bVx+pk8cQ2/bhPF/t/k7FL9TcXbMdtyDl1IFIc6lHjxn\n1sMHyXLJI9YSyeaoPlYPvr3Raz6y1rrHBOaEoE/Z7FAmCV6EKhd68ACcOxz270FXVXovJg/RBfmo\nltrWqy8UHELXVPsuKD/TdXXozz5ATfm+v0MJDGftZm2PJMGHMF1bY23y6NrN6feoqGhI6Q+7v/Zi\nZB5ytJUefEQk9DgHvtnnw6D87Mv/QUK30DiwwwPa+25WSfCh7Ohh6NoNFebaRJtKDY6yBVaZ4FZ2\n6LazDU/mqncwpk7zdxiBJa797maVBB/Kjh6yjrFzkRpmJfiA/7O2lR48YE20tpNVFPpgLhQdhZEX\n+juUwGJrv7tZJcGHMH0kv8k14q06fdITRw97PCZP0SfLobbG6p21QPUZZK0JDyJaa2t4zdX3Zb6L\nmnRFs2Wh2ysVZ0e304lWSfCh7Ogh6ObCBOtpSilrmCY7gFfTFFh/nbRaFbFbTzhZgS4PnppI+tO3\nMJf9xbX3nCxHb16Pmvg9L0UVxGztd7OTJPgQdvZRdq4K9PLBuiAf1UqFTABlGNakcZCc8KTNevQn\nb8OubS79UtLrPkYNH4vqbPNidEFKxuBFqNFaNzrKziVDRsLenYG7xLDA+fkFNWw05idvBf6cAsC2\nLOhsQ428AL15g1Nv0Vqj13yImnyll4MLUu24XIEkeB/RJ8vR+31Yn7ysFCIiUTGd3Hq7iu4E56TA\nnuxWX+sPzvbgAdTUaXDqJPqzD7wcVduZme+ipn4fNfoidJaTxw7m7ISwcOg7yLvBBSlli0dLghfe\npN97HfOx/4fet8s3NzyS3/oKk1acKVsQkFzpwYeFYfzsl+j/voouPOLlwNynj+RD/gHUqItg2Cg4\nuN+pxKTXf4IaP7VdnNLkltObndojSfA+oKur0Bs+RaX9DHPZw+gi75/0ro8eanWNeGvU0MCcaNV1\ndVB81JpAdZLqcQ7qyh9ivrwYbZpejM59OvMd1MWXoyIiUBGRqOFjWh2m0dVV6K0bURdO8VGUQcjW\nfnezSoL3Af35Z9DvXIwp30ddeT3mkgfRp7y8s67AiTXirTmnr7UCxQe/kFxSfBRsdmunqgvUpVcD\noD992xtRtYmuPIX+fA1q0rfj6Gr0xeisxofoNHjf5g3Q71yUreXlou2Zioo+vZs1uE4r8wRJ8F6m\ntUavegdjqlUbRE2dhho8DPOvj1rlbr1139bqtDhBGUZgLpd0tb7OacoIw5h5L/q919FHDnohMPfp\nDatQQ0aiusR/+2DqSDiSjy4tauF9n2JMuMQHEQa5uPZZdEwSvLftzYb6ejh9SpJSCvWj28BQ6H8/\n570/Gz3RgwcIwOqS1vCTm8s/E3ugrv0J5ouLvPoL1hXaNK1NSt8pEKbCI1Ajx6Kz1jf9vqICOHQA\nho/1QZRBrp3uZpUE72XmqnesVRFnTYCpsDCM23+L3rvDK8MFurraOs0n3vkiY81RQ86D3dvRtbUe\niMxDjrjXgz9DTboSomPQH7zhwaDaYOdXEBEJAxqfnWoN0zS9mkZvXIUaMxEVEeHtCIOeiuvSLnez\nSoL3Il1aBDu3ocY1ngBTHaMx7p6P/uBN9FebPHvjQveKjDVFxXa2KjLm7PBAYJ7Rlh48WH9FGTff\njf7kLfQ3+z0YmXua6gQ4DB4ORQXo4qMNHtamaQ3rtLPDTNwmPXjhafqzD1EXTrYmeZqg4hMx7pyL\n+dIidJXnJoB0wSFwco24MwLuEBA3x+DPpuwJqOtvwVy+BG36b6hGFxXA/t2osZOafF6Fh6POH9e4\nF7/na+gYbdW8F62L69Iud7NKgvcSXVuDXvshaspVLb5O9R0EfQehv/zCczcvyEe5UUWyOWroqICZ\naNXlJ6w5DQ9syVfjp0JEBHpjpgcic49e/R5qwiWoDs0cOwjWpqdNDRO8Xv8pavwlsvbdWXHSgxce\npDetg3P6OrWSRY1pfpzVLQVtKFHQlJT+1jriFlZz+Ipe+yH0GeiRxKaUwvjRreiVr/rlBCvH/ojJ\nLXcCGDQUjpegC63qnrryFPqrL1AXNN3rF40pW/usKCkJ3kt05rtOH7ygRoy1JjJPVXjm3gXuFxlr\nijLCUEPOQ2dv9dg13aG3bEBnvodx8z0eu6bqMxA1aJhfJlz156utNeytnLiljDDUqPGOXrzOWgeD\nhkphMVdID154it6/G06Ww7DznXq9io6BwcPRWz9v+721tuq4ezDBA+DnU570gb2YryzFuGseyt7V\no9dW192EXv0+usS3f6HodZ9gOFkgTI2+GL3J2vQka9/dYLPG4NvbblZJ8F6gV72DmnwVynB+FYtV\nXKrlXYtOOVYCHTpYxcI8SA09D3Zus8oE+JguLcJ85iGMm+5C9e7v8esrewJqylXojL97/NrN0UUF\n1o7c0/sjWtX/XGtX8ZefW7/Ah472boAhRkVFgzLa3W5WSfAepk8cQ2/Pcnn5mhoxFvbtQlecaFsA\nbSkR3ALVuQskdIf9PiqWdpquqsRcsgB16dWo87x3FJ363nXo3dt9dvqTzlqPOm+c00tZlWGgRk/A\nXP4U6oLJcmqTO2ztry68JHgP02s+Qo2+yOUyvSqqIwwZid6ysW339/D4+9ms6pKeXU1jbsxEb9nY\n5DJRbdZj/u1xVEp/1OUzPHrf71JRHVHTf4r52vM++TNeZ61FjbnIpfeo0RdBRTlqwlQvRRXi4rrA\n8RJ/R+FTkuA9TH+92fpBdIPhidU0nl5BcxZvnPKkVzyPueodzF/fQv3CB6yDOc6sFnn9ZaipRt1w\nh0+WA6pxU6G2xrMrmpqgjx62epIDU117Y99BGPf+HpXcxzuBhbj2uJJG/s7zIF1XBwdzIWWAexcY\nOhqWP40+ccwaEnEnhoJ8jKHOTe66rO8gKCm0apTHxrb5cvpkBdTWYdy3AKorYcdX6O1ZmB+8AeER\nEBGB8bvHUOG+2YqvDAMj7VZr49nIC1yuVuksvWkt6vzxLs3RgLWsk6GjvBJTu9AONztJgvekw3kQ\nn4jq2PTO1daoDh1Qw0ahN29sdYNUszywy7M5KiwMzh2B3rEVzund9gsWHYHE7lbiioqG88dZuzZN\n0/pFae/q9olU7lKDhkKvvuiP/4u66odeuYfOWodxwyyvXFu0wGa3FiG0I21K8KdOneLZZ5/l4MGD\nKKWYNWsWPXr0YNGiRRQVFZGYmEh6ejrR0c4lPG2a1iHJQUrv34PqO7BN11BjLsL8+L/gRoLXpcVQ\nUQ7xCW2KoSVq6Cj4egt8b3qbr6ULj0Bij8b3MAzo3a/N13eXcf0tmA//Gj1qAsqFQ0WcoQ9/Aycr\noN9gj15XOCHODgdy/B2FT7Upm7700kucd955LFy4kMcee4ykpCRWrlzJsGHDWLx4MampqWRkZDh9\nPf35Z20Jx/8O7IGUtiV4UkdB/gG0i5NBWmvMvy9BXfEDl//0d4VKPR+940vP1G8pPIxK9GwC9QSV\n2AM140bMp/6EPlnu0WvrTetQoycEdUcmWCmb3eWfq2Dn9nfZqVOn2LVrF1OmWJUSw8LCiI6OJisr\ni0mTrC3UkydPZtMm5ysl6oxX0NVV7obkdzp3L6pPG3vwERGoEc3XAG/23ms/tFZYXHl9m+7fGtUl\nHrrEU5/jgeWSzfTgA4Ex8QrUyLGYy/6CrvNMqWSttbV6xs1JeNFGcbJM0mmFhYXExsaydOlS5syZ\nw1//+leqq6spKyvDZrO2UNtsNsrKypy+pup/LvpD53v8gURXnoKSQkhq+9i0q7VpdFEBOuNVjFt+\n6ZP10Sr1fGq/antxNF14BBWgCR5A/eBmiOqIfnWpZ5ZO5h+A2lprslr4nq0LHG9fZ7O6nQ1M0yQ3\nN5ef//zn9OvXj5dffpmVK1c2el1zy9uys7PJzs52fJ6WlkbsTXdSPvcXxFw5A8PuvXFkT4mMjCT2\n9GqS2m9yqOrdj9gu7q1+OZseexEnXlpETHUlRtfEll9rmlQ8+QxR1/6EqMEuLrtzU+3Yi6j+19+I\n/eEtbbpOWfFROvUZgOGBFTneotP/QMUf7iEi812irv0x0PDr7orKbV/A+Cl07NzZ02H6jLttDwix\nsRw3DGLDDbd2egdy21esWOH4ODU1ldRUKxe4neDtdjvx8fH062dNhl144YWsXLkSm83G8ePHHf/G\nxcU1+f60ETIaAAAav0lEQVSzgzjjZFQMXHw55a8sw/hZuruh+UxsbCzl5dYYrZn9FfTq5/i8zUZc\nQPlnH2C0ssHH/OQtqzTxxO9R66l7t0L37I156BtOHM5HxTb99W31GpWn0JWnqAiPRPkobnfpWf+P\nqr/8lpo4O2rU+AZfd6evoTXm+k8xfvFb6gK8vS1xp+0BpXMXyvMPotw4LyFQ2x4bG0taWlqTz7k9\nRGOz2YiPj+fwYWtTyvbt20lOTmbUqFGsXr0agNWrVzN6tGs1M9RV11uTeAf2uhuaX+jc3dDG8fez\nqTGNa4A3umdBPvrd1zBuuderE6vfpcIjCE8d2bbqkqfH34Ohnrmyd8WYPQ/z1aXuf19+s8/6t5f/\nVgcJTp/s1H4mWts0lX/LLbewZMkSfvOb35CXl8d1113H9OnT2b59O/feey9ff/0106e7tpxORUWj\nrvkJ5msvtDhWpg/m+rz6X4s8MMHawKDh1qaiXdusdeHfoevrMV9chLrmJ35ZiRIxciy04RCQ5pZI\nBirVux/GTXdhPvMQphvfd3rTWtSYi4PiF1oos85mbT8TrW2akUtJSeHhhx9u9Pj8+fPbclnURZei\nM9+FLRtg1IQGz+nyMmu1TdY6SOiBMfcxvxde0sdKoK4WWqnr7QoVFob6wUzMfyyDylOoYaNRw0bD\nkBGoqGj0RxkQ1dE6QNoPIkaMpfK1F93fu1B4GJUQPAkeQJ13IerAXqpWvAg/vdPp91mrZ9Zj3DXP\ni9EJp9js0I7KFQTkYlxlhGGk/RzzPy+ja2uA0z3WT9/GfGA2dIjC+Mvz0NmGfu91P0cL5O7x2ClD\nZzMmXELYg8swfvswJPXG/Ox9q2bLk/PRH63EuPkev62nNhK6Q6fO3w49uKoouHrwZ6jvzaB284ZG\nh2C3aP9uiIiEpBSvxSWcFGeH46HTg9et/PwFbKkCde4ISOqNXvUOpAzA/Ndz0NmG8ZuHUD17AWDc\nfBfmn36JHjHGK3XCnaUP7EG5W3/GCSqxJ+rSa+DSa6yqizu+grguKC/uWHUqrtOHgLjTdn30CMa4\n4KuKqKI7EXHp1dR88AbKyV68zlqHGnORDM8EApsd8kJnN6vOfA8uvLjZ5wOyB3+Gcf0t6Lf+hfnS\nYoyrf4yR/idHcgdQtnjUj27FfHGRo6fvD57Y4OQsFRWNOn8cKgC2ulvVJd0chy86AkE2RHNGh6uu\nR29aZw3NtUKfrk4pm5sCQyjtZtXVVegtG1p8TUAneNU9CePXD2H88RnUqPFN9oDU2InQPRn933/6\nIUKrZjl5OdDHez34gDUwFQ7lWVUhXaCrKqHypNWbCkJGZxtqwiXoD99s9bX6v/+AvoMbdEyEH4VQ\nRUm9ZSP0O7fF1wR0ggdQfQagOnRo/nmlMH46C/2/THTOTh9GdlrBIejUGdUpeDevuEtFRMKAVPSO\nL117Y1EBdO0e1PVY1OUz0Bsz0SeaTxY6Zwf6f6sxfiqVIwOGzR4yu1n1+k8wxrc8zBm8P2FnUbFx\nGDfMsup4+7iWjTU80363nquh50O2i4eABNkSyaYomx11wUT0x281+byurrKGFm+Y5fZmMOF51tms\nCqoq/R1Km+iiAjh0AEZc0OLrQiLBw+klbH0Ho99Y7tsb5+5un8Mzp1nj8Ftd6hHpAK0i6Sr1vR+g\n137U5Dm6+o3lqL6DvXqOrHBTnNWLD2Z6YyZqzERURMuH4YRMggdQ/3cb+svP0Tu/8tk9fTnBGohU\nYk/o0MEqpOWsEOjBA6j4BNR5F6I/fafB43rnV+gvP0f9321+iky0yNYlqNfCa9NEb/gUNeGSVl8b\nWgk+ppO12/DFRU6tcGgrXVNtnaDUq6/X7xXIziyXdFagV5F0hbryB+jV76JPnQRAnzqJ+fJTGDfd\n5fPTqIRzVJzdOnYyWO3NhqiOTpW9CKkED9aQgZo6DfPpB63VGl5UfyAHepzjtbM7g4XLyyVDpAcP\np/copJ6PXv0eAHrFC9b3oLfOxRVtFxfcu1n1+k9Q4y9xal9FyCV4AHXFdahz+mI+/4RnTh5qRl3O\nTlQ7Hn93GDQM8vZZNfFboaur4WQ5dIn3QWC+oa76IfqTtzA3rUXv2oZqYxll4WW24N3NqqtOob/8\nAnXhZKdeH5oJXinUT2dBVaVXJ13rc3Z6tIJksFIdoqDfIHBm7qPoCHTt5tPql96mevaCganoF560\nDl2Jcu/QdeEjQVyPRmeth4GpqM42p14fkgkerJK2xqzfob/8AnPNh165R/2+Xe16gvVsaugo58bh\nQ2h45mzGjJtQP/kFatBQf4ciWmFVlAzSBL/+U4wJlzr9+pBN8AAqJhbjngfQ//2H65txWqHLT2CW\nl0G3JI9eN1ipoeejs7e0ulxSFx0JuiqSzlDdemJMvMLfYQhn2IJzmaQ+ehiOHoJhzp+xEdIJHk7/\n4N3+W2s8/shBz134wF7C+w4K6t2YHtU9GZQBh1v5fxyiPXgRRE4fvh1su1n1hlWoCya5VB69XWQn\nNWioVVt9yYPoPDfL236Hzt1DWAAU/AoUSqnTyyWzWnydPnoY1U0SvPCjqI7Wv5Un/RuHC7RZj964\nyqm172drFwkerNrq6uofYy75E+Yrz6DLG+8+dIXO3UNY/5YL/bQ3atR49OeftfyiIK4iKUKDUspa\nHLHna3+H4rxd2yC2Myq5j0tvazcJHsAYNwXjT89ARCTm72djrnoHXe/6MkpdcQL27yZcEnxDg4fD\nyXL0N/ubfFrXVMOJMrD7t469EGrkBegvP/d3GE4zM99DjXd+cvWMdpXgwTqwwfi/2zDuW4DeshHz\nwV+idzv/m1zX1mIuexh18WUYIbSW2xOUYaDGTUVv+LTpFxQfhfhEVFjoLJEUwUmNvAC9Lcur+2Q8\nRWetgyP5qIsuc/m97S7Bn6GSemPctwBj2o8wX3wS899/a/WLrbVGv/IMRMeirrvZR5EGFzX+EvQX\na9B1tY2fLDwsE6wiIKj4RGuydd9uf4fSIn3iGOa/nsO45d4Wy6Y3p90meDg9MTj6IozfP4XOP4D5\n18esYYRm6PdeRx/Kw7j1V7J6phkqsQd0T4JtjSdbQ6kGjQh+1jDN//wdRrO01ph/fwY14VK3T3CT\nLMXpYZt7/4AKC8Nc+EDT5V+z1qE/+wDj7vutnZuiWWrCpZhNDdPIEkkRQM6Mwwfqckm9MROKj6Ku\n/rHb15AEf5qKiEDdeh+q37mYj8yxCuqfpnP3YP7jWYy75qFsMu7eGjVqAuzJbnTakfTgRUDp1Rfq\nasGT+2M8RJcWof/zEsbP0lut+d4SSfBnUYaBcf1M1JTvYz76O3ReDrqkEHPpQxgz70E5UZ5TgIrq\naPWO/re64RPSgxcBRCmFGjE24FbTaK0xly9BTZ2GamMpcknwTTCmTsP48S8wF/0B88kHUJdNR40Y\n6++wgoqacCl6wyrHn7+6ttYq8GRP9HNkQnwrEJdL6s8+gJMVqCuvb/O1nN/z2s6o88dhxHVB781G\nXXatv8MJPgOGQHUV5OVAygBriaQ9waVt1kJ43cChcPQQ+ngpymb3dzToogL0f1/F+M3DHllOLD9t\nLVD9Brs9e93eKcOwlkxu+BSVMkCGZ0RAUuERVomNbV+gfFQsTp84jl73MTQxuau3/g915fVWCWoP\nkCEa4TVq3BT0prXo2hp00eGQrCIpQsDIC9BffuGz2+l3XkPvzYaa6kb/qbEXoy69xmP3anMP3jRN\n5s6di91uZ86cOVRUVLBo0SKKiopITEwkPT2d6Gg5AKE9Ul27QXIf+OoLOHoEuvX0d0hCNKKGjkK/\n8gy6qhJ1phCZl+jKU+jPP8P4wxKUD3bCt7kH/95775GU9G1N9JUrVzJs2DAWL15MamoqGRkZbb2F\nCGJqwiWY6z+1lkhKghcBSEXHQN9BkL3V6/fSG1ahzh3hk+QObUzwJSUlbN26lUsu+baEZVZWFpMm\nTQJg8uTJbNq0qW0RiqCmzhsP+3fBNzlSRVIErNZW0+ivvqBq5T/adA9tmujMd1FTp7XpOq5oU4Jf\nvnw5N954Y4PTvcvKyrDZrPMCbTYbZWVlbYtQBDXVoYO18enkSegqSyRFYFIjxqK/zmqyuqy5+j3M\nV56h6r//QtfWuH+TnV9BRKS1wsxH3E7wW7ZsIS4ujpSUlBa3+p6d/EX7pCZcCt2TUOHu78gTwpuU\nPcHao5Gzw/GY1hrzzeXoj9/C+O1fCOvV16rL7iZz1Tuoqd/3aU50e5J1165dZGVlsXXrVmpqaqis\nrGTJkiXYbDaOHz/u+DcuLq7J92dnZ5Odne34PC0tjdjYWHfD8YvIyMigi9lTXGr7yDHo1OdREZHe\nDcpH5Osemm2vuuBidPZWOo4ej66r5dSzj2EePUTMgqUYneOou2AiNdlbiB4/xeVr1x89TEXuHjrf\n9yev1LJasWKF4+PU1FRSU1MBUNoDlXZ27NjB22+/zZw5c3j11Vfp1KkT06dPZ+XKlZw8eZIbbrjB\nqescPny4raH4VGxsLOXl5f4Owy+k7dL2UKMP5lplSeYvwnz2L9ChI8at9znK9EZXlFH+h3swHn3J\n5Wqy5usvglIY19/i8bh79mx+8YLH18FPnz6d7du3c++99/L1118zffp0T99CCCE8LzkFtMZ88Jeo\nbkkYs+Y0qMEe1iMZojvBgb0uXVZXV1kb/iZf5eGAW+eRnaxDhgxhyBBr4qBTp07Mnz/fE5cVQgif\nUUpZZUnq61GXXdvkWLkaaRUnU30HOX1d/flq6HeutS/Ex2QnqxBCnGZccjXG5dObnQhVI1wrTqa1\nRq96F8OHSyPPJgleCCGc1WcgnKpAFzo5X7gnG+rr4dwR3o2rGZLghRDCScowUMPHON2L98fSyLNJ\nghdCCBc4W0NelxbB7u2oca4vq/QUSfBCCOGKc0dA/gF0eeOzm8+mV72LunAyKsp/xRYlwQshhAtU\nRCScOxK9rfk6W/pgLnr9J6jL/btMXBK8EEK4qKVhGl1Xi/niQtQPb7FKIPiRJHghhHCRGj4adm9D\nV1c3ek6//RrEJ6LGTfVDZA1JghdCCBepmFjo1Q92ftngcb1/N3rdRxg3zg6IQouS4IUQwg1ndrWe\noWuqMV9ahPHj21FxXfwY2bckwQshhBvUiAvQ2zahTauGvM54FXVOX9Toi/wc2bc8UotGCCHaG5XQ\nHTrbYP9u67SmTWsx/vCUv8NqQBK8EEK4SY28AP35Z+ivt2DceCeqU2d/h9SADNEIIYSb1MgL0Kvf\nRw0aihox1t/hNCI9eCGEcFfv/qjvXYe66of+jqRJkuCFEMJNSinU9TP9HUazZIhGCCFClCR4IYQI\nUZLghRAiREmCF0KIECUJXgghQpQkeCGECFGS4IUQIkRJghdCiBAlCV4IIUKUJHghhAhRkuCFECJE\nSYIXQogQ5XaxsZKSEp5++mnKyspQSnHJJZdw1VVXUVFRwaJFiygqKiIxMZH09HSio6M9GbMQQggn\nuJ3gw8LCuPnmm0lJSaGqqoo5c+YwYsQIMjMzGTZsGNdeey0rV64kIyODG264wZMxCyGEcILbQzQ2\nm42UlBQAoqKiSEpKoqSkhKysLCZNmgTA5MmT2bRpk0cCFUII4RqPjMEXFhaSl5fHwIEDKSsrw2az\nAdYvgbKyMk/cQgghhIvanOCrqqp48sknmTlzJlFRUY2eV0q19RZCCCHc0KYTnerr63niiSeYOHEi\nY8aMAaxe+/Hjxx3/xsXFNfne7OxssrOzHZ+npaXRs2fPtoTjF7Gxsf4OwW+k7e2TtD3wrFixwvFx\namoqqamp1ie6DZYsWaJffvnlBo+98sorOiMjQ2utdUZGhn711VfbcosWvfbaa167tjMeeOABv91b\n2u4/0nb/8Wf7g7Htbvfgd+3axdq1a+nVqxe//e1vUUrx4x//mOnTp7Nw4UIyMzNJSEggPT29zb+d\nmuP4LeUnCQkJfru3tN1/pO3+48/2B2Pb3U7wgwcP5rXXXmvyufnz57t7WZf4+5s9MTHRb/eWtvuP\ntN1//Nn+YGy77GRtA3//sPmTtL19krYHF6W11v4OQgghhOdJD14IIUKUJHghhAhRbVoHH2qWLVvG\nli1biIuL4/HHHwcgLy+Pv/3tb1RXV5OQkMA999xDVFQU69at46233kIphdaavLw8Hn30UXr37s3+\n/ftZunQptbW1nHfeecycOdO/DXOCK22vra1l6dKlHDx4ENM0mThxItOnTwcI+bbX1dXx3HPPsX//\nfgzDYObMmQwZMgQIzra7UzQwIyODzMxMwsLCmDlzJiNGjACCr/2utr2iooInnniCffv2MXnyZH72\ns585rhWwbff0Ws1gtnPnTp2bm6vvu+8+x2O/+93v9M6dO7XWWmdmZup///vfjd6Xl5en7777bsfn\nc+fO1Xv37tVaa/3QQw/prVu3ejnytnOl7ZmZmXrRokVaa62rq6v1nXfeqYuKirTWod/2Dz74QC9d\nulRrrXVZWZmeM2eO4z3B2PZjx47p3NxcrbXWlZWV+p577tH5+fn6lVde0StXrtRaN9zPcvDgQf2b\n3/xG19XV6aNHj+q77rpLm6aptQ6+9rva9qqqKr1r1y798ccf6xdeeKHBtQK17TJEc5bBgwcTExPT\n4LGCggIGDx4MwLBhw/j8888bvW/9+vWMHz8egOPHj1NZWUn//v0BmDhxYlAUXHOl7TabjerqakzT\npLq6moiICDp27BjSbf/iiy8AyM/PZ+jQoQB07tyZmJgY9u3bF7Rtd7VoYFZWFuPHjycsLIzExER6\n9OhBTk5OULbf1bZ36NCBQYMGER7ecOAjkNsuCb4VycnJZGVlAbBx40ZKSkoavWbDhg1cdNFFAJSW\nlhIfH+94Lj4+ntLSUt8E62HNtX3kyJF07NiR22+/ndmzZ3P11VcTExMT0m0vLi4GoHfv3mRlZWGa\nJoWFhezfv5+SkpKQaLszRQNLS0vp2rWr4z12u53S0tKgb39bCiYGctslwbdi1qxZfPjhh8ydO5eq\nqqpGv71zcnKIiooiOTnZTxF6T3NtX7NmDTU1NTz33HM8/fTTvP322xQWFvo5Ws9qru1Tp07Fbrcz\nd+5cli9fzqBBgzCM4P8xas9FA0O57TLJ2oqePXsyb948AI4cOcLWrVsbPL9+/XomTJjg+Nxutzfo\n5ZeUlGC3230TrIc11/Y9e/YwduxYDMOgc+fODBo0iP379zN48OCQb7thGNx8882O182fP58ePXoQ\nExMTtG13pWig3W53/DUD37YzWL/v21Iw8YxAbnvwdz08TGuNPmvv14kTJwAwTZM33niDyy67rMFr\nN27c6Bh/B+ubIzo6mpycHLTWrFmzxvGNE+icbXvPnj3Zvn07YPV+9u7dS1JSUrtoe01NDdXV1QBs\n27aNsLCwoG/7smXLSE5O5qqrrnI8NmrUKFavXg3A6tWrGT16NACjR49mw4YN1NXVUVhYSEFBAf37\n9w/a9rvS9uYEcttlJ+tZFi9ezI4dOygvLycuLo60tDQqKyv58MMPUUoxduxYfvKTnzhev2PHDv75\nz3+yYMGCBtfZv38/zzzzjGPJ1C233OLrprjMlbbX1taybNky8vLyAJgyZQrTpk0DQr/tRUVF/PnP\nf8YwDOx2O3fccYdjTDoY275r1y5+//vf06tXL5RSjqKB/fv3Z+HChRQXFzuKBp6ZiM7IyGDVqlWE\nh4c3WiYZTO13p+2zZ8+mqqqKuro6oqOjuf/++0lKSgrYtkuCF0KIECVDNEIIEaIkwQshRIiSBC+E\nECFKErwQQoQoSfBCCBGiJMELIUSIkgQvhBAhShK8EEKEKEnwol0yTdPfIQjhdVJsTASd2bNnc9ll\nl7FmzRqOHz/OmDFjuO222wgPD2fz5s289tprFBUVkZyczG233UavXr0c77v88stZt24dhw8f5pVX\nXmm2EuTs2bO54oorWLNmDcXFxYwYMYK77rqL8PBwTp48yZIlS8jJycE0TQYOHMjtt9/uKDD1xz/+\nkUGDBpGdnU1eXh5Dhw5l1qxZvPTSS2zevJmkpCR+9atfOUocHDp0iJdeeon9+/c7SiWMGzfON/8z\nRUiTHrwISuvWreP+++9nyZIlHD58mDfeeIMDBw7w7LPP8otf/IIXX3yRyy67jEceeYS6ujrH+zZs\n2MDcuXN5+eWXWy3z+7///Y958+bx9NNPk5eX5yhApbVm6tSpLFu2jKVLl9KhQwdeeOGFBu/duHEj\nd999N3/9618pKCjg/vvvZ+rUqbz00kv07NmT119/HYDq6moWLFjAxRdfzAsvvMC9997LCy+8wKFD\nhzz7P0y0S5LgRVC64oorsNvtxMTEcN1117Fu3To++eQTLrvsMvr164dSiokTJxIREcHevXsd77vy\nyiux2+1ERES0eo8rr7wSm81GTEwMo0aN4sCBAwB06tSJsWPHEhERQVRUFDNmzGDnzp0N3jt58mQS\nExPp2LEjI0eOpHv37gwdOhTDMBg3bpzjWps3byYxMZFJkyahlCIlJYWxY8eyceNGj/2/Eu2XDNGI\noHT2CToJCQkcO3aM4uJiPvvsM95//33Hc3V1dRw7dqzJ97XmzKk+YB3Xdvz4ccAqGfzyyy/z1Vdf\ncfLkSbTWVFVVobV2HA5xdg3xyMjIRp9XVVUBUFxczN69extUHzRNk4svvtjpOIVojiR4EZTOPmCh\nuLgYu91OfHw81113HTNmzGj2fZ44neett97iyJEjPPzww3Tu3JkDBw4wZ86cBgneWfHx8aSmpjoO\nFxHCk2SIRgSlDz/8kNLSUioqKnjzzTcZP348l1xyCR999BE5OTmAdRjJli1bHL1lT6mqqiIyMpKO\nHTtSUVHhGE93x6hRozh8+DBr1qyhvr6euro69u3bJ2PwwiOkBy+C0oQJE1iwYAHHjh1jzJgxXHfd\ndURGRnLHHXfwwgsvUFBQQGRkJIMHD2bIkCGAa733ll77/e9/n6eeeoqf//zn2O12pk2b5jig21VR\nUVHcf//9LF++nL///e9orUlJSeGmm25y63pCnE0O/BBBZ/bs2cyaNYuhQ4f6OxQhApoM0QghRIiS\nIRoRdDwxUVpcXMyvfvWrBtc6M0n65JNPurTaRohAJUM0QggRomSIRgghQpQkeCGECFGS4IUQIkRJ\nghdCiBAlCV4IIUKUJHghhAhR/x/2E2ykauqebgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.resample('A')['val'].max().plot()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEWCAYAAACQdqdGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VeWd+PHPc7IASW5ys0OIEAQFCagYwAqyqKXuik4n\nbWVa7XTsiFYdbKfUlzJOZ6BOtQqOVq0dqtb+WqXVpHXXWiKrSgArRFkDYQlkIysh63l+fxxyTUhu\n7pK7neT7fr18ATfnnvN9kvjNk++zKa21RgghhC0Z4Q5ACCGE/ySJCyGEjUkSF0IIG5MkLoQQNiZJ\nXAghbEySuBBC2Fi0Nxe99dZbfPDBBwBcccUVXHPNNTQ1NbFq1SqqqqrIyMhgyZIlxMXFBTVYIYQQ\nPXnsiR8+fJi//e1v/M///A+PPvoo27Zt4/jx4xQWFjJ16lSeeOIJcnNzKSgoCEW8IVdSUhLuEMJm\nKLcdhnb7pe324TGJHz16lAkTJhATE4NhGJx33nl88sknbN26lXnz5gEwf/58tmzZEvRgw8FuX9BA\nGspth6Hdfmm7fXhM4meddRa7du2iqamJ1tZWtm/fTnV1NXV1dTidTgCcTif19fVBCzKcn9TKysqw\nPRuk7eEUzvZL28PHbm33mMRHjx7NjTfeyPLly3n44YfJycnBMHq/TSnl88O9Fc4valVVVdieDdL2\ncApn+6Xt4WO3titf9075wx/+QGpqKm+//TYPPfQQTqeTuro6fvrTn7Jy5co+g+oeWH5+vs9BCiGE\ngDVr1rj+npubS25urndJvKGhgcTERKqrq1mxYgUrVqzgtddeIyEhgYULF1JYWMjJkydZtGiRV4GU\nl5f734oQczgcNDY2hjuMsBjKbYeh3X5pe+S1PSsrq8/XvZpi+Nhjj9HU1ERUVBT/8i//QlxcHAsX\nLmTlypWsXbuW9PR0lixZEtCAhRBCeOZzOSUQpCduD0O57TC02y9tj7y2u+uJy4pNIYSwMUniQghh\nY5LEhRDCxiSJCyGEjUkSF0IIG5MkLoQQNiZJXAghbEySuBAiouj2tnCHYCuSxIUQEcP84HXMVQ+F\nOwxb8WrZvRBCBJuuLEf/5fdgRIU7FFuRnrgQIuy0aWK++CTq2nxoa0W3NIc7JNuQJC6ECDv94dvQ\n2Yn66g2QlgnVFeEOyTYkiQshwkpXHUf/5fcYt96DMqIgfSRUSRL3liRxIUTYaK0xX/ol6ms3o0Zl\nA6DSMtFVx8McmX1IEhdChI1e/y6cakZ9beGXL6ZlQrUkcW9JEhdChIWuqUIX/A7jtntQUV/OSFHp\nI9HV4T2k204kiQshQs4qozyFuuJ61OixPT+YNhKknOI1SeJCiJDTHxdBYz3qqn/o/cG0TKipRJtm\nyOOyI0niQoiQ0x9/iHFtPiq693pDNWwYjIiD+towRGY/ksSFECGlOzth3xdwzhT3F6VLScVbksSF\nEKF1aD+kZqAciW4vUWmZaJmh4hVJ4kKIkNJ7dqLO7acXDlZPXFZtekWSuBAipPTunaiJHpJ4mqza\n9JZXuxgWFBSwfv16DMNgzJgx3HnnnbS0tLBq1SqqqqrIyMhgyZIlxMXFBTteIYSNuerht93T73Uq\nLRNTyile8dgTr6qq4oMPPuCRRx7hF7/4BZ2dnWzYsIHCwkKmTp3KE088QW5uLgUFBaGIVwhhZ4dL\nwZmCSnT2f116pvTEveQxiY8YMYLo6GhaWlro7Oykra2NlJQUiouLmTdvHgDz589ny5YtQQ9WCGFv\nes9O1MSpni90psDJRnRba/CDsjmP5ZSEhASuu+467rzzToYNG8b555/P+eefT319PU6n9dPU6XRS\nX18f9GCFEPam95SgLp7v8TplREFqBtRUwqizgh+YjXlM4hUVFbz55ps8/fTTxMXF8fjjj7N+/fpe\n1yml+nx/SUkJJSUlrn/n5+fjcDgGEHJoxcbG2ireQBrKbYeh3f5gtF2bnTTs+xzH4qUYXty7aeRo\nhjXVE+OYHNA4PInkr/uaNWtcf8/NzSU3N9dzEt+/fz8TJ04kISEBgJkzZ7J7926cTid1dXWuP5OS\nkvp8f9eDumtsbBxIO0LK4XDYKt5AGspth6Hd/mC0XR/aj3Y4ORkVA17c20xOo/nQQYz+FgUFQaR+\n3R0OB/n5+b1e91gTz8rKYu/evbS1taG1ZseOHWRnZ5OXl0dRUREARUVFTJ8+PeBBCyEGD73bi/nh\n3cmWtF7x2BPPyclh3rx5/OQnP8EwDHJycvjqV79KS0sLK1euZO3ataSnp7NkyZJQxCuEsCm9Zydq\nxhyvr1fpmZh7SzxfOMR5NU/8hhtu4IYbbujxWkJCAsuWLQtKUEKIwUWbJuz9HLVosfdvSpNVm96Q\nFZtCiOA7WgbxDpQzxfv3nD4wWWsdvLgGAUniQoigs+aH+zZAqeLiISYGGmX6cn8kiQshgk7v3gG+\nDGp2Sc2ULWk9kCQuhAgqqx5e4tvMlNOs8zalLt4fSeJCiOAqPwQj4lEpab6/N1164p5IEhdCBJVX\n+4e7IzNUPJIkLoQIKr1nJ3iz6VUfpJzimSRxIUTQaK1hj3/1cMCaZijllH5JEhdCBM+xwxA7DJWa\n7t/7U9KhoRbd0R7YuAYRSeJCiKCxjmLzr5QCoKKiwJkKNVUBjGpwkSQuhAiePTv9mx/eXfpIKan0\nQ5K4ECIotNbovSWoc3M9X9wPlZYpg5v9kCQuhAiOE1WgtTU4ORDpI2VL2n5IEhdCBIXevwvOnuT2\n1C+vpWWi5dBktySJCyGCo3Q36uyJA76NSpOeeH8kiQshgkIHKIlbS++lJ+6OJHEhRMDp9jZrD/Gc\nCQO/WbwD0OiTTQO/1yAkSVwIEXiHSmHkaNSw4QO+lVJKztvshyRxIUTABayU0kWW37slSVwIEXin\nZ6YEikofKTNU3JAkLoQIOH0g0D1xmaHijiRxIURA6doaaGuFjFEBu6dKz0RLOaVPksSFEIFVuhvG\nTRz4Ip/u5HAIt6I9XVBeXs6qVatQSqG1pqKigm984xvMnTuXVatWUVVVRUZGBkuWLCEuLi4UMQsh\nIljABzUBUjOgthrd2WntbChcPCbxrKwsHnnkEQBM02Tx4sXMnDmTwsJCpk6dyo033khhYSEFBQUs\nWrQo6AELISKbLt2NccO3AnpPFRNjzRdvqIPk1IDe2+58Kqfs2LGDzMxM0tLSKC4uZt68eQDMnz+f\nLVu2BCVAIYR96I52OFwKOecE/ubxDjjZEPj72pxPSXzTpk1ceumlANTX1+N0OgFwOp3U19cHPjoh\nhL0cOQhpmagRQSitJjhAVm324rGc0qWjo4Pi4mK3JRN3gxglJSWUlJS4/p2fn4/D4fAxzPCJjY21\nVbyBNJTbDkO7/f62vfXoQTonTiEuCJ+3k0nJxHS2Exvkr0kkf93XrFnj+ntubi65ubneJ/FPP/2U\ns88+m8TERMDqfdfV1bn+TEpK6vN9XQ/qrrGx0Z/4w8LhcNgq3kAaym2Hod1+f9tufv4ZnHd+UD5v\n5rARdFRX0hrkr0mkft0dDgf5+fm9Xve6nLJhwwZmz57t+ndeXh5FRUUAFBUVMX369IFHKYSwtYAv\n8uku3gFNkZdcw82rJN7a2sqOHTu4+OKLXa8tXLiQHTt2cO+997Jz504WLlwYtCCFEJFPN9RZSXZk\ndnAeIDXxPnlVThk2bBirV6/u8VpCQgLLli0LSlBCCBsq3Q3jzkUZQVpDGO+A40eCc28bkxWbQoiA\nCMoin25UvAMt5ZReJIkLIQJCl+5GjQ9eErfKKZLEzyRJXAgxYLqzEw7ug3HnBu8h8YkysNkHSeJC\niIErPwTJKaj4IM6vlp54nySJCyEGTO/fhQrgIRB9ik+A5ia01sF9js1IEhdCDFzpbgjioCaAio6B\n6Fg41RzU59iNJHEhxIDpA0Ee1OwiJZVevF52L4QY2nRNJXrXjt4f6OyAuhOQNSb4QXSt2kwfGfxn\n2YQkcSGER7q9HfOJn8LI0ajhvXcoVNd/E2WE4LAG6Yn3IklcCOGRfuMVyMzCWHx/YI9d85GKd6BP\nNhK+CCKP1MSFEP3SZfvR69/FWLQ4rAkckE2w+iBJXAjhlu5ox3zhCdTXv4typoQ7nNPlFDndpztJ\n4kIIt/Rbf4LkNNQll4U7FEu87GR4JkniQog+6SMH0GvfxPinO8NfRumSIOWUM0kSF0L0ojs6MJ//\nX9TN30GlpIU7HBdrYFPKKd1JEhdC9NL6+suQkIi6dEG4Q+lJBjZ7kSQuhOhBHz1E61t/wvjODyKn\njNJF5on3IklcCNGD+ftnGZ7/z6jU9HCH0lt8ogxsnkGSuBDCRddUQvkhYi+/Ntyh9G1EHLSesvYv\nF4AkcSFEN3rrRtS0r6CiQrCE3g/KMCAuXkoq3UgSF0K46K2bUBfNCncY/YtPlCTejSRxIQQA+kQV\nVJbDpPPDHUr/ZHCzB0niQggA9LZNqAtmoqIjfF88mWbYg1dfrebmZp599lkOHz6MUorFixczatQo\nVq1aRVVVFRkZGSxZsoS4uN5bVAohwkefqIa2VtTI0Z6vLd6Ice03QhDVwKj4BNnJsBuvkvjzzz/P\ntGnTuO++++js7KS1tZXXXnuNqVOncuONN1JYWEhBQQGLFi0KdrxCCB/o9/+M3vUZxrKV1qCgu+tq\na+DYETgvwkspIKfen8FjOaW5uZldu3Zx2WXWBjhRUVHExcVRXFzMvHnzAJg/fz5btmwJbqRCCJ/p\nQ/uh6jj8/ZP+r3OVUmJCFNkAyE6GPXjsiVdWVuJwOHj66acpKyvj7LPP5rbbbqO+vh6n0wmA0+mk\nvr4+6MEKIbynTRMOl6K+8T3MN17GuPBitysw9daNGFf+Q4gj9FO8A05UhTuKiOExiZumyYEDB/je\n977H+PHjeeGFFygsLOx1nbtvjpKSEkpKSlz/zs/Px+FwDCDk0IqNjbVVvIE0lNsO9m9/Z/lhmuId\nJF59M40fvs2IvTuJyes9fdCsraGx/BCOiy9FxcQCkd32tvQM2veWEB+k+CK57WvWrHH9PTc3l9zc\nXM9JPCUlhdTUVMaPHw/AV77yFQoLC3E6ndTV1bn+TEpK6vP9XQ/qrrHRPvUsh8Nhq3gDaSi3Hezf\nfvPzv6PHnE1TUxNc84+cXPM8xjlTenW4zPXvw9TpNLW0QksrENlt10Y0Zn1t0OKL1LY7HA7y8/N7\nve6xJu50OklNTaW8vByAHTt2kJ2dTV5eHkVFRQAUFRUxffr0wEYshBiYQ6WoMVbniwu/Ah3tsKO4\n12W6eCMqb3aIgxuAeAc0SU28i1ezU7773e/y5JNP0tHRQWZmJnfeeSemabJy5UrWrl1Leno6S5Ys\nCXasQggf6LJ9GFfdDFjL1Y3rvoH5+ssYU6e7euO6vhaOHIDcaeEM1TcJcrpPd14l8ZycHB5++OFe\nry9btizgAQkhBk5rDYdKYeyEL1+8aBa8/jLs3AZT86zrtm9GTZnuqoXbgiy770FWbAoxGFUdhxEj\nUI4vx6qUYaCu+wbm63+wkjynSynTbVRKAYiNBa3Rra3hjiQiSBIXYhDSZfuhqx7ejcqbBS2n4PNP\n0Q11Vm/dTqUUTs+Ek7niLpLEhRiMyvahxvaRxI0o1LX5Vm98+0eoKRehYoeFIcABkv1TXCSJCzEI\n6UP7Ud3r4d2oGZfCyUb0Gy/ba1ZKdwlSF+8iSVyIQUZrDWX7oY+eOHzZG6f5JEzJC3F0ARIv29F2\nifA9J4UQPquugNhYVGKy20vUzHmonHNRw2xYSuH0ToZNspMhSBIXYvA5tL/n1MI+KMMAL7anjVhy\nMISLlFOEGGR02b4vV2oOVjJX3EWSuBCDjC4r7XNmyqCSILNTukgSF2IQsVZq7nM7qDlYdJ3uIySJ\nCzG4nKiCqGiUMzXckQSXlFNcJIkLMZi4Wak56Eg5xUWSuBCDiC7bP/jr4SDzxLuRJC7EIKIP9b3c\nftCJd0Bzk3UE3RAnSVyIQcK1UnNM/3PEBwMVFQXDhsOp5nCHEnaSxIUYLGprrD+TB/mgZpd42ckQ\nJIkLMXicnlro7tDyQUd2MgQkiQsxaOiy/aghUEpxkWPaAEniQgwaQ2ZmymkqPhEt5RRJ4kIMGofc\nbz87KMUnSDkFSeJCDAq6rgY6OyAlPdyhhI7sZAhIEhdicDg9tXDIDGqCLL0/TZK4EIOALtuHGnt2\nuMMILVl6D3h5KMRdd91FXFwcSimioqJ4+OGHaWpqYtWqVVRVVZGRkcGSJUuIi4sLdryiH7q9HV30\nFuriuf2e6iLsSXe0o995tc8FLvqzYoyFi8IQVfio+ARM6Yl7l8SVUjz00EMkJCS4XissLGTq1Knc\neOONFBYWUlBQwKJFQ+ubKOIc3It+42X0G6+gLl2AuupmlCMp3FGJQCn5FL1lA2rWFb0+pOZeCbnT\nwhBUGMUnSk8cL8spWmtrSW83xcXFzJs3D4D58+ezZcuWwEcnfKIP7UfNmIPx0P9CWyvmg4sx//QC\nulGmYQ0GeusG1NyrMK68qfd/C25EDR9ivwnLwCbgZRJXSrF8+XLuv/9+PvjgAwDq6+txOp0AOJ1O\n6uvrgxel8E7ZPhgzHpWShrHoDoyHnoCWZsxlizFf+y26szPcEQo/6Y529N+3oC66JNyhRA7ZyRDw\nspzy3//93yQnJ9PQ0MDy5cvJysrqdY27UfGSkhJKSkpc/87Pz8fhcPgZbujFxsbaJt6GwweIu+Gb\nRHfF63DA4qWYVcdpengpI6bPIsaHX7nt1PZgiKT2t2//iJazcnCMyQnJ8yKp7e7ohATq29tIGDEc\nFR0TsPtGctvXrFnj+ntubi65ubneJfHkZGuQLDExkRkzZrBv3z6cTid1dXWuP5OS+q69dj2ou8ZG\n+/z0dDgctohXt7ZiVpbT7ExDnRnv8Hj02Ak0l5Vi+LAs2y5tD5ZIar+54a9w4cUhiyeS2t6vuAQa\njx9DJQVuID9S2+5wOMjPz+/1usdySmtrKy0tLQC0tLTw2WefMWbMGPLy8igqKgKgqKiI6dOnBzZi\n4ZsjB2DUGPc9kvSRUF0R2phEQOiODvSnn6Aumh3uUCKPbILluSdeX1/Po48+ilKKzs5O5syZwwUX\nXMD48eNZuXIla9euJT09nSVLloQiXuGGLtuHGtPPPOH0TNixNXQBicDZ9RmMHI1KSQt3JJFHBjc9\nJ/GMjAweffTRXq8nJCSwbNmyoAQl/FC2H86e6PbDKm0kZtXxEAYkAkVv3Yi6aFa4w4hMMrgpKzYH\nC33Iww52Uk6xJauU8hEqT0opfVEJDnTT0J5C69XApohsuq0VKsthdI77ixKd0HoK3dJs2/nE+mgZ\n5ut/QKEw7lga7nBCY88OSB+FSh1CG1v5QnriksQHhSMHIXM0Ksb9NCulFKRmWr3x7HGhiy0AdPkh\n9Osvo/fsRM29Er32LbTWQ2KzJ128UXrh/ZGBTSmnDAbWYQBeTB20WUlFHzuM+dyjmL94AMaOx1jx\nK9QNt4BhQN2JcIcXdLqzE/3px7LApz8J1qn3Q5n0xAPMfO23qK/MR2WNCd1DvTwMQKWPRFdVYIf+\nq7n2TfTrL6MW3IjxnR+gho/48oPZOdZvH4P9QOA9OyElHZU+MtyRRCwVn4g5xGvi0hMPIL1tE/rt\nP6H3fR7a55btQ43x4kSXtEywyQwV/ck6jNt/hHH113smcECNzkEfORiewEJIb5VSikfxCUO+Ji5J\nPEB0UwPm75+zdpKrqQ7dc9vboOKo1Tv1QKWPRNugnKI72uHwARh3Tt8XnJVj9cQHMW12ordtRuXJ\n1MJ+yZ7iksQDRb/8a9SMS1Ez5sCJqtA9+EgZZGShYod5vtYuPfHDByF9pNtZNCo7B330YEhDCrm9\nn0NyKipjVLgjiWzxiUP+xHtJ4gGg//4JunQ3auG3USnp6NoQ9sQ9zQ/vLi0TairRphncoAZIl+5G\n9bNwiVFnQeUxdHt76IIKMZmV4qUEB5xs6LVV9lAiSXyA9MkmzN89g3HrPahhw6yDakPZEz+9/aw3\n1LDhMCIOGmqDHNQAle7qf/VpTKz1A+n4kRAGFTra7ERv3yxJ3AsqJhaMKGhtCXcoYSNJfID0mtWo\naRejJk6xXkhOhdrqkPV2vZ5e2CV9JFRFdl3c6olP6vcalZ2DPnwgRBGF2L4vwOFEZfbe8ln0YYgv\n+JEkPgB6x1ZrAcrNt7peU7HDYEQ8NNQF//kd7XD8sE+Ld1RaJjqC6+K6odaa9+spgWXnwCCti+vN\na1Ez54Y7DPsY4gt+JIn7STefxPzdL3vPYYbQlVSOHoK0kVYZx1vpI6E6cpM4pXtg3Lkoo/9vTZU9\nOKcZ6lPN6G2bULMvD3co9jHEdzKUJO4n/afnUVOmo867oPcHU9IgBIObumyf94OaXdIyQ15O0aaJ\n9nKFpS7d5bGUAny54McGdF2N99d+sg4mXYBKDNwhB4OdinegJYkLX+hTzeiPP0R9/bY+P65S0tE1\nIeiJl+0HX+rhWFvShnyu+P5dmA//yKtxAl26p/+ZKV2S06Cj3Sq/RDDzrT9iLv0euqLcq+v1uncx\n5nwtyFENMo4kaBi6Z/xKEvdHdYU1j3mEm90AQ1RO8Wl6YZf0zJCXU3TVMThRDQf29H9dZycc3Afj\nzvV4T6WUNRZwpCxQYQac+c6r6I0fWJt2vbnG4/W6bL9VFph8YQiiG0SSU8GH33YGG0ni/qg6bpUl\n3FCp6eggJ3Hd0QHlh3zfkdCZAk2N1va1oVJTBcOGo7du7P+6o2WQkoaKT/DqtpFcFzffLUCvfx/j\nRytQC7+N/mwLuvJYv+/R699FXbrA43iAOENymtVJGKLku8UPuvo4qp8kbvXEg/xNVX4IUjN6D6p6\noIwoSM2AmsogBdaHmgrUpQvQWzf1uyjDmlrouRfuEqF1cfP9P6PXvYPxw+Wo5FRUfALqsmvQb/3R\n7Xt0yyn0lg2o2V8NYaSDg0pORddJEhe+qLLKKW6FoJzi16Bml7SMkC6/19WVqPOnQ2wsHNzr/sLS\n3f0u8jlTJC6/N//6F/TaN60E3u1MTPXVG9Cffux2eqcu3gDnTEYN9p0ZgyE5DWqlnCJ8YPXE+0ni\njiQ4dTK4JYtDpV6v1DxT15a0IXOiClIzURfNRhe7L6l4s8inh6wxcPyIVUuPAOYHb6A/eB3jhytQ\nKT1P4lHxDtS8q9Fv/6nP91oDmleGIszBx5kKtTVDdum9JHF/VFdYA4RuKMMIeu9gYD3x0B0Ooc1O\na7plSjpq+mz01o19/s+mmxqg/gRkneX1vdWw4eBMs3Zx7If5xsuYa9/yOXZf6M8/Rb9faNXA3Ryl\nphbcgN62udfsIH3kgHXIxZSLghrjYKWGDYPhw2GI7isuSdxH2jShutI66qw/QSyp6M5OaxBwzNl+\nvV+lZ6JDNUOl7gTEJ1pHx2XnQFSUtd/LmQ7shZxzrJq9LzwMbuqWZvT7f0a/+xrm397w7d4+0HtL\nUJdchkrNcHuNSki0Zqqc0RvX695Dzf4qKsrHtosvOUOzNiMSSRL3Vd0JiE/wuEpSpaQFb4bKscPW\nLA5/DzxOGxm6mnhNlVWDx5oWqPJmo7du6nWZ14t8zqCyc+CI+z1U9CfrYOJUjB+tQL9XGLQeuS4/\nbO2u6IFasBBdvNG1jkC3taI/WYe6VAY0ByQ5dcjOUPE6iZumydKlS/n5z38OQFNTE8uXL+fee+9l\nxYoVNDc3By3IiFLd//RCl5R0K4EFgS7b791JPu6kWQcmh6KGqGsqevROrSTeu6TicftZN6xphu7n\niut172HMuRKVlonxw+Xod17FLHrb5+d4dOywV0fyKUcias7X0O9YvXG9dZO1zUA/PXjhmUpOQw/R\nwU2vk/hbb73F6NGjXf8uLCxk6tSpPPHEE+Tm5lJQUBCUACONrqrw7szDYM5QKS/z6iQfd1RcPETH\nQGMIVrlVV1pTGrt0lYAOl7pe0qZplVP8SOL9TTPUh/Zbbcy1Fs+o9JFWIn/7j5jr3vH9WW7ojnbr\nN5vM0Z4vBtSVN6E/WY8+US0rNAPl9O6hQ5FXSbympobt27dzxRVXuF4rLi5m3rx5AMyfP58tW7YE\nJ8JIU11hlSM8CObhELr80MAPYg7VKT81PZO4q6TSfZbKsSPgSEQ5En2/f2qGNROoj70z9Pr3Ti+e\n+bLWrDJGWYn8zTWY69/z/Xl9qThmzdmPifHqcuVIQl26APO3T1pfg/NnBCaOoSxl6E4z9CqJv/ji\ni3z729+2ljqfVl9fj9PpBMDpdFJfP0T2Lqg+3u/MFJeUtCD2xL2rv/YnVOdt6prKXqUClTerR0nF\nqof70Qvn9Eyg0WN7Lb/XrS3oT9b3uXhGZWRh3Lcc/frLmB8V+fXcHo4d8vnroa5cCHtLULMuR0VH\nDzyGIc4qpwzNnrjH755t27aRlJRETk4OJSUlbq/rnuC7Kykp6fG+/Px8HA6HH6GGR2xsbI94G09U\nMWLMOKI9tEGPGUf9iWoSEhLcfm78oU81U9/UgGPceN9ncnRzavQYVGMdw/tpx5lt90dDbTXxY8cR\n1e0+eso0GrUmvraSqLETaD5ygKjJFzDMz2c1jzuXqOpjDJt+ieu11q0baJ80lYSxbrYlcEyk/c6f\n0PLKahwLru/zEm/b31JTiR43gRG+xO9w0P5v/0nUhPMwIvD/h0B87UOpM3sMJ+trAxJzJLd9zZov\n9+DJzc0lNzfXcxLftWsXxcXFbN++nba2Nk6dOsWTTz6J0+mkrq7O9WdSUlKf7+96UHeNjfbZNtLh\ncPSIt7OinOa4RJQ3bYiOofFYuX9lAjf0gb0wcjRNJwc2kGwmJkPpbtr7aceZbfeVNk3M6kpODovr\n9fnS0y6h6cP3MW7KpHPXDoxZX6XNz2eZmVm079/d4/2d7/0Z45p/7Dd+nTEa8/ABGurr+9yvxNv2\nmwf2wrSv0OFr/OecPg0qAv9/GOjXPtR0zHDME5U0NDQMuNMUqW13OBzk5+f3et1jOeWWW27hmWee\n4amnnuLf/u3fmDJlCnfffTd5eXkUFRUBUFRUxPTp0wMedKTRra3WydrOFO/eEITBTV1+CDXAUgqE\nqJzSUAv9tFELAAAfdElEQVRx8dZpR2c+v2vhT/NJaxbP6LF+P+bMjbD00TJrutmUvP7fFxcPCYkD\nHhvQxw4H5Gsi/KeGj7AG6wfpvuK6dLfbj/k9T3zhwoXs2LGDe++9l507d7Jw4UJ/b2UfNRWQluH9\nLnOp6VAb4Lq4H/XXPoViYPPMmSnd5ZwD7W3ojX+FsWcPrC6cNRbKD1mrQzk9oDn7Cu8WzwxwEy3d\n0WF9Hkd6NzNFBNEg3UNFt7Zg/nKF24/79H/O5MmTmTx5MgAJCQksW7ZsYNHZTZV3M1O6qJQ0dE01\ngauIW4tKAjIlLTkNGmrRHe2oaO9mVfiqr0HNLtYslVnoN15BDbA9X/aoK9DJqeiPizAeeNy79462\nevEqb5Z/D686Dsmpff62IUIs+fSqzbN83J45wukP34YJk91+XFZs+sDjFrRnSg7CXPFjh62NnwZI\nRUdbGwcFc7fFmn564lgLf2hu8ntmSg9njYMjB9HbNsHYCV5/ndRZA9yTvDxAvxmJAVPJqYNuwY9u\nbUW/V4hx3TfcXiNJ3BdVXk4v7BLgaYa6tcWqM/vyg6Q/6SODe95mTaVryX2fxp0L510A57jvZXir\nqy6u172LMdeH3QCzc2AA29nqY4dQPmzaJYJoEB4Oode/A+Mmovr57UKSuA90dUX/W9CeIeAn/Bw/\nAhlZAdsoSaVlut3fOhB0tftyClhzvKPu+2+Uo++ZTb5Q2TlWL7zyGJw/0/s3ZoyC+lp0i5+zfcoP\nw6iB/2YkAmCQrdrUba3odwowrnffCwdJ4r6p9nAYxJkCPDtFlwd4FkT6yOCet+mhnBJQo3Og/JDP\ni2eUEWWVQ44e8uux2ss9U0TwqeQ09CA6a1Ovfw9yJnjcJymik7hub6Pzif+0pqGFOxatPZ6t2UtS\nCjQ1WDMYAuHYoYDUw13SMoN2OITW+vRhECFK4hkj4fRydl/5e1an7uyEinIYme3ze0UQpAye7Wh1\nexv6ndcwrv+mx2sjO4mvew92brPKCOHWWAexw9yfcN8HFRUFickBO4lblx8OaP1VBfNwiIY6GD7C\nOrghBJQRhfHIb1AZWb6/2d9phlXHISnZ47bEIkSSB88JP3rD+zDmbNTYCR6vjdgkbv0kehVGneXx\nlPCQqKrwb0AxkIOb5YcCW39NzwxeOaW6wionhZC/UyWtnrj7PcndOjbwPWxE4KjhcWAYcCr8v7kP\nhG5vR7/9KsZ1nnvhEMlJfMP7cNY41EWXWINV4Y6n6rh3W9CeQaUEZnBTt7VaB1JkjBrwvVziHaA1\n+mRT4O55mj5R1f/MlEgyOseanuhjDy4gu0mKwHLa/3AIvfF9GD0WNe4cr66PyCTu+kl0/bespFVZ\nHu6QTm9B609PPECHQxw/ChmjAnqEl1Lq9AERQeiNV1eiPB1hFyGUIxGGj7AGYn1RftinM0FFCNh8\n1aaV+/7kVS28S2Qm8Y1/df0kUhlZkVFOqT7u28yULinpAekZBGrPlF6Ctfy+psLadsAussf5XBfX\nxw6hZHphRFEp9t6SVm/+AEad5dMCuIhL4rrj9E+irhVKGaOgKvxJXFdV+LZa87SAHQ4RpPqrSh9p\nnQ8ZYLqmyjY9cfB9hoo2O6HiKIySmSkR5fTgph3pjnb0W3/yuhbeJfKS+KYPYGQ2avzpQ3MdSdDR\nEZS6rU+8PVvzTKmBGdjU5YdRowPf61MXz0MXvYXeuTWwN/a0WjPS+DpDpboSHE5r9zwROZLtO81Q\nb15rlUwnnOfT+yIqieuODusnUbd6kFLqdF08fL1x3d5uTZnzZ7ZFoBb8BKsnPmY8xl0PYP5mFbpk\ne0DuqbW2XTlFZeegfVl+L3umRCS77p9i5b4/WuOAPoqsJL75b33+JLLq4mEc3DxRBclp/g0qjogH\nUw9owZJub7NiCOTMlG7U+EkYd96Pufpx9OcBSOSN9RAzzJryZReZo6Gmytoz3gvWSk1J4hHHpj1x\n/dFaSMtE+bGPUMQk8X5/EoW7Lu7rSs1ulFIDnytecdT6Agdpy1gANWEyxh0/wfz1Y+gv/j6wm9WE\ncKVmgKjoaCuRH/Ny+X0AzjkVQWDD/VN0Z+fp3OdbLbxL5CTxj4vc/yQKdzml2r854i6p6QP6xtIh\nmsqmzs3FWPwTzOceRe/6zP8bnT48w25Udg76sHeLfmTPlAg1Ih60dRatXeiPiyAlHXXuFL/eHxFJ\nXHd2ot9c43ZUVqWPCu80Q39Xa56mUtLRA5krfuxwyKayqXOnYNyxFPNXj9Be8qlf99A1lagU+yVx\na1vaMo+XadOU1ZoRSillq974l7mv/50K+xP2JK61Rr/8nFULn+jmJ1EE9MR9OdGnlwEOburyQyFd\nVKImTsW4/Uc0P7XcdeSZT+w2M+U0r6cZ1lRCvMOnfXRECNlomqH+ZB0kJcPEqX7fI6xJXGuN/sOv\n0IcPYPzrUvcXJiVDW2v4djOsrkD5chjEmQY6QyXQW9B6QU2+ECMpGfZ94fN7Pe0jHrFOTzP0uPxe\neuERTSWnBXYf/yDR5ule+PXfsn6D8FPYkrjVA/81+uA+jHse6rdXo5SC9FHBP9i3D64taAdQE1cp\n/n9T6Y52q+eXGfqDeGMunocu3uj7G0O5j3gAqaRkawOluhP9Xif18Ahnk5643rIBHIkw6fwB3Scs\nSVxrjX7l/9CluzH+7afWQbeeZIwa0DRDXVtD50/v9XkOqT7ZCCiIS/D72QNael9RDqnpqJjgzUxx\nJ+bieehtm60asJesOeJVtpoj3oM3i36Ohra8JXyUkhaw7Z+DRZud6Ddewbj+mwPqhUO4kvia36D3\nfYGxxMsEDqgB1MW11pgv/RKam6ztbX1gVhyDtIyBfaKdqVB/wq/6sg7jVLaorLMgwQH7d3n/ppON\nEGWgBvJDL4y8qYvrY6EvbwnvqeTI3z9FF2+EuHg478IB3ys8SXzPTowl/+Xb/+gDSeIfFUFtNcbS\n/0F/VOTTEU5mZfmASimA1YuOT4T6Ot/ffCy8252q6bPRW30oqdRUgh1npnTx0BPXWsOxI9ITj2QR\nXk7RphmwXjiAx8MI29vbeeihh+jo6KCjo4Pp06dzyy230NTUxKpVq6iqqiIjI4MlS5YQF+fdaL1x\n33+h4n3rqamMLMxNf/PpPQC67gT6j7/BuPc/USnpqFmXo995DfXN2716v1l53KfDkd3qWvCTnOrb\n+8oPw7SvDPz5flJ5szEf/w90/vdQhhc/86vtOTOli8rOwXy3wP0FJ6phxAjb/qYxJETIqk3z9ZfR\nJdt6f6Ct1dr6OPeigDzHYxKPiYnhoYceYtiwYZimybJly9i1axfFxcVMnTqVG2+8kcLCQgoKCli0\naJFXD1XxDt8j9WNfca015v97FjXnStRY67BRdeXNmA/9AH31162BLA/MysCcodh1OIRrYy8v6fJD\nGNfmD/j5/lKjzrJ+7SvdDV5szKNrbDozpcuos6DquLVfTl9kz5TIF5cAHe3ollNh26BMa41e+ybG\nrXdbh6+caVR2QHrh4GU5ZdjpMwTb29sxTZOEhASKi4uZN28eAPPnz2fLli0BCcitpGRoaUa3eL8S\nS29ZD5XlqG4T6ZUzBfWV+eh3X/PqHmblscD2xH2gOzqswyhGhn5mSncqbxZ66ybvLrbpzJQuKibW\nWth1rO/teXWYy1vCM2vBT3p4SyrHj1hn8l4wEzXhvN7/+dORdcOrJG6aJj/+8Y/5/ve/T25uLtnZ\n2dTX1+N0OgFwOp3U19cHLKi+KMOwphlWejfNUDfUoV/5P4zb7u01s0Nd9Q/ojR+gG2o93sca2AzA\nvtgp6b6fHFN1zNp4KyZ24M8fAJV3KXrbRq9mqdi+J477wU19qhld8qn0xO0gzKs29e6dqHNzQ/Is\nj+UUAMMweOSRR2hubmbFihWUlJT0usbdrwYlJSU9rs/Pz8fh8O+n0MmsMcQ01hHrxftPrn6MmHlX\nMeL8PupODgfNl34VtfYtRvzTHW7voTs7qT9RRVLO2QNOpB1TptH8zHskJCR4/WtU2+dVtI0ZR4Kf\nn6+Bio2NxeFwoCdOpnF4HHGVR4n2sMtaQ201cWPGER2mmAOhZfxEdGX5l+0/1UzrO6/R+varxJw/\ngxHzr8RIsG/7vNHVdrs6mTGS6FMnGeZHGwLR9pOlu4i+YIZfz+/PmjVrXH/Pzc0lNzfXuyTeJS4u\njmnTprF//36cTid1dXWuP5OSkvp8T9eDumtsbPQjfDBT0ugo20+rhwEBvXUj5sF9GN+5mw43z9JX\n3ID503tov+xaVKKz72uqK1BJyTS1tEKLd1uUuo0pMxuzpZnG3Z97fbiDuX8PpI/y+/M1UA6Hw/Vs\nfdElnFz/PsZI971QrTVm1XGaRySgwhRzIOj0UZifFdPaUE/DX15Bv1+IOu9C1I9+hjkqm5MasHH7\nvNH9a29HZkISHceO0OZHGwbadq015uef0nn9t/x6fn9x5ef3Hh/zWE5paGigudmqQ7e1tbFjxw7G\njRtHXl4eRUVFABQVFTF9+vSABeuWF9MMdVMD5h+ew7j1nn57zyolDTXjUvR7he5vduQgRoD28FZK\noS6ajd66wfs3HYucg3i76uL9LklvPglaWwOhdpY9DvbvouHeRXC4FONHKzBu/yFKjmKzj3BOM6wo\nByMqMGVYL3jsidfV1fHLX/7SGm3Vmjlz5jB16lTGjRvHypUrWbt2Lenp6SxZsiTowar0UZgff9jv\nNXrT36xekxczKdTV/4j5X/eir7zZOvG86x5Vx9FvvoL++yfE3XY3A+uDd3te3ixr0dENt3i8Vre3\no3d9hnHTtwP09AEanQPRMXBwH4w7p+9raiogdYALoyJBcirq6q+TMPtymp1p4Y5G+EElp2F+VhyW\nZ+s9O1ATp4Ts/wOPSXzMmDH8/Oc/7/V6QkICy5YtC0pQbmVmee6Jb9vk9baOKjXdWszyfiHq5u+g\nqyvQb65Bb/8Iddk1GMt/RezIUbQG6leisydC80mvVvzpTz+C0WMHto95ACmlTvfGN6LcJvGqkPU+\ngkkphbo2nyiHY9CXTQatcM4V310Ck/zfldBXYd+K1ifOVDjZhG5t6fPD+kQVHD/q04Yy6uqvo9e9\ni/nbpzCX3weJyRgrnsW4cZHPC5I8PsswXInQE73+PdTcKwP6/IFSedbqTXclFV1TgfLnHFIhAi05\nLSzlFK01es9O99tqB4GtkrgyDKun5+aoNr1tszUv04djzFRaJuqrN0BCIsbyZzBu+qeAzuHs9by8\n2R53BtSVx+DIQdSF4Vup2aezxoFScGh/j5d1YwPmqy+iX38Fdd4FYQpOiG4SHNb21V6emRowVccA\nbU2HDhGfZqdEhK7BzexxvT6kt27EuPrrPt9yIKdq+Gz8JGhqRB8/gnKzElRveA91yWVh2bmwP0op\n114qauwE9MlG9HuF6A/fQeXNxviPJ1B23b1QDCpKKXCmWLsZZmaF7LnW/PDQ1cPBZj1xsHYz7Ouo\nNl1bY+0zEoBdwYJJGQbqokvcroDUHR3ojR+gLv1aiCPzTtdvEuaf/x/mA3dAYz3GspUY375TEriI\nLMkDPKDcH3t2QghLKWDDJE5G34Obettm1PkzIq732peu2nKfPvsEMrMidzrbmPHWXhC1NRgPPIbx\nnR/YfoWmGJxUSprP5wcMhKse7ueBx/6yXTlFZYzCLO4911pv24jxtZvCEJEfzjkP6mvRleWojJ6/\n6pnr3o24Ac3ulFJEPfBYuMMQwrNQL72vroDOzpCfwmXDnnjvBT+67oS1B/TkyC6ldFFGlFVSOWOA\nU1dXQNk+1EWzwhSZEINIcmhP+OnqhYd6nYT9knhKGjTWo9u+HHXW2z9CTZ0e9o2ifGGVVHrWxfXG\nv6Iuno+KHRamqIQYPFRKBrp0N7q9LTQP3L0TQrTpVXe2S+LKiLIOHaiqcL2mt25ETZ8dxqj8cE4u\n1FajTx/+rDs70Rv+ipoTmQOaQtjOlItQmaMxn/5ZSBK5NT88dIt8utguiQOnBzetAyJ0Qy0cKoXJ\n08IclG9UVBRq2iVfDnDu3AopaajRY8MbmBCDhIqKQn3vPtSwEZjP/I/7gz4CQNdUWif2BOAAGV/Z\nMol3n2aot32EmppnyxKEypvlqotH+oCmEHakoqJQ//JDiInFfDZ4iTwc88O72DKJdx/c1Ns2ofJs\nOhA4cSrUVKL3fQ77vkBNvzTcEQkx6KjoaIzbfwRRUZi/+jm6IwiJfM+OkM8P72LLJK7SR6GrjqEb\n661d9abkhTskv1glla9g/vox1Mw5qGHDwx2SEIOSio7G+P6/g1KYv3rUOvowgPSekpDPD+9iyyRO\nZhZUlFuzUnKn2bKU0kXlzYYTVTKgKUSQqegYjH/9MWgT89ePenXcoDf0iSo41Ry2Y/vsmcRT0qGh\nFv1xkf1mpZxp0vmof16CGjM+3JEIMehZiXypdVbvpx8H5J56jzW1UBnhSae2TOIqKgpSMmxdSumi\noqIwLrks3GEIMWSomBiMG76F+cbL/Z9U5a09JahzQz+1sIstkzhgDW5OzZM6shDCdxdeDBr4+ycD\nvpXevRM1MfSLfLrYNomrGXMwLr8u3GEIIWxIKYVx/TcwXx9Yb9x842WIiYGs8K3vsG0SN2ZdHrbR\nYCHEIHDhV6CzA/w8i9N8cw3643UYS/4rbPVwsHESF0KIgVCGgXH9NzFf/4PPvXHz7T+hP1qL8cPl\nqKTkIEXoHUniQoiha9ol0N5mbXvhJfOdV9EbP7ASuDMliMF5R5K4EGLIUoaBus772rj5XgF6/Xun\nE3hqCCL0zOOhEDU1NTz11FPU19ejlOKKK67gmmuuoampiVWrVlFVVUVGRgZLliwhLi4uFDELIUTA\nqLxZ6NdfhpLtMOUit9eZ7/8ZXfQ2xo9+hkqOjAQOXiTxqKgobr31VnJycmhpaWHp0qVccMEFrF27\nlqlTp3LjjTdSWFhIQUEBixYtCkXMQggRMMqIQl2bj/nGyxi5vXdD1VXH0W+8gt5bgvGjFaiUtDBE\n6Z7HcorT6SQnJweA4cOHM3r0aGpqaiguLmbevHkAzJ8/ny1btgQ1UCGECBY141I42QRffOp6TVdX\nYL74JOaKH0JKGsYDj6NSIu8wcJ/O2KysrKSsrIxzzz2X+vp6nE4nYCX6+vr6oAQohBDB5uqNv/4y\n5viJmGueR2/dhJp3NcaKZ1HxjnCH6JbXA5stLS08/vjj3HbbbQwf3nuVZDj20RVCiEBRM+dAYwON\nS/8F4hMw/vsZjJv+KaITOHjZE+/s7OSxxx5j7ty5zJgxA7B633V1da4/k5KS+nxvSUkJJSUlrn/n\n5+eTlZXV57WRyuGI7C9iMA3ltsPQbv+QbPtv/hzuCPq1Zs0a199zc3PJzc0F7YUnn3xSv/DCCz1e\ne+mll3RBQYHWWuuCggL9u9/9zptb+eWVV14J2r09+Y//+I+wPVtraXs4hbP90vbwsVvbPfbEd+3a\nxfr16xkzZgw//vGPUUrxrW99i4ULF7Jy5UrWrl1Leno6S5YsCdpPn9zc8G0uk54e3oEMaXv4hLP9\n0vbwsVvbPSbxSZMm8corr/T5sWXLlvn8QH+E84uakZERtmeDtD2cwtl+aXv42K3tsmLTg3B/Q4XT\nUG47DO32S9vtQ2kdiF3RhRBChIP0xIUQwsYkiQshhI35tGJzsHjmmWfYtm0bSUlJ/OIXvwCgrKyM\nX//617S2tpKens4999zD8OHD2bBhA3/5y19QSqG1pqysjEceeYSxY8dSWlrK008/TXt7O9OmTeO2\n224Lb8O84Evb29vbefrppzl8+DCmaTJ37lwWLlwIMOjb3tHRwXPPPUdpaSmGYXDbbbcxefJkwJ5t\n92cju4KCAtauXUtUVBS33XYbF1xwAWC/9vva9qamJh577DH279/P/Pnz+ed//mfXvSKy7YGe52gH\nX3zxhT5w4ID+4Q9/6HrtJz/5if7iiy+01lqvXbtWv/zyy73eV1ZWpu+++27Xv++//369d+9erbXW\nP/vZz/T27duDHPnA+dL2tWvX6lWrVmmttW5tbdV33nmnrqqq0loP/ra/8847+umnn9Zaa11fX6+X\nLl3qeo8d215bW6sPHDigtdb61KlT+p577tFHjhzRL730ki4sLNRa91zvcfjwYf3v//7vuqOjQ1dU\nVOgf/OAH2jRNrbX92u9r21taWvSuXbv0+++/r1evXt3jXpHY9iFZTpk0aRLx8fE9Xjt+/DiTJk0C\nYOrUqXz88ce93rdx40ZmzZoFQF1dHadOnWLChAkAzJ071xabgPnSdqfTSWtrK6Zp0traSkxMDCNG\njBjUbf/kE+vg3CNHjjBlinX8X2JiIvHx8ezfv9+2bfd1I7vi4mJmzZpFVFQUGRkZjBo1in379tmy\n/b62fdiwYUycOJHo6J6Fikht+5BM4n3Jzs6muNg6a2/z5s3U1NT0umbTpk1ceumlAJw4cYLU1C/3\nFE5NTeXEiROhCTbA3LX9wgsvZMSIEXz/+9/nrrvu4vrrryc+Pn5Qt726uhqAsWPHUlxcjGmaVFZW\nUlpaSk1NzaBouzcb2Z04cYK0tC+3XE1JSeHEiRO2b/9ANvGL1LZLEj9t8eLFvPvuu9x///20tLT0\n+im8b98+hg8fTnZ2dpgiDB53bV+3bh1tbW0899xzPPXUU7z++utUVlaGOdrActf2yy+/nJSUFO6/\n/35efPFFJk6ciBHGw3ADZShvZDdY2z4kBzb7kpWVxQMPPADAsWPH2L59e4+Pb9y4kdmzZ7v+nZKS\n0qO3XlNTQ0pK+M/b84e7tu/Zs4eZM2diGAaJiYlMnDiR0tJSJk2aNOjbbhgGt956q+u6ZcuWMWrU\nKOLj423bdl82sktJSXH9VgJfttOu3/cD2cSvS6S23f5dCz9prXucqdfQ0ACAaZq8+uqrLFiwoMe1\nmzdvdtXDwfoGiIuLY9++fWitWbduneubI9J52/asrCx27NgBWL2YvXv3Mnr06CHR9ra2NlpbWwH4\n7LPPiIqKsn3bn3nmGbKzs7nmmmtcr+Xl5VFUVARAUVER06dPB2D69Ols2rSJjo4OKisrOX78OBMm\nTLBt+31puzuR2vYhuWLziSee4PPPP6exsZGkpCTy8/M5deoU7777LkopZs6cyS233OK6/vPPP+f3\nv/89y5cv73Gf0tJSfvnLX7qmG333u98NdVN85kvb29vbeeaZZygrKwPgsssu47rrrgMGf9urqqpY\nsWIFhmGQkpLCHXfc4aoR27Htu3bt4qGHHmLMmDEopVwb2U2YMIGVK1dSXV3t2siua/C3oKCAv/3t\nb0RHR/eaYmin9vvT9rvuuouWlhY6OjqIi4vjwQcfZPTo0RHZ9iGZxIUQYrAYsuUUIYQYDCSJCyGE\njUkSF0IIG5MkLoQQNiZJXAghbEySuBBC2JgkcSGEsDFJ4kIIYWOSxMWgZZpmuEMQIuhkAywRke66\n6y4WLFjAunXrqKurY8aMGdx+++1ER0ezdetWXnnlFaqqqsjOzub2229nzJgxrvd97WtfY8OGDZSX\nl/PSSy+53X3wrrvu4qqrrmLdunVUV1dzwQUX8IMf/IDo6GhOnjzJk08+yb59+zBNk3PPPZfvf//7\nrg2PfvrTnzJx4kRKSkooKytjypQpLF68mOeff56tW7cyevRo7rvvPtdS/aNHj/L8889TWlrqWvJ/\nySWXhOaTKQY16YmLiLVhwwYefPBBnnzyScrLy3n11Vc5ePAgzz77LP/6r//Kb37zGxYsWMDPf/5z\nOjo6XO/btGkT999/Py+88ILH7WM/+ugjHnjgAZ566inKyspcGyJprbn88st55plnePrppxk2bBir\nV6/u8d7Nmzdz991386tf/Yrjx4/z4IMPcvnll/P888+TlZXFH//4RwBaW1tZvnw5c+bMYfXq1dx7\n772sXr2ao0ePBvYTJoYkSeIiYl111VWkpKQQHx/PzTffzIYNG/jrX//KggULGD9+PEop5s6dS0xM\nDHv37nW97+qrryYlJYWYmBiPz7j66qtxOp3Ex8eTl5fHwYMHAUhISGDmzJnExMQwfPhwbrrpJr74\n4ose750/fz4ZGRmMGDGCCy+8kJEjRzJlyhQMw+CSSy5x3Wvr1q1kZGQwb948lFLk5OQwc+ZMNm/e\nHLDPlRi6pJwiIlb3U1TS09Opra2lurqaDz/8kLffftv1sY6ODmpra/t8nyddJ7uAdSxXXV0dYG1F\n+8ILL/D3v/+dkydPorWmpaUFrbXr8IDu+0/Hxsb2+ndLSwsA1dXV7N27t8eOd6ZpMmfOHK/jFMId\nSeIiYnXfgL+6upqUlBRSU1O5+eabuemmm9y+LxAntPzlL3/h2LFjPPzwwyQmJnLw4EGWLl3aI4l7\nKzU1ldzcXNfhE0IEkpRTRMR69913OXHiBE1NTbz22mvMmjWLK664gvfee499+/YB1mEV27Ztc/V6\nA6WlpYXY2FhGjBhBU1OTq77tj7y8PMrLy1m3bh2dnZ10dHSwf/9+qYmLgJCeuIhYs2fPZvny5dTW\n1jJjxgxuvvlmYmNjueOOO1i9ejXHjx8nNjaWSZMmMXnyZMC3Xnh/11577bX87//+L9/73vdISUnh\nuuuucx2o7Kvhw4fz4IMP8uKLL/Lb3/4WrTU5OTl85zvf8et+QnQnh0KIiHTXXXexePFipkyZEu5Q\nhIhoUk4RQggbk3KKiEiBGJysrq7mvvvu63GvroHJxx9/3KdZLEJEKimnCCGEjUk5RQghbEySuBBC\n2JgkcSGEsDFJ4kIIYWOSxIUQwsYkiQshhI39f6RBgjHO5VLnAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# The fewest?\n", "df.resample('A')['val'].min().plot()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4nNV1/z/3HY2W0YyW0b7blneBjVewMXhhCwESQ1In\nTZuGFNKyNCGmza8hlKQJoWkSAjhtQtsQQtOkiwOxA5jFxHi3wRbeJazFq/Z9GWkkzfLe3x9jyVpm\nNItG+/08jx/L73LnXo/mzHnP/Z5zhJRSolAoFIophzbeE1AoFArF6KAMvEKhUExRlIFXKBSKKYoy\n8AqFQjFFUQZeoVAopijKwCsUCsUUxa+Bf/HFF/nKV77C3/3d3w0598Ybb/C5z32Ojo6OvmPbtm3j\na1/7Gps3b+bkyZPhna1CoVAoAsavgV+/fj1PPvnkkONNTU2cOnWK5OTkvmOVlZUcPnyY559/niee\neIKXXnqJqSyzLyoqGu8pjBtq7dMTtfbJhV8DP3/+fGJjY4cc/8///E+++MUvDjhWWFjI6tWrMRgM\npKamkpGRQXl5efhmO8GYjG94uFBrn56otU8uQorBFxYWkpSURG5u7oDjzc3NAzx6q9VKc3PzyGY4\nDOP9H15fXz9ur63WPn6otY8f47n+ybj2oA28w+Fg27ZtbNq0KegXCzfj/cve0NAwbq+t1j5+qLWP\nH+O5/sm4dhFILZqGhgZ++MMf8uyzz3L58mWefvppoqKikFLS3NyM1Wrln/7pn9i9ezcAGzduBOCZ\nZ55h06ZNzJkzx+tk+094InxhKBQKxWRk69atfT8XFBRQUFAAQEQgN0sp+zZLc3Nz+cUvftF37tFH\nH+WHP/whZrOZ5cuX89Of/pS7776b5uZmamtrmT17ttcx+0+il+rq6uBWNc5YLBZsNtt4T2NcUGtX\na59uTNS1Z2Zm+nSQ/Rr4LVu2UFxcjM1m4+GHH2bTpk2sX7++77wQou/n7OxsVq1axebNm4mIiODB\nBx8ccF6hUCgUY0dAIZqxQnnwkwe1drX26cZEXXtmZqbPcyqTVaFQKKYoysArFArFFEUZeIVCoZii\nKAOvUCgUUxRl4BUKhWKKogy8QqFQTFGUgVcoFIopijLwCoVCMUVRBl6hUCimKMrAKxQKxRRFGXiF\nQqGYoigDr1AoFFMUZeAVCoViiqIMvEKhUExRlIFXKBSKKYoy8AqFQjFFUQZeoVAopijKwCsUCsUU\nRRl4hUKhmKIoA69QKCY8TrfOLz+qo9PhHu+pTCqUgVcoFBMaKSX/+mEtr59tobSpe7ynM6lQBl6h\nUExoflfUREWbg9vy47nUqgx8MCgDr1AoJiwHLrXzblkrT67NYl5yDBdbesZ7SpMKZeAVCsWEpKSx\ni38/Wsc/rMsmyWRkRmIUF1uVgQ8GZeAVCsWEo67DwQ/2VfHVG9KZmRgNQG58FFXtDly6HOfZTR6U\ngVcoFBMKu9PNM3uquG+hlZXZlr7jUREayaYIqm2OcZzd5EIZeIVCMWFw65If769mQWoM98xLHHI+\nLyFaxeGDQBl4hUIxYShusNNkd/GV5WkIIYacn5EYxSUVhw+YCH8XvPjiixw7doz4+HieffZZAH7z\nm9/w0UcfERERQVpaGo888ggmkwmAbdu2sXv3bgwGA/fffz+LFy8e3RUoFIopQ2ljN4vSTURoQ407\nwIyEKN4rbx3jWU1e/Hrw69ev58knnxxwbNGiRfzkJz/hxz/+MRkZGWzfvh2AyspKDh8+zPPPP88T\nTzzBSy+9hJRqQ0ShUARGWVMXc5NjfJ7PS1BKmmDwa+Dnz59PbGzsgGOLFi1C0zy3zpkzh6amJgAK\nCwtZvXo1BoOB1NRUMjIyKC8vH4VpKxSKqUhpUzdzkqJ9nk8zG+lw6HSokgUBMeIY/O7du1myZAkA\nzc3NJCcn952zWq00NzeP9CUUCsU0oMnuxOGWpJuNPq/RhCAvIVLF4QNkRAb+97//PQaDgTVr1oRr\nPgqFYppS1tTN3KRor5ur/ZmhlDQB43eT1Rd79uzh+PHjfPvb3+47ZrVaaWxs7Pt3U1MTVqvV6/1F\nRUUUFRX1/XvTpk1YLBav105UIiMjJ92cw4Vau1p7uLlka6MgI97v+HPT7Vxo6hrz92Aiv+9bt27t\n+7mgoICCggIgQAMvpRywWXrixAlef/11vvvd72I0Xn2cWr58OT/96U+5++67aW5upra2ltmzZ3sd\ns/8kerHZbIGvaAJgsVgm3ZzDhVq7Wnu4OVPdxsYFVr/jZ0TDzoaOMX8PJur7brFY2LRpk9dzfg38\nli1bKC4uxmaz8fDDD7Np0ya2bduGy+Xi+9//PuDZaH3wwQfJzs5m1apVbN68mYiICB588EG/j1sK\nhUKhS0l58/AbrL3kJXi08LqUaMq+DItfA//YY48NObZ+/Xqf1997773ce++9I5uVQqGYVlS1O4iL\nMhAX7T+oYI4yYI7UqO9wkm6JHIPZTV5UJqtCoRh3Shu7mJvkW/8+GKWHDwxl4BUKxbhT1tTNnGT/\n4ZleZiSokgWBoAy8QqEYd/wlOA1mRmK08uADQBl4hUIxrvS4dCrbepiVGJwHr7Tw/lEGXqFQjCsX\nWnrIjo8kKiJwc5QZF0mj3UmPSx/FmU1+lIFXKBTjSllTcBusABGaICsuksttyosfDmXgFQrFuFLa\nGFz8vZc8tdHqF2XgFQrFuFLa1MWcYUoE+0LF4f2jDLxCoRg32nvctPe4yY4LPmFJKWn8owy8QqEY\nN8oau5htjQ6p5EBvspNqKuQbZeAVCsW4URak/r0/idEGBNDSrZp/+EIZeIVCMW6U+mnRNxxCiCtx\n+O4wz2rqoAy8QqEYF6SUQWewDiYvUdWkGQ5l4BUKxbhQ1+EkUhMkmXy36PPHjIQoLikljU+UgVco\nFONCaVM3c4MoMCY7O4Ycy0uI4pJKdvKJMvAKhWJcKG3qYk6AGayyuwv9W3+FrKkccDw3Poqqdgcu\nXSlpvKEMvEKhGBfKGgP34OWHe8HeAdWXBhyPitBIiTVS1e4YjSlOepSBVygUY45Ll1xs7Sbf6t/A\nSymR778JM+ciayqGnM9TShqfKAOvUCjGnEutPaTGGjEZDf4vLjkNUiLW3Qk1VUNO58RHUqk8eK8o\nA69QKMac0sbA9e/6+28i1t+FyMhB1lYOOZ9ujqTW5gz3FKcEysArFIoxp7y5m9mBhGeaGqC0CLFq\nPaRlQV0VUh9YAz7DbKS2Q3nw3lAGXqFQjDnnmruZHUCCk9z7FuKGdYjoGIQpFmJM0NI04Jp0SyS1\nHcqD94Yy8AqFYkxxuHWq2h3kJUQNe5109CAP/BGx7pNXD6Znw6CN1oRoAw63jt2patIMRhl4hUIx\nplxs6SErLpJIw/DmRx7dD3n5iPSsvmMiI3tIHF4IQZqKw3tFGXiFQjGmnGv2L4/slUZqG+4eeCI9\nG2q8bbSqOLw3lIFXKBRjSkAbrOfOQpcdCpYOOOxbSWNUHrwXlIFXKBRjSkAefK80UhtkotKzwZuB\nVxutXlEGXqFQjBm9G6wzEn1vsMrWZmTRMcSNtww9mWAFR8+QwmPpZiM1KkQzBGXgFQrFmBHIBqvc\n9w5ixU0Ik3nIOSGEVy9eJTt5J8LfBS+++CLHjh0jPj6eZ599FoCOjg5eeOEFGhoaSE1NZfPmzZhM\nJgC2bdvG7t27MRgM3H///SxevHh0V6BQKCYN/sIz0uVE7nsXbfP3fF4j0rORNRWI/Pl9x1JijTR3\nuXDpkggt+P6uUxW/Hvz69et58sknBxzbvn071157LVu2bKGgoIBt27YBUFlZyeHDh3n++ed54okn\neOmll1RDXIVC0YffDdbiE5CSjsjK831NxlAP3mgQWGMiaOhUXnx//Br4+fPnExsbO+BYYWEha9eu\nBWDdunUcPXq07/jq1asxGAykpqaSkZFBeXn5KExboVBMRvx68Cc+RCy5YdgxPB68t41WIzU2FYfv\nT0gx+La2NhISEgBISEigra0NgObmZpKTk/uus1qtNDc3h2GaCoVisuNvg1XqOvLkEcR11w8/UEaO\nVyVNhlkpaQbjNwYfCEIEH/MqKiqiqKio79+bNm3CYrGEYzpjRmRk5KSbc7hQa1drD5aP6zrISYgm\nKSHe63lXaRH2uATi8ucNO46MmUNbSyPmqChEZGTf8dykDpq7nKP23kzk933r1q19PxcUFFBQUACE\naOATEhJobW3t+zs+3vOGWa1WGhsb+65ramrCarV6HaP/JHqx2WyhTGfcsFgsk27O4UKtXa09WE5X\ntjAzIdLn/fqh3bBoRWDjJ6ViO186IFafGKlzqqpz1N6bifq+WywWNm3a5PVcQCEaKeWAzdJly5ax\nZ88eAPbs2cPy5csBWL58OYcOHcLlclFfX09tbS2zZ88e4fQVCsVUwN8Gqzzxof/wTC/pQ8M0KkQz\nFL8e/JYtWyguLsZms/Hwww+zadMmNm7cyPPPP8/u3btJSUlh8+bNAGRnZ7Nq1So2b95MREQEDz74\nYEjhG4VCMfU419zNHbMTvJ6TtVWe0gR5gTmEIiPLI5XsdyzdYqSuw4GUUtmdK/g18I899pjX4089\n9ZTX4/feey/33nvvyGalUCimFH43WE9+iFi8cmhpAl+k50DR8QGHTEYDkQaN1m43iTFh2V6c9KhM\nVoVCMer4y2ANKjxDb9ngoQ2401RVyQEoA69QKEad4fTvsr0Vqi7D/EWBD5ieDbXe2vepkgX9UQZe\noVCMOuXDGfhTR2HhYoTRGPB4IsYEplhoaRxwPN2iPPj+KAOvUChGnWE9+CDDM314af6h6sIPRBl4\nhUIxqvRtsHrpwSp7eqDkNOLa5UGP6619X7olkhollexDGXiFQjEi3LrkXHO3z/OXWj0brFERXszN\nx8chbzYiNoQMUR8efJ0K0fShDLxCoRgR751r5fG3L3L4svcsz/ImP+EZP8XFfOGtfV9iTAR2p06X\nU/dx1/RCGXiFQhEynQ43/3OqkUevT+fnR2opa+oaco2vDVapu5GnCkOLv8MVD36gVFITgjTlxfeh\nDLxCoQiZV4uaWJpp5vbZCTx6fTo/2Fs1pCa7zw3WcyUQb0UkpYb24glWcDqQnQOfHNLNKg7fizLw\nCoUiJGptDt4rb+XPF3tKhN+QY+Ge+Yk8s7cSu9MN+NlgDVU9c4W+9n0qDu8TZeAVCkVI/PpEA/fM\nt5Jkuqpf37jAymxrND85UI1bl1xq7SHTMnSDVUqJPPHBiAw8XGn+MURJo6SSvSgDr1Aogqa43k5J\nYxcbFwwsBy6E4KGV6Tjckl8dr6e8qZvZSV7CMzUV4HJC7qyRTSTDmwevQjS9KAOvUCiCQpeSX35U\nzxevS/EqfYzQBH9/UxbHqjt5rajJ+wbrsUOe4mIjrPro24NXIRpQBl6hUATJ3gvtCAE3z4jzeY05\nysBT67Jx6pL5yTEDzkmnE7nnHcTNd4x8Ml7a96XFGmm0u3Dr0sdN0wdl4BUKRcB0Od3818kGHliW\niubH+86wRPLyvbOZNciDl0f2QVYeInvmyCeUkg7NjUjnVY/daNBIiDbQaFdhGmXgFVOGv3nzPPUq\n9jqqbD1Zy4KUGBakmAK63qAN/BKQUiJ3bkO7Y2NY5iMiIiA5DeprBhxPt0RSozZalYFXTA3sTjcV\nbQ7ONg5NtFGEhya7k22n6/iL61JCH6ToGGgaLLgufBPzkvCUrurCA8rAK6YIVe2eD3Opl0xKxciQ\nUrL3QhvfeOcSm67LIM0cGfJY+s7tiNvvDWtLPU/7Pi/9WZUH779ln0IxGahsc2CNiaC00XfRK0Xw\nXGjp5j+O1tHt0vnGmkxW5qdhs3mvOeMPefkc1FQiVqwJ7yQzcuF04YBD6RYjBy6p3wVl4BVTgqp2\nBzfPiOPt0hZcuiRCU02XR4Ktx81vTzZwqMLGFxYlc1t+wpB4erDIndsRt96DiAi8sUcgiIxs9J3b\nBxxTrfs8qBCNYkpQ2e5gtjWaNLORS6094z2dSc2uc608+uZ5hICf3T2LT8xJHLlxb25AnjmGuCk0\naaSUkppKB7o36WN6NtRXIXV336HeEI2U01sqqQy8YkpQ1e6pOT4nKYZStdEaErqUvHKsnteKm/nu\nhhz+ekU6lihDWMaWu95ArN6AMMUGPy9dcuKIncKDdpobXEPOi+gYMMdDY33fMXOUAYMG7T3uIddP\nJ5SBn6ZIKalo62FbcRPHqjvGezojwq1LajucVwx8NKVNKvYaLE63znMHqznb2MU/357HzETv9dtD\nQdo7kQd3IW75VPDzcko+3NeJ0yHJy4+kucmHwfZRsqB2mstmVQx+GuFw65yps1NY3clHVR04dcms\nxCg+qOhgaaZ5vKcXMvWdTuKjDERFaMxLjmFHact4T2lS0eFw84N9VVgiDXx3Q473zksjQB7YiShY\ngkgKTl7Z3aXz4b5OEpMMXLM0hrpqJ5fPe4+ri4xcZM1lxOIVfcfSzJ6SBfMGZdJOJ5SBnyZsPd3I\nto+byY2PYkWWmSduziIvIQqnLvniq+V09Lgxh+lxfKypaneQFe8pR5ubEEV9hxO7043JODnXM5Y0\ndDr53u4KFqXH8pdLU0ccax+MdLmQf3wD7dFvBXWfrd3Nh3s7yMuPYvaCKIQQJCZFcPJoF1LKoTLL\njGw4d3bgIYvy4JWBnybsOt/GM7fmDkkbjzQIClJjOFHbyZo837VFJjJV7Q6y4jza7AhNMDMxmvKm\nbhalBx/vnU5cbOnme3sq+fR8K5+anxhWbXovsvAApGYg8mYHfE9Tg4vCg50svC6GnBlXNffRMRpG\no6DDpmOJG/jlLTJz0A+8N+BYutlIcYN9ZAuY5KgY/DTA6dZpsrvI9dJ0AWBpZizHqjvHeFbho6rd\nQXbcVUMwN1nF4YfDrUt2lLTw7V0VfHlJKp9eYB0d4y4l8r3taLcHXpbA1uam8GAnS28wDTDuvSQm\nG2hpHLrR2lt0rL9qRtWFVwZ+WlBjc5JqNvrUhi/NMHOspnPSSsoqryhoelFKGt+cqbOz+e2LHK6w\n8fStudw0TEXIEXPuY+juhmuWBXzL+dIeZs6JIiXdu1bemhRBS+PQjVYRa4EII7Q29x1LijHS3OXl\ny2AaMaIQzbZt29i/fz+appGbm8sjjzxCd3c3L7zwAg0NDaSmprJ582ZMpsAKEylGh8r2ngEe7mAy\n4yKJMggutvaEVT0xVgz24OclR/OrY/XD3DH9aOh08srxekoauvjyslRW51hGxWvvj3x/B2LDXQgt\nMD/S4dCpqXCy7k6Lz2sSkw1cKPeR55CZCzWXITHJc21MBM1dLu8x+2lCyB58Q0MDu3bt4kc/+hHP\nPvssbrebAwcOsH37dq699lq2bNlCQUEB27ZtC+d8FSHQP0bti6WZsXw0CcM0HQ433S6JNeaqr5Ia\na8SlS5pUuVicbp2tZxrZ/NYFMi2R/OyeWdyYGzf6xr21CVl0HLFqQ8D3VJx3kJoZQXSMb7NkiTfQ\nbddx9OhDzomM7AE1aWKMGgYh6HQOvXa6ELKBj4mJISIigu7ubtxuNw6HA6vVSmFhIWvXrgVg3bp1\nHD16NGyTVYRGZQAGflmmmeOTUA/f++XV32AJITx6eFWXhq1nmjhZ08mzn5jBny323oFpNJB730Gs\nvDngxCapSy6WO5g52/s+US+aJkhIiqDFmx4+IweqB1aVtJoiaJnGYZqQ322z2czdd9/NI488wkMP\nPYTJZGLRokW0tbWRkJAAQEJCAm1tbWGbrCI0AvHgr0kzUd7cg905uTL/fK1tbnLMtK8s6XTr7Cxv\n5aGV6aRbQq8AGSzS6UTuexex4a6A76mvdWGMFCQk+Ze2JiYZaGnyktGakYOsHWjge8M005WQY/B1\ndXXs2LGDn//855hMJp577jn2798/5Dpfj4JFRUUUFRX1/XvTpk1YLL5jbxORyMjICT9nKSXVNifz\nMpOwRPt+uy1AQbqZ0jbJTTP9r2mirL2hu438FMuQuSzO1vnfEzWjMseJsnZ/7CxtJD8ploXZyWEb\nM5C1Ow68hyN3Fua5CwMe9+j5BhYsiicuzr/Hn5UTwcenbEPmoc+ej622asDxNEs0dhkRlvdrIr/v\nW7du7fu5oKCAgoICYAQG/ty5c8ybNw+z2ZMBuXLlSkpKSkhISKC1tbXv7/j4eK/3959EL6GWIR0v\nLBbLhJ9zS5cLgwDN2YU/xdji1GgOnmvgumT/vxYTZe3nG23clBc3ZC5ZJklJfSetbe1hT96ZKGv3\nx2sna/iTa5LCOtdA1u7e8SraJz8b8Ot2tLtpbuxh6aqogO6JNuk0NvTQ1taO1u+9lRGRSKeT9uoq\nhMWjDrIYoaa5A5tt+NBPIEzU991isbBp0yav50IO0WRmZlJWVobD4UBKyenTp8nOzmbZsmXs2bMH\ngD179rB8+fJQX0IRBvwpaPrTq4efTHLJwQqaXuKiDCTEGPoagUw3Shu7aOt2s3yMS1DIC2XQ3gqL\nVvi/+AoXy3vInRWJwRDYF7ExUsNk0mhvHRhOFEJcqUlzNUxjVSGa0JgxYwZr167lm9/8JpqmMWPG\nDG699Va6u7t5/vnn2b17NykpKWzevDmc81UESVW7g8wADXx2XCQCqGh3kBs/co9ntHHrklqbkwwf\n8eU5SZ44vK8Er6nMjpIW7pw78hruwSJ3v4lYdydCC6xMhMspqbzkZO0dwYU+EpM9G60J1oEmTGTk\nIGsqEHM90YHEmAhKpnFOxIh08J/61Kf41KcGVogzm8089dRTI5qUInxU+vBwvSGEYGmmmWPVHZPC\nwNd3OkmMifCpDJl7RUlza/4YT2ycae1ycbS6gweXp43p68r2VuTJI2ibHgj4noqLDpJTI4gxBRdM\nSEwy0FjnYuacQb+nGTlDPHilolFMWaoDUND0ZzKVLahsG35tc5NjKJuGSpqd5a2szrGEVMtdNjWg\n/9fPkFWXg793/07EklUIc2DZsVJKLpT1MGOwkQ4Aa3IEzV5KFgzWwk/3EI0y8FMcjwcf+AdoUbqJ\nksZuuiZBcoi//YWZiVFUtTvocU38tYQLly55p6yVu+YlBnWfdDrQ3/xf9Ke/jrS1ob/8HNIVeKKY\ndLs92vcNdwd8T2OdC02DpJTgv4hiLRouF3TZB723gzz4/tms0xFl4KcwDrdOS5eLNHPgPTBNRgOz\nk6I5Uzfxq/D50/dHGjRy4qM43zx9Ep4+rLCRZjYGXHJCSok88QH6tx9FVlxA+4fn0B5+AuKtyB2/\nC/yFT3wASamI3FkB33KhzFN3JpSsWiEE1mQvevikVOi0Ibs8v7/TPZtVGfgpTHW7g9RYY9AbbUsz\nYvloEmS1BpLANd06PL1Z0sLdAXrvsqYSfcs/ov/+v9C++CiGh59AJKchhED7i79B7n0bebEsoLH0\n998MKrGps8NNc6ObrLzQE7ASvRQeE5oG6VlQezVMkziN4/DKwE9hqmzBxd97WZYZOymqSwZi4KdT\nHP5CSzd1HU6uz/GvSJFVl9B/+PeIhUvQvr0FsfC6AedFghXx+a+gv/wC0jm81FTf8zY01iOWrAp4\nrpfPOciZEUlEROgqn0Rfcfh0j5KmF6tp+sbhlYGfwlS1Ba6g6U9eQhROtycDdqJi63HjcA8sMuaN\nuZPQg5dS4nAHH1LYUdLCJ+Yk+CwL3X98fesvEfd8Hu32jYgI7/+HYsVNiMxc5Pbf+h7n97/21Hz/\n26d9jjMYXZdUXHSQO2tk5RMSrAZsbW7crkGOyKD+rNNZSaMM/BQmEA/XGx65ZOyEbsbtrciYNzLj\nIunocdPWPXk+4G+UtPDP+6qCusfW4+ZQhY3b5yT4v/jMR9DcgFh757CXCSEQf/Yw8sO9yLLiAeek\ny4l8+QXk2VNo3/wRIjUz4Lk21LqIMWlY4kfWUjEiQmCOM9DaMihMkznIg4+JoNk+ed7/cKIM/BSm\nst1Bdoh69qUZE1suGWiGriYE+UnRlE0SL96tS94428LpOntQX0rvnWtlRZaZhGHqDYGnR6q+9WW0\nz/5lQB63sMSh/fnD6L96AdntCXVJeyf6T7+H7OpE+9tnEBbv5Uh8UXHBQc7M8BQ/s3rr8ORFC988\nib7gw4ky8FMUKaXHyw2xiuDijFiKG7omrMQwmKeT5Zlm3jjbPOH3FAAKqzuIjzawMtvMocuB1T2R\nUrKzvJVPzvW/uSr3veNpiLEo8BIi4rrrEbMXIl/7T/TmBvQfP4FIy0R75AlEVHAOhKNHp6HOSWZu\n4Mqu4UhMjqB5sJImJQOaG/v2DhKVB68YbWw97jFNmW7uchEZITCHkOwCYI40MDMxiqL6iSmXrGp3\nkBUfmIG/e14inU6dd8paR3lWI+etKyqYNXlxHAjQwH/c0IVBCOYmDS+NlJ0dyDf/D23TA0FLE8Xn\nH0SeOoLtWw8hVq5FfOGhgMsR9KfqspPUDCORkeExPdZkj5Km/5e3iIiAlHSo84S5VAxeMeq8WtTE\nk+9d5mzD2Bj5kXjvvUzkrNZg1mfQBI+tyuC3pxqpsU3c4mOVbT1cbO3hxlwLyzJjudDSHZD6Y9f5\nNm6ZFe/XaMs3/w+x5AZE9oyg5yZMZrS//ntiHtiMdudnQu4IFc7wDECMSUPTwN4xOOHpakbrdK4J\nrwz8GNDt0tl1vo0vL03ln/dVUtcx+kamqt1BdoAeri96m3FPNFy6pK7DGXARNYCc+Cj+pCCJnx6u\nQZ+goZodpS3cPjsBo0Ej0qCxItPMocvtw97T7dI5XGFj3azh4+Cyrhr5wfuIT38h5PmJWfOIXLEm\n5PvbW930dOukpI6oBNYQPGULBm209uvulBhjmLbZrMrAjwH7LrazICWGu+Yl8pmCJJ7eU0mnY3Q7\nJwXSps8fs6xRdDjcY/KFFAx1HU6spggiDcH9+vYmAL1xtmU0pjUi7E43+y6284l+Kpg1eXEcuDR8\nmObQZRsLkmP8ykX1V3+FuP0+RFxwJQzCScUFB9kzIhHhrs+fYKCjfdDnqd9Gq8lowCAE9mmYzaoM\n/CgjpeTNkhbuurIBdve8RK5NM/GjA9W49dHzKKqCrEHjDU0IlkxANU0wNe77Y9AEX1uVwatFTVS0\n9YzCzELV4MxWAAAgAElEQVTn/fNtLE6PJcl0dfPxuoxYKtt6aOj0nY+w63wbG/L9eO9nT0HFBcSt\n94RtvsGi65LKS+ENz/RiMmnYOwca796ywb1M1zCNMvCjTHF9F25dsjjdBHi0xQ8uS0MDflFYN2qP\njVXtPQM8eP0Pv8X94j+j//7X6Ad3IcuLkbY2v6+/LNPMRxPMwAdT434wGZZIvrAomS2Ha0b1CzYY\ndCnZUTK0QJjRIFiZbfGppqnrcHCptYeVWb6bekjd7Ulq+sz9COPY9WUdTH2Ni1iLhtkyMu27N0yx\nQw086VnQUIt0ezz76dp8Wxn4UebN0hY+OTdxwKaUQRN846ZMiuu7eLMk/OGCHpdOa7eb1FiPNyh1\nHbn7LcQ1S8EYCWdPom99Gf0fHkL/+hfQ337N51jXpZs4U2fHGUJm5Wjhq4tToHxiTgKxRo3XipvC\nOKvQOVlrJypCsDAlZsi5NXkW9l/yHod//3wbN+dZMA4TqpLvboeoaMTyG8M231C4fKGH3FHw3gFi\nYrUhVSVFZBTEJ0JDLQDWaOXBK8JMQ6eTU7WdrJ81tD62yWjgH9Zl81pxM0crw5sxWm1zkGbuV2Ss\nthJMsWg33Y52z+fRHngcw7eeRXvhv9Ge+DHyndeQdu9ziIuOICc+kuIxUv8EQqgZur0IIfibGzJ4\n42zLhKg0uaOkmbsGOQG9LEqPpa7DOWQfRJeS98+3cUu+78xVffcO5L530L7ydyGrXsJBT7dOU72L\njJzRMfDRMQKnQ3opWXA1Dm81TU8tvDLwo8i7Za2snRmPyej9sTTVbOSJm7PYcrgauzN8m66DPVxZ\nXoyYPbTDvRACkZ6NWLQcue9dn+NNNLlksDXuvZESa+T+JSn864fjG6qptTkoaezm5hnem2REaIJV\nORYODtpsPVNnx2Q0MCvR+/+Dvn8n8p3X0B5/GmFNCfu8g6HykoP0TCNG4+h8yQghiDFp2Ad78f3i\n8IkxhmmZzaoM/CjhcOvsPNfKJ+cOXxtkXnIM85JjOBJGL96joOn3wS/7GOYMNfC9iNs2Ine96bPB\nw9JMM8cniIFv73bh1iUJ0SOP5W6YFY9R09h9oS0MMwuNt8tauWVWvM+2g+AJ0xwYJJfcdb6NDT60\n7/rh3cjX/wft8e8jUtLDPudgkFKGXfvujRhvcfjMnL6iY9YYo/LgFeHjwCUbMxOjA/I0A5HDBcPg\nEIYvD74XkTvLkxhyZL/X87Ot0TR3u4ZVc4wVO8vbmJsUHZaQgxCCB5al8tuTjePSwao3P+JOP05A\nQaqJJrurL0nL7nRztLKDtTOHev360f3I1/4T7fHvIdICLwA2WrS1uHG5ICnM2vfBmGI1ugYradKz\nB3jwapNVETbeKm3h7gBqgwCszDZzps5OR5i08f0VNLKlCbq7PKqCYdBuvxe5c5tXVY1BEyxJj+X4\nOCc9Hb5s463SFr66KiNsY85NjuHaNBO/H4cN170XPPkRaebhvVuDJlide3Wz9eAlG9ekmYYUFpPH\nDiP/9xdoX/+OJ9FnjJBS0tTgoqHOOeTP+ZIecmYYR30PwKuSJi0T6muQUno8eGXgFeGgpLELW4+b\npZmxAV0fG2lgUbqJDytG7sV7iow5rxr48o9h9gL/H7CCJZ6/Pz7h9fSScS4fXNbUxc+P1PKttdkk\nm8JTqKqXL16XwtulLWP+hPLeuVbuDKS8LwOf8npLE/RHnv4I/Tc/R/vadxDZM8M+V1+43ZJjh+2c\nPGqnvLhnyB+nU5I7a2T7JYEQ482DN8eBENDR3ufBT7ds1tF9bpqm7CjxSCODaZW3Ji+O3X5UEYHQ\n1OUiOkJgjrwSo/YTnulFCIG4fSP6u9sxLFwy5PzSjFheKqzDpUu/DSXCTUOnkx/sreLR69OZ7aeg\nViikxBq5c24i/3WigcdvHJuwRl2Hg/oOJ4vTA3MCFqTE0NHj5sNKG9U2B8v6ad+llOj/8+8etUxe\n/mhNeQgOh07hgU4iozTW3mHBYBg/pY5XDx48XnxdNaYrTo7dqRMbGX4t/kRFefBhprXLRWF1xxAP\nyx8rssycbeyivWdkYRrvCpoFAd0rVt4M1ZeQlReGnEuIiSDdYqRkjOWSXU6dZ/ZWcvf8RG4IoBVd\nqNy3MInTdXZKx6ji54FLNm7IsQTsBGhCsDrPwr98UMvaGXEDv2TPl4AhAuYvGqXZDsXeqXNwVwfx\niREsW20aV+MOvg28SM1A1lcD07OqpDLwYWZneStrcuOCLtMbY9S4LiOWD0YYpqlsu6qgkV12qKuG\nAL06EWFEbLgHuXO71/OjUXxs9/k2DlfYvMpE3brkJweryLdGc+8Ca1hfdzAxRo0/W5zMLz+qH5PH\n+AOX2lmTF9wX1k15cdh63EPDMx/sQdywbsy07m0tLg7uspE7K5KCJTHjqrHvJSpa4HJKXIO18KmZ\nUFcDgPVK0bHphDLwYeaj6s6gP7i9DJe1GCgDGm2fL4G8fERE4DFrcfMdyJNHkc2NQ84tzYzlozDH\n4X95rJ43S1r48u/P8Z1dl3njbHOfWuSV4/X0uCQPrUgfEyOyYVY8DrceVkWTN6rbHbR0uShINQV1\n39ykaL6zPpsZiVfDVNLlQhYe8Dx9jQE1ld18sLeTgiUx5M8Lf7gsVIQQXuPwno3WXg9++m20qhh8\nGHHpkgst3SHHiZdnmvnZB7W0drlI8FMd0BdVbT0szfDEdf3JI70hYs2IVeuR77+J+Oz9A87NS46h\nvtNJc5cLSxiiJR09bpxuyfdvyaHLpXOy1k5hVQevFTVhNGgYDYIf3Z6HcYwe/zUheGBZGlsOV3N9\njjnoapWBcuBSO6tzAw/P9OLplTuo7kzRcUjPGhO9e121k1NH21l+YyxJKRPPdPSGafr3ehWpmehX\nDHyi8uAVI+Fyaw+pZqPPzFV/REVoLMs0c2gEYZrKfjF4WRa8gQcQt34KeeA9T4inHwZNsDg9lhNh\nCtPUdDjIsHgkdCajgVU5Fr56QwYv3zebb96cxQ9uyw25I1WoXJNmYpY1mtc/Hr2Swgcu2ViT5z1z\nNVjkh3sQ168Ny1jD4XZJTn9k58YNSRPSuIN3LTxpGVB3RSppmn71aEZk4O12O8899xybN2/m8ccf\np6ysjI6ODr7//e/z2GOP8cwzz2C3B97ybaI2YgiUksYu5iYNLRgFIEvPoP/ht37HWJNn4UCIYZpG\nuxNbj5uUWCPS5YKL5ZA/L+hxRHIaYuF1yAPvDTm3LIxhmhqbkwwvXZk0Ici3RhPvp4H0aHH/klS2\nn22muj38dfAvt/XQ4XAz30thsWCR3XbkmWOI5aE34QiU86U9xFsjSMucOGGZwXjLZhUmMxiN0N5K\nYrTaZA2KX/3qVyxZsoTnn3+eH//4x2RlZbF9+3auvfZatmzZQkFBAdu2bQt4vL0XRhZ/Hm/KmrqZ\n4yU8I6VEf/UVT1GvpoZhx1iaGcvF1h6a7MFpsqWU/OsHtdxXkOR59K84Dylpnl/wEBC3fRq5e8eQ\n40syYjlZ0xmW+i01NgeZI2wrOBpkWCL54uIUnt5TgW2EqqbBHLjUzuo8C1oY9hTksQ9gboFH7z2K\ndHfpnCvpYeHiiWvcwb9UcjoWHAvZwNvtds6ePcv69esBMBgMmEwmCgsLWbvW88i4bt06jh49GvCY\n/3WygW7XxClLGyxlTV3MTfbimX18Ero6Ees+idz1+rBjGA0aK7PMPmuA+2JneRvtPW4+W5AEhB6e\n6WPGHOiwIW0Dv3STTEaSTEbO1o88TFNj84RoJiJ3zElgZbaFf95fhdMdnidLKSUHLtm4KazhmXUh\n3dtl19n7bjv2Dv9fYCWnu8mdGUmseWLrx701/oCrUklrjJGWaVZwLGQDX19fj8Vi4ec//zl///d/\nz7//+7/T09NDW1sbCQmeZJ2EhATa2gIv5LQgJYbtxc2hTmlcsTvd1Hc6yUsYmrWn79iKuPNPPF7x\nofeR9uGNY7C1aeo6HPzmZANfX5XRp4+W5cUQoP7dG0IIyJ0FFeeGnFuaGcvRipEX6KqxOcnwk6Y/\nnvzFdSmYjBovHqkNi3TyYmsPTrfO3DAka8nWZrhYhli8IqT7ayocOJ3w4f5OnA7fa2trcVFb7WTO\nwtHPRh0p3urCAx6pZH21Z5PVPr2yWUMOcuq6zoULF3jggQfIz8/nlVdeYfv2ofppX/K2oqIiioqK\n+v69adMmHlkzk4deLWLj4ixSJvAHv5fIyEgsV+Qk5VXt5CfFkhg/0DtzfXwKe2sTllvuQkRE0Hnd\nSgxH9hJ9z+d8jrtmTixbPqilS0SSah7+g6VLyc/eL+FPl2RQkJMMeDzF9nNnsTywGW0Ecpeu/HmI\n2iqirx8owbsxX/LSkSruXzF8fRt/1HU6mZ2RiCV24r7X37kjlse2n2XHuU7+dImnBk7/9z0Yjha3\nsX52MnFxI/fgu/e9g77iJkxJySHdX1tt5/o1VqorujlxpJt1d6SgDVL1SCk5sq+BRcvisSZ51hvq\n2scCs1nidtmIjo7FaLzquzryZuH8YC9p1gQ0TaBFmTBHBW/6JvLat27d2vdzQUEBBQUFwAgMvNVq\nJSkpifx8TxLNDTfcwPbt20lISKC1tbXv7/h47xmd/SfRSywObp+dwL8dvMDXV49/JTx/WCwWbDaP\np32yoplZica+f/fifvUVxB330dHlyZCU6+/G+bNncKy5bVh9+sqsWN4trmHjgqRh5/DG2WYcLhd3\nzIzte21ZW4WMMNIZFQO20BU5ekYOnDyKc9AYebFwuaWLyoaWkDdC7U43doebSHc3NtvE6o86mCdu\nzuD/vXsJa6TO6ty4Ae97oEgp2VXWyDfWZAV9rzfc+3aifeZLIY1l79SxtTmJjXMyp8DA0QPdHN5b\nz7XLBiYt1VY56ex0kpYV3fc6oax9LIkxCepr24lLuBpOknFW9OrL2Gw2EqMNVDS0kh0f/BPJRF27\nxWJh06ZNXs+FHKJJSEggKSmJ6mqPxvT06dNkZ2ezbNky9uzZA8CePXtYvnx5UON+psDKiZpOypom\nTgehQChtGqqgkRdKoboCsWpD3zGRlw9pmcjCA8OOd1MAYZrK9h7+70wTj63KGKCpDkX/7g2Rm4+8\nfH7IcaNBcF2mZUTVJXsVNBMhC9IfySYjT67N5sUjdSH/Xp5r9nyJ5VtHHuqQNZXQ1gzzrgnp/uoK\nB+lZRo83qwmWroqludHFhdKrX7S6W1J8oouC62KGePYTGa9hmrSMflUlp5dUckQqmi9/+cv8y7/8\nC9/4xje4dOkS9913Hxs3buT06dM89thjnDlzho0bNwY1pslo4AuLU3jZT8r4hZbuCVGfvJeyxu4h\nsVV9x1bEHfchjAM9de32e5Hvbh92fdemmajv8LT88yYfdeuSLYdq+NNrk4dKDcuLYU7o8fc+0rOg\nrXmIHh5gZW78iJqAhGuDVUqJtLUjz51FfnQQ6Qy/tBEg3xrNo9en84O9VTR0BP8antIEcWH5QpMf\n7kGsvBmhhbbpWX3ZSWbu1f97o1Gw8iYz5Wd7qKv2fKYulPdgMmukZkzMTXBfeFPSiGgTRMdAazOJ\n08zAj0hoPGPGDH7wgx8MOf7UU0+NZFhumRXPjpIWDlXYuDF3YLyyrdvFf51o4OBlGxkWIz+6Y8aY\nVzccTJPdiVOXpJmvfhhkxQXPJthffWPoDdcshd+97FHXLLzO65gGTfClJSn829E67A43y7LMLM8y\nszjdhMloYNvHzUQbNa/NImTZx2i3fnrE6xKaAbLyPJLLuQO9xRU58bz8YSW6lCFJ/jwGPvjYu7R3\nIHe/BbWVyLpqT60dKT1SuAgjvPl/aH/1/xAZ2UGP7Y8bciyUNXXz8tEqHlkeeOxbSsnBy+08uXbk\nc5JSIj/ci/bwN0O6v9PmprtLH5KsZIrVWLEmliP7O1m2ykT5xz2sXh+axHY88SmVvLLRao1JVQZ+\nvDFogr9clsrPPqxlRZYnZdytS94qbWHrmSbWzozjFxvzee5gNa+eaeLzi0LbaAoXpVf07/29M/nW\n7xC3bfR0dx+EEAJxx73oO7dh8GHgAW7JT+CW/ARqbA4Kqzp4p7SFFw7VMDc5mostPTx354whxlW2\nt0BHG2TmhmVtvWEaMcjAp1uisEQZONfczRwfyV3DUWNzBp3sI7vs6C/8IyI5DQqWoq39BKRlgdnj\nGUspkQfeQ//RNxGf/TJi9QafHrOUEsqKkXVViFXrA67Xc+9CKw+/fp7PzI/z26ijl9KmbiINmleF\nVdCcOwvGSMiZFdLt1RVOMrKNXsMuiUkRXLs0hsN7O5mRHzkg5X+yYIrVaG0e+mQv0jKQddUkJmdO\nKQN/vrmbzGG2KyekgQdYnB5LbnwUb5a0MCcpml8crSc+xsAzt+WSe2WD5NHr09n89kWWZ5lHpU54\noJQNymCVNZXIktNoX/qqz3vEyrXIbb9BVl7w26AhwxLJPfOt3DPfit3p5mStHWtMBCmxXoxS+ceQ\nvwChhakKRe4sKCvyeqq3GXdoBt7B+lmBq0lkdxf6T7+LyMtHfOEhr4ZbCIG46XbkrPno//EjT/OS\nP3/Y84jeO47LiSw8iPzj69Blh6QU5M5taJ/7CuKapX7nYY40cM/CVH5f3MzDKwOr/7L/SuXIwXPW\nj+yD2kpIy0KkZkJaJsI0fH343tIEoYZ6qi87uGap7yJnmbmRGCIE1uTJZ9zBR29WuOrB50RQ3tw9\n9hMbJXaUtrBmmK2YCWvgAb68NJXNb10gPtrAl5emsipn4IckyWTkgaWpbDlczU/unDFqxaH8UdbU\nzcZ+5WzlW79DbLgbEe3b8AmjEbHhLuTOPyD+8usBv1ZvzRZfyLKPA67/HggiNx991xtezy3NNPO/\npxr53LXBP0EFE6KRPT3o//p9RFoW4k//2q9xE1m5aN/6CXLrS+hPb0b7q29Achpy7zue8E5aJto9\nn4drl3s6/pwqRP/vf4OsPLRND/gt3PWZRWn8xf+cYtM1SST56S7lcOscvGTju7cMbKEnz55Cbv0l\n4sZb4cSH6HVVUF8DkVEeQx9v9cxt8P9F0XG0b78w7Gv6wtbuxuGQWFOGN95pmZMr7t4fn3Xh0zLR\nP9g7pbJZu106h/3UrZrQBj4rLrLPY/fVdf7mGXEcrujgf0418qUlqWM8Q89mZ3lzN3OuZLDK+hrk\nmUK0P/0Pv/eKtZ9A/9ZfIVuaEInDyyEDRZYXo/3JX4ZlLMAT6mmoQTp6hoSbClJjuNTaQ0ePO6ii\nYF1OnU6njjWAipnS6UD/+T8hEpMQf/FowE8mIioK8cVH0Y/uR9/yXXC7Edddj/bVpzxNxvuzeAXa\nwsXIndvR/+lvEes+ifjEZxFR3kMqCTFGbpkVz7biZh5cnjbsPP77ZCPzkmP6njoBZFsL+i+fQ/vL\nryP6dc+SUnrUMXXVyPZWr+Np6z/pCVGFQPVlT3hmMiiXQiUySqC7JU6nxGjst86+ZKeIKZPNeviy\njfneMuf7MaENPOD38V8IwcMr03hsxwVWZptZkBJcje2RUmVzEBdlIO6KgZN//APi5jv9PmoDiFgL\n4oYrpXk/86URz0XaO6GmAmbMHvFYvQij0RPnrroEM+cOOBdp0FiYGsOJ2s6gqiPWdjhINxv9bs5K\nlxP9336IiDEh7n8sJNWItuIm5BU5oYjz3QRdGCMRd21CrlqPfPUV9O88ivbtF3zW8tm4MImvvnme\nzxYk+Szt/HG9nT0X2thy19UQnNTd6L94FrHmtgHGHa4kBSYkQUIS4TbBUkqqKxwsXjG2n4+xpn9d\neGM/LTypGdBYizXqajbrZP+i23W+zW9P3ylRLjg+OoKHVqaz5XDNmNeyKWu8Wn9GSok8VYi4IfDy\nreLWTyH370Q6Rp7sIwsPQMESrxu7I0Hk5iMvDS1ZALAs08yxIOWSgYRnpNtjCNE0xIN/izCEHhMW\ncYnDGvcB11pTPCGdvNnIo75zFawxEdw8I44/nPVeWqPbpbPlgxoeWpk+IBlMvvF/nte55/NBrGDk\n2Np03C5JYtLkjK0Hg1epZFQ0mMzEdLQgBHRN4ppX4ClPcrG1h5XZwyudpoSBB4+EbV5yDL8+Xj+m\nr1va1E//XlcNbjekBy6HEynpkD0Dznw04rnIQ7vQVt8y4nGGkJfvkUp6YWlmLMdqOoOq71Hto0xw\nL1J3I3/5HDgcHsljxNg/aGo33oI8+Mdhr7lvYRLvlbd67aP76+P1zEuOGdBHVhYdRx7Y6WmOHaKG\nPVSqKxxk5kyOxLKR4rUuPPSTSk7+OPzu8+3cnGfB6GffccoYeICvLEvjg8oOTtaGt2/ocJQ1dfWF\nkeTHJxAF1wX9IRIrbhrWWwwEWVsJDbVQ4F8JEiwiZ5ZPDz7DEkl0hOBia+BPIMMlOUldR77yL8iO\ndrSHvzkkSWzMKFgKzQ3Imgqfl6TEGrk+x8KbJQO9+JO1nXxQ2cFXll2NlcvWJvRfvYD2wOOI+MCe\nJsKFlHJIctNUxpeSRqRleqSSkzzZSZeSXefb2DBr+PAMTDEDb44y8DfXp7PlUE3Q9dRDocelU9nm\nYNaV9HNZdBwW+Na1+0IsXY0sOobsCV2+JQ/t8jReHg1vN2cm1Fz2NBHxwtKMWD4KIkxT6yNEI6VE\n/vZFZGMt2qNPhj3UFAzCYEDcsA55cNew1322IIm3SlvpdHi8+E6Hm385XMPfXJ/et/Es3W70//ix\nZ/N2/qJRn/tg2lrcSAnxiVM/PAPDJTtlXPXgJ7GBL6q3E2PUAip7MaUMPHike3fNS+T7eyrpco5u\nnK280U52fBSRBs1j/ErPIIZJXPKFsMTBzHnIU4UhzUPqbuTh3YjRCM9wJX6ZlAa13r3ZpZlmjgfR\n5clbmWApJfJ/f4GsvIj2tW97XnOcEatvQX6wB+n2XTM9wxLJ0oxY3i71qF5ePlbP0kzzgN6p8g+/\nBWMU4pN/Mupz9kZ1hcd7nw7hGRhGKpmaiayvmfQe/K5zbdwyKz6g93PKGXiA+xZamWWN5rlD1WHp\nPOSLj+s7rsbfL5RCSjrC4r16pj/EijXIwv2hTaT4BMRbEVl5od0fAJ4wjfc4/DVpJsqbe7A7/TeP\n6HHp2Bxukkz9Nh6lRL76CvLcWbTHvjMgMWk8EZm5YE2G4uPDXvfZa5J4vaSZ/RfbOVVr5/6lKX3n\nZGszcu/baA9sDl/yWRB41DNOMnOmR3gGhqkL39vZKWbytu6zO90cqexg7czAVGtT0sALIXhoRTp2\np86vTwzfIm8knK3vvKqgKT4+RPYWDGLJKvj4JLI78B62vciDuzwJM8PQ1uLC1uYOvdlB3iy47D0O\nHx2hMT85mpO1/udeY3OQGmscWP3yD79FFh9H2/zdkFsMjhZi9S3ofjZbc+OjKEg18fyhah5blTGg\n6br86CBi8UpEnP946Uhoa3FTedEx5M+5kh40jQHlc6c6kZECXZdDG5mkpENTPYnR2qT14A9dtlGQ\nZiIhwDLdU9LAg6ek7TdvyuJIpY2d5d6TRkbK2frOvh6ssvhESOGZXkSsGWYvRJ44EtR9srMDWXQM\nsfJm39dIyZH9nXywt4NdO2yc/shOXY0TdxCt6HyVDu5laaaZYwGEaWo6Bipo9LdfQx47jPb404jY\niddMQay8CYpPIDuG7xf8xcUp/PWKdK5JG/j0IY/uR6y4aTSniKNH54O9HdTXOKmvHfinvdXNwsUx\n0yY8Ax4Hz1v7PhEZBZY4rM6OSevB94ZnAmXCJzqNBEuUgafW5fDEe5dIjTVyXYb/5KNAae920dbt\nIisuEtnZAVWXYYQ12MWKmzxa9hvWBXyPPLIPUbDU8wXhg5ZGN0ajYO0nLNjadOprnJQXd3PskJuk\n1AjmLIgmMdnPr0LOLKi4gNR1r6GGpZmxvH622W8CSX8FjdR15Nuvon1nS8ihrdFGmMyIa5Z5/p83\n3O3zusy4SDLjBu0rNDdAbRUsWDyqcywt6iYj28ii5RMjtDUR6A3TDNlYTs3E2tFEc9fEcyb8Ud3u\noKrdwfKswJ9yp6wH30tmXCTfWJPFcwerqWgLX+egsqZu5qXEerIxS07BnAUjlvSJ666H0jNIe+Ab\nlvLQLsSNw2+uVlc4yMz1aKDjEgzMXhDNjbdYuOXuOOITDZQW+1fviFgzWOKgvtrr+ey4SDQBFW3D\n10qv7a+Br60EswWRNPYlJoJB3Hgr8tD7Qd8nCw8grrs+4EqVodDR7qbykpN514z/pvREYriN1oTW\nalq6Jl9v1vfPt3HzzLigyqNPeQMPnk3ALy1J4ft7KjkXpkpyZU3dzE/1PBHIohOIEOSRgxExJpi3\nCHn8w4Cul1WXobXJZ015AKnLPhXFYCKjNPLyo2hpCjA2P0yYRgjBkgwzhX7CNNU2B5lXDLw8X4KY\nNc//6443CxZBeyuy8mJQt8mjB0Y9PFN8sovZ86OIip4WH+WA8SmVTMsgpr4KgM5RVtmFE7cuef9C\nG7cOCs/I0jPD3jehQzSyvQX52q99F166fSMiwMffW/IT0ITg6d0VrMy28OeLk4kLsZ8oeFr0ffpa\nz8aZ/PgE2oa7Qh6rP2LFGuTh98GPVw4gD/3RU8t8mKzIpkYXUdEaZov3a6JjNCKMgg6bjiVu+I04\nkXtlo9VHvH91roVXjtdz30LfhdMGJDmdL4FJYOCFZkCsWu95Wtr0QED3yIZaaKqHUdS9N9Q5sbXp\nLFs9fvkCE5WYWI3mRi914VMzkWdPM3dhDEV1dq4fpjLrROJ0nZ34KAMzEgd1jXv9f2Dd7T7vm7Bf\n+7L4OPr3NkN8AtqGu4b8EfOuQd/+m6DGXD8rnn+9ZxZGg+Bv3rzAjpKWkGSU7T1uShq7WJAai6yv\nAYcjfA02Fq2Ac2f9bupJlwv5wR6/2vdAMhitSQZaGv1vOvnbaF2UbsLW4+a8j6ekHpdOW7eb5Csl\ndsPhwUspaW91U1bczYf7OnD0jI5XJlZt8GjifSR7DZlX4UHEklUjqqEz7Pi6pPh4FwsWR2MwTJ8N\n1KvC4j4AACAASURBVEDxePBeZLtXpJIrs818WBl4KHS8eau0hVvyB3nv5cUeJ2IYJpyBly4X+u9/\njf6rLWgPbEa770uIa5cP/XPbRmhpQlZeCGp8c6SBryxP4+lbczlUYWPz2xc5Uxe4NNHp1vnnfZXc\nlp9AUmzkFXnk4rCpFER0DGLhEuSxw8NfWHTMo7sfpu6NrktqKv1roBOTI2hp9K9h90glz/sM52hC\nsGFWPO+fb/N6vq7TScoViaTstkNjnacOT5C4XJK6aienCu388Y12jh7opKdbx+WS1FaNTgazSM/y\nGIczgSWjycL9iBVrRmUuAJcvOIiIFGRkTx99ezD4DNEkp0NzAyszTRRWdYxqnky4OHipnYo2B7fl\nD5Ta6jt+h7jzM8PeO6EMvGyqR3/2W8jL59CeemHY8IswGBBrbkPuezek18pLiOL7t+TwuWuSeP5Q\nNS8V1vl9s6WU/PxILeZIA3+xxJPMIotPDBsD772vtLibouNdAc2tT00zDPqhXX6996Z6F6ZYjVjz\n8F6kNdlAc1MAHnxcIhiN0Ow7t2DDrHj2XWzH6UWCWdPeLzxzoQxyZga9AdnW4ua919s4V9JDrFnj\nhnVmNtxl4ZqlJvJmRVFbPXolKjyaeP+brbKuGtpaYG7BqMzD6ZSUnOmm4LrpJX8MBmOkAAlOxyCp\npNEI8YmkdjdjNUVQ0hjYZ3K8aO1y8R+FdXx9dcaAnhjyYhlUXUKsGt4GTCgDrz/zt4glN6B97TsB\nJYaINbcij+xH9oSmjhFCcGNeHFvumsmF1h5+fKCanmHKiL5a1MSl1h4evzETTQhPCnvJ6WE3WHVd\ncqqwi8oLDmoC9S6vXQYXyz39Vb0gbe3w8SnE8uE9xOrLgWUwWuINdNn1wMIbObPAR+Ex8KTuZ8VF\net1srekY+QbrpXM95M+LZvV6M/nzo7HEGfqMXGpGBE31Llyu0fHKxPI1UHIavc37+9KLPLofsXT1\nqFWMLP+4m5T0CBKsE3oLbVzprQvvfaM1E+pqJnyYRkrJz47Ucmt+AvMGNfbQd/wOccd9fpV7E8rA\na48+iXbHfYF37bGmQP58v96uP8yRBv5xfTYRGnzn/Qqv5V8PXmrn7bJWnlybTfSVb1L3ubNgTfVZ\nHdDllBw90EmXXeem2y04HYEZUREZhbh2OfKjgWEa6ehB3/cu+o+fQKy4adimIrpbUlPlJDPXf1s8\nTRMkWiNoafIfphF5+UgfpYN7uSXfe5impp9EUl4oDdrAu90eRVD2DO9riozSiE+MoLFudJJYRIwJ\nsWw13VtfHlZ1JAtHTz1j73Rz6ZyD+dcG3wd3ujF8TZpqrs+28GGlbcLKJXdfaKeuw8nnrx0oWpCV\nF+FCCeKm2/yOMaEMvMifH/Q92s13IPe9M+LXNho0Hr8xkwUpMXxz5yXqOq7quUsbu/i3o3X8w9rs\nAT04XacKfWav9nTrHNrdQVS0xsqbYjEaBfEJBtpaAoh1M7A2jWxrQf/Db9G/+SDyxIdon/8K4s8f\nHvb+hjoXZotGjCmwtzgx2UBLIGGaYZp/9HJjbhxFdXZaB2UL9ipopJRw7izMDM7A11Y5iU80YIr1\nvab0LOOoxeEBxKYHcJUVI3e97vW8rL4M9k4I4Xc5ED4+2c3MOVEBv6/TGZ914dMyoK6aWYlRON2S\nivbhczfGg4ZOJ68cq+frqzKG1HyXb/0OcdunA6q2Ovl/S65ZFtJmqzc0IfjSklTumpvIN3depryp\nm/oOJz/YV8VXb0hnlnWgRMl5uhBRMNTAd7S7OfDHDtIyjSxeEYN2JTEhPjGC1gANPAVLofIS+i9+\ngv7tR8DWhvaNH2D42rcRC/3XnO9NbgqUxOQImgPZaM31bLQOR4xR4/ocM3suDvTi+zo5NdSCMRJh\nDa5Zd8UFBzk+vPde0rMiqKt2Ikdp80zEmDD/v39CvrsNeXJoWQl59ABi2Y2jUlisvsZJS5OL/PlK\nFhkIPuvCX/HghRCszDZzpGJihWmklPzrBzXcPS9xiM2RtZXIs6cQaz8R0FiT3sB7NltvRe7bGbYx\n75qXyF+tSOO7uyv4zvuX2bjAysrsgXpZae/EfenckPIELU0uDu3uYM7CKOZdEz3AEMdbDbQ1B+jB\nG42Iuz8HWbloz/w72p8/gsgIrFOU2y2pq3YFVUEwMclAa7ML3Z9htKaAy4ne6r1VXS+3zErg/XPt\nfY+/TrdOc5eblFgj8nwJzPL0d7W1u/2/JtBl12ltdpPuRzViijUQHS0CCjeFipachvbIt9Bf+ekA\n2aiUMij1TFuLa8gmoC8cDp2TR+0sXmkiIkJtrAaC77rwmVBfA9AXpplIvFPWSodD5zMFQ/NJ5Nuv\nITbcFXDF1Ulv4AHEjbchj+wbdrNVSok8c8znxuVgVuVYeHJtNrflJ/Cp+V5i7KWniZhT8P/bO/Pw\nJu5r739mtFuSF3lfYsxqg03MahL2QEjITnh7eW/S2yZtn6xkeZIuNDdJ07wlzU1vm6WkpMulWW9v\nkzaFJjcL2SBAIIDBBDBLDBgH8L5LtiRLmt/7h7CDsWRJtoyXzOd5/ICkmdEczcyZ35zfOd/T4zHp\nyAEXeZONZI/pOcqKT9CEP4IH5CU3IF/9L0iW8BtaA9RVe4mNkzGawj+8er0/nGNv6X3/JEmC3Ml4\ndn7a63KTUky4fArHzubE1zg8JJu1/jLrsxOsQgi2f+Lg5LHQj8inT3aQnqULy7mlZuoGNJsGQBo9\nAfnbd6L8bjWiuaFzJ8Hj6dGc/HxcToW9n7fx2ScOdm1rC0v0rXSvk7RMHcmpalpkuJgtGhz2QKmS\nqf6nfq+H/JQYztg7hoy6ZLW9g//eX8/9s9O7Ka6Cv3hO7N/VqybS+YwMB5+YDGNye51sFW/9D8qr\nz6M8ejfKS8+FVXael2xieX5iwHCIKN2H9uLp3d9TBM0NXtIyA1+EZquMxx1mtko/qPwqsvBMJ7Yw\nwzTykutxv/t3hBJ82fNz4s9t8tGZQdPepqAogrJDrl5/EyGEPzwzOjybBjoO34k0Yy7S/KUozz+B\ncLv82TMz5gQNnyk+wbHDLja/b8cUI7Pk+jj0epn9xe29TvRVne6gscHHxEJ1YjUSLLF+wbHzs6ok\nrdbfN7niODqNxLR0M7svYDZNs8vL3w828MbB+h5//7mtkm/l28iO6zlAFO//A2n+VRFJao8IBw8g\nL1iK2Bo4J1555w1E8Tbkh59GXv0HSE5Hefbn+J5+FLF/N0KJzOGKDjfi4B50F8/o9n5ri4LBJKM3\nBP5ZJUkiNiH8ida+4PMKaqo8fSqASQizopWxE/1prCGkjS8bHcvWCjsdPoUqx9kJ1g43VJ2C7LE0\nN/hIStWRnqXjy9LgGkFNDT6Q/PsXDnEJGnxegb114H7nTqSr/wUpIxtl3dO9Zs/UVnnYvNFOQ52X\nuZdbmHixCZ1OYuolMdhbFI4dDvz06XYpHNjjZKoamokYWZawxmqwN/c8D6SCaYizje6LLnCY5o0D\n9ZTWtuP2ih5/83KsXJdr67GOaKz3n1+XXx/Rd/XbwSuKwqpVq3jqqacAcDgcrF69mvvvv58nnniC\n9vbIG1j0iYLp0FDXY2SufLABsf1j5B/+Aik2Hskai3zNCuT/+BPSpYv82SmPrUTs+zysrxGOVpRn\nfoY0Jg85e2y3z5oavNhCyO7GRzLR2gdqqjzE27R9Ep+yJWlpDCdVUpIwXLsC5YP1vS6XatEzOt7A\n7tMOKlvPTrB+dRzSL0LSG2hq9JFg05BbYOR0hQdHEId8qryD7NH6sIt6JEkiLVNHTYhRfJvDx5el\nrp6NISJAkiSk76yETmmJ884JIQTF29s4uNdJ/hQTs+ZbuukCabUSRfPMnDzupvJUR4919+9xkpWj\nx5as5rz3hbh4DS1BHfxeAKZnmDlU6xzwFp/g78j06clW7rkkje9MSe7xt2xiYo/QDIDY+A+kuZf7\n23tGQL8d/LvvvktmZmbX6w0bNjB58mSee+458vPzWb++dycQLQJVtiqb3kFsegf5h6uR4rtPWEha\nHfKllyE/8gzyTXeg/PW/UP7yB4QneDxY1FWjPLUKaexEpB880MPhNNV7Q44yI5lo7Qv9ac9mtsp4\nPQKXM/SJrps516+weOxwr8stHhvHxydauhp9nFvg1NzgJd6mwWCUGTfRwKEvelYVer1+uYVgue/B\nSA0RphGKoOTzdmqrPWx6r5WvTrj7nA8t6XTI9zyCfPe/9zgnWpsVWhp9LFhqJTUj8HExmmSK5po5\nsMfZLVX1zFf+m54qBdx3gj4xj82DmkqEvQWzXkNukpGSqoEP03xyooXCNHO3dOtQiFPl/vDflcsj\n/r5+OfiGhgZKSkpYvPjrctni4mIWLFgAwMKFC9m9e3d/viIipLlfT7YqWzYi3n/T3ynIlhx8HUlC\nmjQF+dFnES2NKE/+GFF9psdyouIYyq9+inTZNcjfujVgGlxjgy+MEfzAhWi8XkFddd/CM+D/LWxJ\nGhrDER6TNUiXX4/y4YZel7v0IitH6p0cb3R1OXjG5KIofpGwzmrM0eMN2FsU6mq6O+Xq0x4SEjUR\nTRgDJCVrcbQquF2Bb1bHv3QjayTmLLJQNNdMxfEOtn3koDmMWoBASDEWpAC6OnXVHlLStSEFweIS\ntBTOjKH4szba2xRcToXSEidTZ8WoYmL9IC5eQ2ugEbxWB7mTEaX+frv+ME1wB7/rtJ2/7A3cCyFc\nFCF452gz1+QGLowMhFAUlNfWIi37tz61feyXg3/55Zf5zne+023U0tLSQny8f0fi4+NpaQksPDUQ\ndE62Kn9+GvH2X5EfXI2UnBbeumYL8p0/RZp/JcpTq1B2bOr6TBzYg/Lsz5FvugM5yAy226XgcQss\nsb3/pGarTMcATbQ21HqJS9AGnQMIh4TEMIXH8DfC4MtSRJAmIAAGrczsi6y0dfhIMevguH8E39rs\nI8bslyoG0GgkJhYaOVTi7JbDHk7ueyBkjURymjbgKN7e4uP4ETdTivxaLvGJWuZebiFnnJ5d29rY\nt6s96I0hUmqrPKSkh3fDTcvUMSbXwK6tDvbtaidnnF6VI+gnsfEa7C2BU3Glgml+0T6gKMvCnsq2\ngHpU733ZxNqd1fzPvmo6fH0/L76obseglZiUHP5kudj2AUgS0tzQVauB6LMn2Lt3L3FxceTk5PT6\naHuhxZDky66GskPID/4/pNSMiNaVJAl54dXIP/wF4t2/ofz5GZRN76K89BzyyoeRpl0adN3Gei8J\nSZqQ9g7kRGttlYeUtP45hIQkbVgVrQCSwYg0fyniw8BVnZ0sGRdPhlWPtqUBvB5ITqO50Ud8Yvd9\nTc/SodVLfFXuD5O1tym0NPtIDZKVFIq0TB0156VLKoqgZGc7eZONxJi/DqdJksRFow1cdlUsOp3E\n5vft/b4JezyC5iZ/W8RwGTPBgC1JS4dbMH6iGprpL1qdhNEk0xYgXVIqmIYoLUEoCslmHSlmLYfq\nvp4zFELwSkktbx1p5MkrRjHGZmJ/GI3lg/HO0UaunpAQtk8Urc2IDf+N/G939blwrs/e4MiRIxQX\nF1NSUkJHRwdOp5M1a9YQHx9Pc3Nz179xcYF7bZaWllJaWtr1esWKFVitURDfn30ZomiePxWqr0y8\nGPEff8T50m/xfvwWlp8/hyaA3rter+/a52OtzaRlxIRlQ3KqF2e7Jjr2nkN9rYN5ixOwWiMf8XZi\nMins2tpGjMmCppesjU7blev/L/Yf3oL55tuRYwMf6xlWK/+VnQS7t9IxIR9LbCxt9kbSMoxYrd1T\nvormGNm8sY7cSTZOltnJGWcmPj6yiaVOxoxX2L+nEpPRjFbnv0AO7G0hxqwjvzBw+ivAJfNj2fJh\nPS1NWsaM76n3c+5x741TJ9tJTjGQkBDZ/s9eaEUIuiqghxLh2j6UsCW76XDpsGaddyytVlpj44mp\nr0Y7Npd5YxIpqelg9rg0PD6F/9x8kspWN79bnk+cSce8cQolNW1clpce8T5Utrr4ssHN40tzMerC\nywZre2UNugVLMU0M3jSm88nkjTfe6HovPz+f/Hy/kmmfveDNN9/MzTffDMChQ4d4++23uffee3nt\ntdfYvHkzy5YtY/PmzcyYMSPg+ufuRCd2+9CqKOPbd4MQtEsSBNg3q9Xatc/VVe3kFRjDsiHGrFB9\nxk32mOhdwG12H54OHxqdC7u9f71nLVaZ018195q50WW7RgdTL8X+zhvI1/5rr9tVDu2D7LHY7XZq\nq51k5Ug9fi+dAZJSNZTsqqfylIfps2P6dV7E2zScONZEepae5kYvR0vbmH+FFYej9wm1pFQ4edxO\nclrPkd+5x703Kk60Y0uRh9553Q/CtX0oYbYIaqraSEzteSzFpCm07dqCnJLBlBQ9T245w//Ji+U/\ntp7BpJX5+cJMZK8Lu93FJVlW/qf4FD+YavP3Yo6Av5fUsmh0LB5XO54wuoaKw1+glO5Dfvx5vL38\n3gf3tnPFtbGsWLEi4OdRz4NftmwZBw4c4P777+fgwYMsW7Ys2l9xQQnnccrn6z5hGIo4W/RDNLVV\nXlLSdVEJiYWrD9+JtOQGxKZ3e81Agq8LnDwegbNdwRoXeCSTN9lE+TE3Gq0/p70/dBY9+XyCfTvb\nyZ9iCkuoKyVDR32NJ6wq00AI4Z/wTklTK08Hm9ggqZLQPV0yJ96AEIIH3jtJplXPqnmZ3TTYs+KN\nmPUayhoi6+vs8ip8fKKFqyaEN0kqPB6U//498k23IRmDx+vLy9zUhVBOjcoMzqRJk5g0ya/JYrFY\nePTRR6Ox2WFDa5MPs0XTNWEYCss5E639mRA9l9pqT9iVnqFISNJS+VX4laBSRjaMGofYsQlp/pUB\nlxFeD5wqh9HjaWn0EhuvCRqCMMXITCr0FwL194aVmuEvojqy34U5VkPmqPAcrsEgExuvob7GGzS9\nsTccrf7RYqhJd5WBJy7Bn0kjhOh5Po3PhzMViDY7ktnK9Xk2FAHX5wWOlc/KsrDrtKOHPntvfFre\nysRkE6mW8K5PsfFNSMtEmnJJ0GVqqzyUHXIxZ3HvVa3D9uxzOQe+5D9cGhu82JLCH2lGe6LV5xM0\n1nlJSo1OxoVfssAbUV64fOWNiA83BK8KPn0SklKRjDFnC5x639eccQYyR/X/hhVj9mvynK7o4OLp\nkXVASsvou+RBbbWH5LToPFGp9A+D0X8MXM4AmTQ6PYzPRxz6AoDr8mzcMNEW9LjNuiiyqlchBO8c\nbeKaCeGlRoraSsTHbyPfdEfQZVqbfZTsbGfGbHPIbm3D0sG7nApbP7JTdqh/seZo0VTvIyFE/vv5\nRLOitaHOizVeg14fncNpipGRZQIr8QVjQgEYTIjPNwW8MXQvcPIRH6bsQDSYkG9g2qUxEVf3dmbh\n9KUAyh8yU1MchwKSJHWN4gN+XjANzsoWhGJ8ohGH20eVPTwN+dJaJz4hKEwLrf4oPB0or72AtPRb\n/pTvALhdCru2OsifagqrunnYOXiv198lKS5eQ0Pd4CvACSForI9sBA/+x8ZoVbTWVXmjHusNV3is\nE0mSkFd8H/HOGyi//BHKzk8R3nOOz9kCJ4DmRi8Jtgvn4NOz9H1SYTRbNej0Es0RSg97vYKmBi9J\nqvLjkCG2l2Y7UsF0ROnesG7ksiQxM8sS9ij+f482hUyNFEIg9u1EeeweMJmRFl8XcDmfV7BraxsX\njdaTFebT7bBy8EL4J8rMVpnps8047D68nsFtt+Vs949yI+2wE82JVn8xTXRHiwlJ2vCEx85BmlCA\n/Iu1yNesQGz9AOXfb0d5701Em6NrBO9sV1AUfzOG4UBaH6SHG2q9xNu06MKck1EZeOISeploTUkH\ng9E/RxQGs7Ks7AyjSUhdm4eDNW1cNiZ4mqyoPoPy28dR3nwJ+dt3obnrpwFTvIUQ7NvVjtkiMyE/\n/PqI4XGVneXIARcup0LhTH/5dlxCeGX1A0ljvV+eINJYqyVKFa3tbT46OkS/s03Ox5aooa7GG5Yu\nzblIsgZpyiw0P3oC+Z6HoeorlH+/HRx2SMuiudGvPzNcYtN9kR6ORsGZSnSJjdfQ2suAqnMUHw4X\np8VwstlNq6t33/Pul00sGB1HTIC8d+FqR/n7SyhP/QRpYiHyY79Fyp8adFtHD7pwtisUFsVEdO0M\nGwd/qryDyq88zJxr7tLmSEzWDnqYpulsBWukRGuitbbKS0pa5DeYUMTZNKRn6dj8vp3jR11hdV06\nHyl7LPL3H0B+/Hl/JbAs09zoIyFx+Di/eJsGT4fAYQ/vOAkhulJWVYYOFovslxMJohx6rnxwKPQa\nmcI0M7vPBB/Flze5+Oh4C8smBpD+PXYY5dGV0NqE/Nga5Ctu9GvjBOFUeQdnKrr7vnAZFg6+vtbL\noS+cFM03d5soS0zW0jjIDr6x3oetjw4rLkHbfwdf7SF5AJyJJElMKjQxZ7GFumovn260U1fdt4wS\nKd6GlFsA+LXd4y9g/L2/hCs93Embw9/ExBo3LC6tbwySLGGN09AarGPZhMlQcQLR3hbW9mZlWYKK\nk3l8gme3V/G9aSkkm7tfm6K2CuWFJ5H/7W7k7z+AFN/zBnAuDXVnfd88c58kwIf8Weiw+9i7o41p\nl8Rgje3uGBIS/Q7S5x2cOLzHo9Dm8BHbx/BIpC38zkfxCRpqvSQPYDjAGqth1nwzEy82sb/Yye5t\nbbS39W2fhSJoORuiGU6Ekh4+l7oqr5oeOUSJ6+WJWTIY/BLCR74Ia1szMi0cqGnH7e0Zwnz9QD0p\nFh2Xje4eexftDpQ1v0C67l+RCmeG/I42u48928/6viBFgaEY0g6+ptLD55sdTMg3khwgS0Sr89+V\nmwZQX703Guo6iI3X9FnOtb/a8I31XixWDYYoFUsFo3MUu3CplbgEDVs+cFBfG3mKqsOuYDAG73g1\nVElK0dLa4gtLYbK2OvoT3irRITaIdHAn0uSvq1pDYTVoGGMzsq+6+4j/aL2TD483c3dRWrebvPB6\nUX7/FFL+VOSFV4fcfkeHws6tbUF9X7gMySvNYfexc4uD0n1OLp4RQ864nv0JO0lM6X+Ypq+NHupr\n3CH133ujvxOttdUXNtdao5WYkG8kf4qJPTuaI/7dmhqG3+gd/FLGyak9lSnPx+f1F5wlR6ngTCW6\n9DaCB5Dyw0+XhK+rWjtxexWe21HF7TNSSTB9fQ4IIRB/+T1odUgrvh9yu4oi2PNZO6npul59XzgM\nKQfv9QgO73ey7SMHiclaFl5pDTlZ1d+JVrdL4bOPHRzY03vj40DU1XSE3Sc0EP2daPVna1z4ybys\nHB1CCM5EIGcABJQIHi6Eky7ZWXCmi1LBmUp0scZpcNh9KMH0hdIyQZKh8lRY25uVZWH3GUeXhvxr\nX9QxOsHAnFHnhWY+3IAo/xL59h8hyb37CyEEB4qdaLQwqbD/ctFD6kzc9F4rznaFhUutjJtoRA4j\n9JGQpKGpwRv8oPWCw+5j28cOElO0NNR6KS8LrzoN/AeivrZ/I3jo+0Srs13B5RSDMiKWJIlplyRw\neL+zR8f63mg+24N1OJKS7j9HerPX/0SlZs8MVbRaiRizjL018BOzJElIU2Yhdnwc1vZSLXrijVq+\nrHdSWtPO1go7d8zs3mBIlHyO+PCfyPc+imT0V7MKIXC0+rAH+Cs75Ka5ycu0S8xIUZCLHlLDqemX\nmiNuLqzXy5gtMi1NkckFNNV72f1ZG7kFRkaNNTBqrJ5tHzkwW+SwxKUcrQoGo6ZPM9vnEp+gibiQ\nBvyt4JLTtFE5CfpCSpqBBJuWE0fdYRVe+Lz+k7qvE9KDjd4gE5egpb7GS0IQWZHaKg/TLgldkq4y\neHS28AtWNyItXY7y8/sQC64KqxvcrCwLn55sZW9VG3cXpRJr+Hq7ouI4yivPI9/3WLe2oeVlHZQd\ncqHX97x2dXqJonmWsIULQzGkHHxfO8d3hmnCdfDVZzx8sbudKUUxXc48xqxh5hwzu7a1cckCS8jC\nocZ6L0kp/RfDirNpOHowMvlR8Oe/90XlMJpMLDSy9UMH2WP0IXumtjT7sMT2fUJ6KNBZ9DQ+r+dn\nLU1ePANQcKYSXfwhUW9Q5VUpPhHp8usQb76MdOeqkNsryrLwo/crWDwmjqKsrxuhCI8H5U+/Rrr5\nDqTR479+XwjKy9zMnGvu99N/OAypEE1fsUUQhz9Z5mZ/cTuz5pt7OMiEJC0F00zs3uYIWcHZ1OAj\nObV/EyDgL8AQwp/uGC6KIqivGdj0yHAwWzRkj9Fz5EDoG1Rzg7df8xVDgbRMLTWVHhRFoCiChjov\nh79wsvn9Vj7/tI3xEw1qeuQQJ1gT7nORltyIKD+KKDsUcnvjbEaWT7Lxg+kp3d4XG9+E9IuQZ87r\n9n5tlRedTrpg18KIcPCJyWflbUNUWx454OREmZs5iy1Bm3NkZuvJHmNg19a2gPFWIQT2Vh/1tdEZ\nwUuyxMSLTZTuc4Y9ydtU78N0VgZ3sBk/0UhtlYfmxt5vUE2N4TdEGarEmDUYjRKfflDPB/9s5eBe\nJ5IMhTNiuOL6WMbkqj1UhzqdzT967SNtMCDd+F2U1/8ruPx157KSxC1TUzDrzwnN1JyV/P3X23os\nX17mZvR4/QUbCAy+h4gCBqOMwSgHr1LDn+Fw6mQHcxZbQmooj59kwBorU7LTn1nj8wlqqz0c3NvO\nJ+/Y+Xyzg/RMHXEJ0QmRZGTrkGU4fTJ0LF4o/kyj7DHRae7RX3R6f+rkoS9cvV40F1oieKCYWGji\nohwTC660suBKK3mTTSQkDd5ciEpkGIwyWq2EM4QUtlQ0H2QZsfPTiLYvhED5y++Rruop+euw+2hp\n8pGRfeGu3RHh4KEzDh/YwQshKC1xMvFiU1hFQZIkcfHMGDpcCls/dPDBP1v48qALg1Fm5lwzl18X\nS/5UU9SaIkuSRP4UE0cOhM5KOf6lG1mGnHFDw8EDZI/R0+FSAlZ7drgVTpV30NGhYLEO/9MtSG74\negAAD+1JREFUJV3HuDxLxOqhKkOH3lr4dSLJMvKKHyDWv4pwhz9HJnZvhdZmpEU9JX9PlrnJHqO/\noPNQw/uZ+RwSk7VUnfEwZkLPuPjpkx4kCTKzwx9xazQSM+eZaaj1YkvWDni1aEKSlsRkLcePuMgt\nCNwOzN7i4/gRN/MutwypWK8sS0yaauLgHicp6Tra7Ao1lR5qqjzYW3wkpmiZOss8pPZZ5ZtLZ/OP\n9Kzel5PGTUQaNxGxcT3S9TeF3K5odyD+9mfkO3tK/no9gtMVHuZfYQ2y9sAwYoYhnRWt54cJvF7B\nkQNO8qdG1q4N/CmY6Vn6AXfuneRdbKK8rKNLY/5cFEVQsrOdvMlGYkKEmAaDlDQdZqvMh/9sZfe2\nNtwuhQmTjFxxQxxFcy2kZar54SpDg96af5yPtPy7iE/+F9HUEHJZseE1pIuLkMb2TLM6fbKDxBQt\nMRe4D8KIcfCmGBmNVsJh7+4cjx9xYUvSXpCUpP4SY5YZNVbP4f3OHp8dO+xGb5CGTOw9EFNnxTDn\ncguLrrFSMC2GlHTdsE6LVBmZ9Nb843ykpFSk+Vcg1r/S63KivAyxdwfS8u/2/EwIyo/5J1cvNCPG\nwQMkJmu6pRs62xXKyzqYWBh+B/TBZvxEI/U1XpoavrajudFLeZmbwpmRif1faPQGGWvs8GnmofLN\nJMYs4/PCyWPukJl3ANJV/4I4tA/v8aMBPxc+H8prv0P61q1IZkuPz+trvUiSP4x8oRn6w9oISEz2\nVxp2CvQcOeBk1Fj9BX8s6g9anUTeZCOl+5zMWWRBUWDfznbyp5jUiT0VlSggSRKzL7NwYG87Fcc7\nKJhm6tX5SqYYpBu/Q9svf4TIzEFKzYDUjLP/ZiIOFPt7qc5aGHD98jI3OeMGp0ZiRDl4W7KWowf9\n6XotTT7qqr0sujp4P8ShykU5esrLOqg67aGl0YfZqiFzlBrDVlGJFrHxGmZfZqHylIe9O9pITNEy\nqdAUtLZEnnM55hlzcBw/iqithJpKlKMHoaYSnG3IP34yoANvb/PRWOdj2iXmgTYpICPKwZstMkJA\ne5tCaYmT3AJj1DQdLiSSLJE/xcjez9sBWHClVQ17qKhEGUmSyMzWk5quo+ywi83v2xmXZ2DMBENA\noUM5KQXJYEKaNCXs7zh5rIOLcvRotYNz/Y6oZ35JkkhM1lJa4s8nzw6iNzEcSErVkZ6lo3BmTL8F\nzVRUVIKj1fmryeddbqGuxsuezyOXDg+Ezys4Vd5BziBMrnYy4jxHYrKWmkov+VNMw766cPL0mEEX\nFFNR+aZgtmoommemw61wZH/kAoDnc7qig3ibJmTl/EAy4hx8aqaO3AIjSamqY1RRUYkMjUZixhwz\nlac9fHUi8raUAJ4OhYN72zlywMX4SYOrT9TnGHxDQwPPP/88LS0tSJLE4sWLufrqq3E4HDz77LPU\n1dWRkpLCAw88QEzMhdPINsXIYemTq6ioqATCYJApmmdm+ycOYsxy2INFIQRfnejg6EEXqRk6Fl5l\nvWBFksHos4PXaDTccsst5OTk4HK5WLVqFYWFhWzatInJkydzww03sGHDBtavX8+3v/3taO6zioqK\nyoBijdUw/dIY9uxoZ85iCxZr72GWpgYvB/Y4kWUommceMsqpfb69xMfHk5OTA4DRaCQzM5OGhgaK\ni4tZsGABAAsXLmT37t1R2VEVFRWVC0lSqo68yUZ2bWmjw91TPsTnE9RWedj7eRvFn7UxeoKhVyny\nwSAqe1JbW0tFRQUTJkygpaWF+Ph4wH8TaGlpicZXqKioqFxwRo010OZQKP6sjcuvjcXZrlBb5aGm\n0uNvsh6nIS1Dx+TpMeiGYEp2vx28y+Xi6aef5tZbb8Vo7Bn7VvO3VVRUhjMTLzZS/Fk7b71ehder\nkJKmJeMiPVOKYtAPcow9FP1y8D6fj9/85jfMnz+fmTNnAv5Re3Nzc9e/cXFxAdctLS2ltLS06/WK\nFSvIyMjoz+4MClbrhZX/HEqotn8z+SbanrlisPegd954442u/+fn55Ofn+9/IfrBmjVrxEsvvdTt\nvVdffVWsX79eCCHE+vXrxWuvvdafr+iV119/fcC2HQ4/+9nPBu27VdsHD9X2wWMw7R+Otvd5BH/k\nyBG2bt1KdnY2P/nJT5AkiZtuuolly5bxzDPPsGnTJpKTk3nggQf6fXcKRtddapBITk4OvdAAodo+\neKi2Dx6Daf9wtL3PDj4vL4/XX3894GePPvpoXzcbEYN9sqekpIReaIBQbR88VNsHj8G0fzjaPrRn\nCIY4g32xDSaq7d9MVNuHF5IQUVDVUVFRUVEZcqgjeBUVFZURiurgVVRUVEYoQ6emdgjwwgsvsHfv\nXuLi4vj1r38NQEVFBX/6059wu90kJydz3333YTQa2bZtG2+99RaSJCGEoKKigl/96leMGjWKEydO\nsHbtWjweD1OnTuXWW28dXMPCIBLbPR4Pa9eu5dSpUyiKwvz581m2bBnAiLfd6/Xyxz/+kRMnTiDL\nMrfeeiuTJk0ChqftfRENXL9+PZs2bUKj0XDrrbdSWFgIDD/7I7Xd4XDwm9/8huPHj7Nw4UK+//3v\nd21ryNoe7VzN4czhw4dFeXm5+OEPf9j13k9/+lNx+PBhIYQQmzZtEn/96197rFdRUSHuvffertcP\nPfSQKCsrE0II8ctf/lKUlJQM8J73n0hs37Rpk3j22WeFEEK43W5x9913i7q6OiHEyLf9/fffF2vX\nrhVCCNHS0iJWrVrVtc5wtL2pqUmUl5cLIYRwOp3ivvvuE6dPnxavvvqq2LBhgxCiez3LqVOnxI9/\n/GPh9XpFTU2NuOeee4SiKEKI4Wd/pLa7XC5x5MgR8eGHH4p169Z129ZQtV0N0ZxDXl4eZnP33onV\n1dXk5eUBMHnyZHbu3Nljvc8++4zZs2cD0NzcjNPpZNy4cQDMnz9/WAiuRWJ7fHw8brcbRVFwu93o\ndDpMJtOItn3Xrl0AnD59moKCAgBiY2Mxm80cP3582NoeqWhgcXExs2fPRqPRkJKSQnp6OseOHRuW\n9kdqu8FgIDc3F622e+BjKNuuOvgQZGVlUVxcDMCOHTtoaGjoscz27duZO3cuAI2NjSQmJnZ9lpiY\nSGNj44XZ2SgTzPYpU6ZgMpm4/fbbWblyJddddx1ms3lE215fXw/AqFGjKC4uRlEUamtrOXHiBA0N\nDSPC9nBEAxsbG0lKSupax2az0djYOOzt749g4lC2XXXwIbjrrrvYuHEjDz30EC6Xq8fd+9ixYxiN\nRrKysgZpDweOYLZv2bKFjo4O/vjHP/L888/z9ttvU1tbO8h7G12C2b5o0SJsNhsPPfQQL7/8Mrm5\nucjy8L+MvsmigSPZdnWSNQQZGRk8/PDDAFRVVVFSUtLt888++4w5c+Z0vbbZbN1G+Q0NDdhstguz\ns1EmmO1ffvklRUVFyLJMbGwsubm5nDhxgry8vBFvuyzL3HLLLV3LPfroo6Snp2M2m4et7ZGIBtps\ntq6nGfjazuF63vdHMLGToWz78B96RBkhRLeO6q2trQAoisKbb77JkiVLui27Y8eOrvg7+E+OmJgY\njh07hhCCLVu2dJ04Q51wbc/IyODAgQOAf/RTVlZGZmbmN8L2jo4O3G5/r879+/ej0WiGve0vvPAC\nWVlZXH311V3vTZ8+nc2bNwOwefNmZsyYAcCMGTPYvn07Xq+X2tpaqqurGTdu3LC1PxLbgzGUbVcr\nWc/hueee49ChQ9jtduLi4lixYgVOp5ONGzciSRJFRUXcfPPNXcsfOnSIv/zlL6xevbrbdk6cOMHv\nfve7rpSp733vexfalIiJxHaPx8MLL7xARUUFAJdddhnXXnstMPJtr6ur44knnkCWZWw2G3feeWdX\nTHo42n7kyBEee+wxsrOzkSSpSzRw3LhxPPPMM9TX13eJBnZORK9fv55PPvkErVbbI01yONnfF9tX\nrlyJy+XC6/USExPDI488QmZm5pC1XXXwKioqKiMUNUSjoqKiMkJRHbyKiorKCEV18CoqKiojFNXB\nq6ioqIxQVAevoqKiMkJRHbyKiorKCEV18CoqKiojFNXBq6ioqIxQVAev8o1EUZTB3gUVlQFHFRtT\nGXasXLmSJUuWsGXLFpqbm5k5cya33XYbWq2WPXv28Prrr1NXV0dWVha33XYb2dnZXetdccUVbNu2\njcrKSl599dWgSpArV65k6dKlbNmyhfr6egoLC7nnnnvQarW0tbWxZs0ajh07hqIoTJgwgdtvv71L\nYOrxxx8nNzeX0tJSKioqKCgo4K677uLFF19kz549ZGZm8uCDD3ZJHJw5c4YXX3yREydOdEklXHrp\npRfmx1QZ0agjeJVhybZt23jkkUdYs2YNlZWVvPnmm5w8eZLf//733HHHHfz5z39myZIlPPXUU3i9\n3q71tm/fzkMPPcRLL70UUub3888/5+GHH+b555+noqKiS4BKCMGiRYt44YUXWLt2LQaDgXXr1nVb\nd8eOHdx777384Q9/oLq6mkceeYRFixbx4osvkpGRwd/+9jcA3G43q1evZt68eaxbt47777+fdevW\ncebMmej+YCrfSFQHrzIsWbp0KTabDbPZzPLly9m2bRsfffQRS5YsYezYsUiSxPz589HpdJSVlXWt\nd9VVV2Gz2dDpdCG/46qrriI+Ph6z2cz06dM5efIkABaLhaKiInQ6HUajkRtvvJHDhw93W3fhwoWk\npKRgMpmYMmUKaWlpFBQUIMsyl156ade29uzZQ0pKCgsWLECSJHJycigqKmLHjh1R+61UvrmoIRqV\nYcm5HXSSk5Npamqivr6eTz/9lPfee6/rM6/XS1NTU8D1QtHZ1Qf87dqam5sBv2TwSy+9xBdffEFb\nWxtCCFwuF0KIruYQ52qI6/X6Hq9dLhcA9fX1lJWVdVMfVBSFefPmhb2fKirBUB28yrDk3AYL9fX1\n2Gw2EhMTWb58OTfeeGPQ9aLRneett96iqqqKJ598ktjYWE6ePMmqVau6OfhwSUxMJD8/v6u5iIpK\nNFFDNCrDko0bN9LY2IjD4eAf//gHs2fPZvHixXzwwQccO3YM8Dcj2bt3b9doOVq4XC70ej0mkwmH\nw9EVT+8L06dPp7Kyki1btuDz+fB6vRw/flyNwatEBXUErzIsmTNnDqtXr6apqYmZM2eyfPly9Ho9\nd955J+vWraO6uhq9Xk9eXh6TJk0CIhu997bsNddcw29/+1t+8IMfYLPZuPbaa7sadEeK0WjkkUce\n4eWXX+aVV15BCEFOTg7f/e53+7Q9FZVzURt+qAw7Vq5cyV133UVBQcFg74qKypBGDdGoqKiojFDU\nEI3KsCMaE6X19fU8+OCD3bbVOUn69NNPR5Rto6IyVFFDNCoqKiojFDVEo6KiojJCUR28ioqKyghF\ndfAqKioqIxTVwauoqKiMUFQHr6KiojJCUR28ioqKygjl/wOQ0M36MUbGogAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We now know we can look at the range\n", "ax = df.resample('A')['val'].median().plot()\n", "df.resample('A')['val'].max().plot(ax=ax)\n", "df.resample('A')['val'].min().plot(ax=ax)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/ipykernel/__main__.py:3: FutureWarning: .resample() is now a deferred operation\n", "use .resample(...).mean() instead of .resample(...)\n", " app.launch_new_instance()\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEhCAYAAABhpec9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8G+WZx3+6D0uWLN+OE9txDifOfZGQGwI0EI6FNl0K\nu+UqNCE9Auyy3KQHW1qulFDabqCF3bQNV9IALbcNOUmcO3bixImP+JAtW/c50sy7fygWlnWNZMmW\n7ff7+ehja+add55XI80z7/tcAkIIAYVCoVAoERAOtQAUCoVCSW+ooqBQKBRKVKiioFAoFEpUqKKg\nUCgUSlSooqBQKBRKVKiioFAoFEpUqKKgDDplZWV45plnhlqMQWE4jrW5uRlCoRD79u0bUBsAEAqF\n+Mtf/pJsESmDDFUUlKQhFAohEokgFArDvsaPH5/S80e7eW3atAkTJ05M6fnDUVNTg40bNw7KuUpL\nS4M+7/z8fNx0002or6+Puy+BQJCUNpSRAVUUlKSh1+vR0dEBvV6Pd999FwKBAMeOHYNer4der8eh\nQ4dSLkO0m9dQ3Niys7OhUCgG5VwCgQCPPPJI4Dp8+OGHsFgsWLNmTdx98YnDpbG6oweqKChJIy8v\nL/DS6XQAgJycnMC27OzsQFuGYfDTn/4U2dnZKCgowAMPPACO44L6e/nllzFlyhQoFApMnjwZzzzz\nDFiWjSpDPDevN954A5WVlZDJZBg7diyeeOKJoP5XrlyJe++9N+iYX/7ylygrKwu8r6urw7e+9S1k\nZWVBpVKhsrIS27ZtC+zvv/RUVlaGp556KurY3W437r33Xmi1WmRnZ+PHP/4xHnvsMV4zooyMDOTl\n5SE/Px/z5s3Dgw8+iAsXLsBisQAAvvzySwiFQrS3twcdJ5FI8OabbwZta2xsxKpVq6BUKlFeXo7t\n27eHnI9Pm744HA785Cc/QXFxMTIyMjB37lzs2LEj5rgoQwtVFJQh4eWXX0ZRUREOHjyILVu2YMuW\nLXjjjTcC+59++mm88MILePbZZ3HmzBls3rwZf/zjH/Gzn/0sofP1VyAffvgh7r77bnz/+99HbW0t\nXnjhBbzyyiu8+u87M7n11luRk5ODAwcO4NSpU3jhhReQlZUV9fgtW7ZEHft//ud/4v3338e2bdtw\n4MABqFQq/O53v4t7RmQ2m7Ft2zZMnToVGo0mrPzRePjhh3HPPffg+PHj+N73vofbbrsNx48fj7tN\nX9asWYOTJ0/i7bffRm1tLdatW4dbb70VVVVVcY2NMsgQCiUFVFdXE6FQSNra2kL2lZaWkhtvvDFo\n2+rVq8n3vvc9QgghTqeTKJVK8vHHHwe1efPNN4lWq414zqamJiIQCEhGRgZRqVRBL6lUSiZOnBho\nu3TpUvKv//qvQcdv3ryZKJVK4vV6CSGErFixgvzgBz8IavOLX/yClJWVBd5rNBryxhtvRJSptLSU\n/PKXv+Q9dofDQWQyGfnTn/4U1GbhwoVB8kc6l1wuJyqVimRkZBCBQEDKy8vJ2bNnA20iXRexWBwY\nR+/n+NRTTwW1ufzyy8m///u/825DCCECgYBs27aNEEJIVVUVUSgUxGq1Bh1z1113kX/5l3+JOjbK\n0EJnFJQhYdasWUHvi4qK0NnZCQCora2Fy+XCLbfcArVaHXjdd999sNls6Onpidr3n//8Zxw/fjzo\n9cMf/jCoTW1tLZYuXRq0bfny5XC73Th//jzvcTz00EO4++67sXLlSmzatAlHjx6NeUy0sTc0NMDr\n9eKyyy4LarNo0SJe8tx///04fvw4Tpw4gT179qCiogLXXXcdHA4HzxF9w8KFC4PeL168GLW1tXG3\n6aWmpgYejwdFRUVB13Xbtm1oaGiIWz7K4CEeagEooxOpVBr0XiAQBNbpe/++8847Ydfle+0fkSgq\nKgrxsIp1TC+kzxKVUCgMWbLyer1B7x9//HHcfvvt+Oijj/DFF1/gmWeewcMPPxx1CSva2HtlSNTw\nrtPpAmMfP348Xn/9dRQUFGD79u246667IBQKQ8bJcVyIfSgVcBwHrVaLmpqakM+1/2dCSS/ojIKS\ndlRWVkIul+P8+fMYP358yCsZ3kuVlZX46quvgrZVV1cHjLKA3zjf3+h7+PDhkL5KS0vxwx/+EG+9\n9RZ+9rOf4dVXX01YrgkTJkAqlWL//v1B2w8cOJBQf72flcvlAuAfEyEkaFxHjx4N6wTQ/5z79u3D\n1KlT427Ty7x582A2m+FyuUKuaXFxcfyDowwadEZBSRnhbj58yMjIwKOPPopHH30UALBq1Sr4fD6c\nPHkSR48exa9+9asBy/bII4/ghhtuwLPPPoubb74ZR48exaZNm/DQQw9BLBYHzrt+/Xq88847mD17\nNt555x3s2bMnYKx2OBx4+OGHccstt6CsrAwmkwkfffQRKisrE5ZLqVTivvvuw+OPP468vDxMmjQJ\nb7zxBurq6pCfnx/zeLvdHljG0uv1+PnPfw6lUolrrrkGgF8RlZSUBJwFDAYDHnvsscBMoy+vvfYa\nJk+ejHnz5uF///d/ceDAAbzyyitxt+nliiuuwKpVq3DzzTfj2WefxYwZM2AymbBv3z4oFArcfffd\n8X5clEGCzigoKSPSkz+fGcHjjz+OF154AVu3bsWsWbOwdOlSvPTSS0GuqYn2DQCrV6/G66+/jjff\nfBPTp0/Hgw8+iA0bNuDJJ58MtPn+97+P+++/Hxs2bMD8+fPR2tqKn/zkJ4H9YrEYJpMJ99xzD6ZO\nnYrVq1ejoKAgyD22vzx85Pv1r3+N66+/Hrfddhsuu+wymEwm3HHHHZDL5TGPffbZZ1FUVISioiKs\nWrUKFosFH3/8MSZMmAAAEIlEeOutt9DV1YU5c+bgRz/6EZ555pkQRSEQCPCrX/0Kf/zjHzFz5kxs\n27YN27Ztw8yZM+Nu05ddu3bh5ptvxgMPPIApU6ZgzZo1+Mc//hGYxVHSEwFJ9LGPQqEMGldeeSV0\nOh3efvvtoRaFMgqhM4o0IJKXyGiAjj2UU6dO4c0338S5c+dw6tQpPPzww6iurg4J/hvO0Os+vKCK\nIg0Yjl+cZEHHHopAIMCrr76KBQsWYPHixaiursbOnTtx1VVXDbKEqYNe9+EFVRQY+gvX1dU1ZOem\nYx86Io29srIS+/fvh8lkgsViwddff43rr78+qedO17EPFkM5/uE4dqooMPQ/GoPBMGTnpmMfOujY\nh46hHP9wHDs1ZlMoFAolKiMyjqJ/kFS6o1arYbPZhlqMIYGOnY59tJGuYy8qKoq4jy49USgUCiUq\nVFFQKBQKJSpUUVAoFAolKlRRUCiUUYXDy8Hpoz488UAVBYVCGTW4fAQHW+2wuqOX1KUEQxUFhUIZ\nFTAsweF2O/Q2D+wMVRTxQBUFhUIZ8fg4gmN6By6a3QAAq8c3xBINL6iioFAoIxqOIzjV5cL5Hldg\nW5fdG+UISn+ooqBQKCMWjhCc6fHgdFdwzXCbxwenN/XlX0cKVFFQKJQRy3kTgxMdoVHQPo7A4aWe\nT3wZtBQer776Ko4cOQKNRoPnnnsOAPB///d/OHz4MMRiMfLz87F+/XoolUoAwI4dO1BVVQWRSIQ7\n7rgjqGoWhUKhxMLsZnGkzYpI6sDmYZGrFA2qTMOVQZtRrFy5Eo899ljQthkzZuD555/Hb37zGxQW\nFmLnzp0AgNbWVuzfvx8vvvgiHnnkEWzdujXh+ssUCmV0Yvaw4KLcNqhBmz+DpigqKiqQkZERtG3G\njBmBWr0TJ05ET08PAKCmpgaXX345RCIR8vLyUFhYiIaGhsESlUKhjAAsrugusN0OatDmS9rYKKqq\nqjB79mwAgNFoRE5OTmCfTqeD0WgcKtEoFMowgwDotDNR21jcXrhohDYv0kJRvPfeexCJRFiyZMlQ\ni0KhUEYADi8Hszv6jIFhCfV84smQ16Oorq7G0aNH8eSTTwa26XQ6dHd3B9739PRAp9OFPb62tjao\nYtPatWuhVqtTJ3AKkEqlw07mZEHHTseeCnp6nBCJpYhlqmYghlqtSpkc4Ujn6/7WW28F/q+srERl\nZSWAQVYUhJAgo/SxY8ewa9cubNq0CRKJJLB93rx5+O1vf4s1a9bAaDRCr9djwoQJYfvsO5he0rEo\nSDTStZDJYEDHTseeCrqsLjCMJ2a7bqsThYrBXX5K1+uuVquxdu3asPsGTVFs3rwZdXV1sNlsWLdu\nHdauXYsdO3bA5/PhF7/4BQC/Qfuee+5BcXExFi1ahI0bN0IsFuOee+6BQCAYLFEpFMowp8vOz6Op\nx+UFoEitMCOAEVkzm5ZCHT7QsdOxJxsPS/BhvREeX2z7g1wsxHWTdZCKBu9BNF2vOy2FSqFQRg02\nD8dLSQCA28fBQQ3aMaGKgkKhjCjM7vgC6WwemnI8FlRRUCiUEYXJFaeioLUpYkIVBYVCGTGwHKCP\nEWjXH6OTpvKIBVUUFAplxGDzsnDEmcOpx+mFL1pSKApVFBQKZeRgcbMRs8VGwu1lYacG7ahQRUGh\nUEYMFnf89gYCwO6hiiIaVFFQKJQRQ7z2iV7s1KAdFaooKBTKiMDBcLC4EksdHq+n1GiDKgoKhTIi\nsDBswkbpbqcXLLVnR4RXriefz4f29nY4nU4olUoUFRVBLB7yxLMUCoUSwJqAfaIXJ+ODw8shU0qf\nncMR9W5/5MgRfPLJJzh16hREIhEUCgVcLhdYlsW0adNw1VVXYe7cuYMlK4VCoUTEMICKdRzx2ymo\noghPREXxxBNPICMjA0uWLMG9994bVA/CaDSirq4On376KXbu3Imf//zngyIshUKhhMPDEnQ7EjNk\n92LzsIBKErvhKCSiovjBD36AcePGhd2n0+mwZMkSLFmyBC0tLSkTjkKhUPhgYzi4+SQCJARTD+7C\n2dlXwycNTi9uiTNH1Ggi4jwrkpJItB2FQqGkCr43+Zz2c5h2cBd0+saQfQaHFzRAOzy8FuQ++OAD\nNDU1AQDOnj2LdevW4f7770d9fX0qZaNQKBRe8HVvrTjyEdwKNTTGtpB9Dg8LJ8/05KMNXoriww8/\nRF5eHgDgr3/9K9asWYNbbrkFb7zxRkqFo1AolFiwBNDbYtsnMo3tyOpqxJm510LTE6ooWELgoBHa\nYeGlKHrdYl0uF5qamrB69WpcccUVw66SHIVCGXnYGBZ2JvaMYvKRj9Aw4woY80rDKgoANOdTBHgF\nQ2RnZ6O+vh4XL17ElClTIBQK4XQ6IRRSVzIKhTK0WD0sYhV0VthNKLpwFP/89/8G4J9dgBBAEFwC\n1eWlqTzCwUtR3H777XjhhRcgFovx4IMPAvDHWEyYMCGlwlEoFEos+ATaTTz+GZorLgcjVwEAvFI5\nlLYeODNz4u5rNMJLUcyZMwd/+MMfgrYtXLgQCxcuTIlQFAqFwpeuGIkAJR4nyup249PvPhnYZs0e\nA01PW4iiMLu9IAAEoPQloqLo7Ozk1UF+fn7ShKFQKJR4cPsITDESAY6v/Qr6cdOClIJFVwSNsQ0d\nZTOD2rq8LNw+AoWYqoq+RFQUP/7xj3l1sH379qQJQ6FQKPFgYzgwUbL5CVkfJh77FHuu/0nQdmv2\nGOS2nglpz7AEbh8HhViUdFmHMxEVRV8FUFVVhZMnT+I73/kOcnNzYTAY8M4772D69OmDIiSFQqGE\nwxqj7Om4swdgzR4Dc25wYLBFNwYTTnwR9hinl0OWnCqKvvByW9q+fTt++MMforCwEGKxGIWFhbj3\n3nvxt7/9LdXyUSgUSkSiBtoRDpOPfIwzc74VssuqK4LapIeAC3WHdVIX2RB4KQpCCLq6uoK2GQwG\ncGE+ZAqFQhkMOBLdkF3YdBKsSIKu4ikh+3xSOdzKTGRYukL2ORl6X+sPL6+n6667Dj/72c+wYsUK\n5OTkoLu7G19++SWuu+463id69dVXceTIEWg0Gjz33HMAALvdjpdeegkGgwF5eXnYuHEjlEolAGDH\njh2oqqqCSCTCHXfcgZkzZ0brnkKhjDIcXg72KEtPFUf+ifo514TESvRi1fk9n+xZBUHbLTGWs0Yj\nvGYUN9xwA9avXw+LxYKamhqYzWasW7cON954I+8TrVy5Eo899ljQtp07d2L69OnYvHkzKisrsWPH\nDgBAa2sr9u/fjxdffBGPPPIItm7dChIrooZCoYwqrB42YlU6raEZSpsRrRPmRTzekj0mbM4ni8tH\nkwP2g3eZulmzZmHWrFkJn6iiogIGgyFoW01NDZ5++mkAwIoVK/D000/jtttuQ01NDS6//HKIRCLk\n5eWhsLAQDQ0NmDhxYsLnp1AoIwubJ3Jw3Nizh9A8eSGIMLJR2pI9BkUXjoVsd/tYuH0clBKaeaIX\n3qVQq6ur0dTUBLfbHbRvw4YNCZ/cYrFAq9UCALRaLSwWCwB/YaRJkyYF2ul0OhiNxoTPQ6FQRh7d\nkSraEYKxDYew79r7ox5v0Y3BlJoPQ7b7OAKXj0BJaxgF4KUotmzZgubmZsydOxcajSZlwggirCVG\no7a2FrW1tYH3a9euhVqtTqZYKUcqlQ47mZMFHTsdeyK4vT5YvHZIpbKQfZrORkAkhrNoAqRR7ime\n/HFQWQ2QC4XgxMFagRNKoFZnJCxfNNL5ur/11luB/ysrK1FZWQmAp6I4fvw4tmzZgoyM5H5wWq0W\nZrM58LdXCel0OnR3dwfa9fT0BJVi7UvfwfRis9mSKmeqUavVw07mZEHHTseeCEYXC6vTFXZfYd1e\ntJTPBeONnXrcocqGrKsFlpzi4P7tTuTKUuP9lK7XXa1WY+3atWH38VqEy8nJgdebeOHyXgghQUbp\nuXPnorq6GgBQXV2NefP8hqd58+Zh37598Pl86Orqgl6vpwkIKRRKAGsk+wQhKG6owcUJ83n1Y8ke\ng8wwBm3qIhsMrxnFsmXL8Jvf/AarV68O2BR6mTZtGq8Tbd68GXV1dbDZbFi3bh3Wrl2Lm266CS++\n+CKqqqqQm5uLjRs3AgCKi4uxaNEibNy4EWKxGPfcc09Cy1IUCmVkYomQ5TWrqxmcUBQyQ4hEb3LA\ni/22m2n97CAEhIff6f33hzcKCQQCbNmyJelCDZThVlApXaeigwEdOx17Inxy3oIeR+jS0oy9b4MT\ninBq0c28+iluqEHJmf3Yu+ZHQduVEhHWTM6CSJj8B9R0ve5FRUUR9/GaUbzyyitJE4ZCoVAGgtPL\nwRIuYywhGHvuEPb0u+lHw6Ir8hcx6ofHx8LFEqhSoCiGI9RRmEKhDCtsHg6+MBFxWV1NYEViWLL5\nLTsBgF2TB4XdBJHXE7SdJYDLS6PueuE1o3A6nXj77bcDNoa+q1WvvvpqyoSjUCiU/kQyZI89dwit\nE+dHTNkRDiISw67NR6axA6b80qB9Ti8LgGaRBXjOKLZu3YrGxkZ8+9vfht1ux1133YWcnJy4cj1R\nKBRKMjC5Iyw7xeHt1Bfq+RQbXorixIkTePDBBzF//nwIhULMnz8fGzduxO7du1MtH4VCoQRgCdBp\nD1UUus5GsCIJLNlj4u7TcsnzqT8OL62f3QvvNOO9WV3lcjmcTie0Wi30en1KhaNQKKOLWE6YdoaD\ngwl1XR3bcAgX41x26qU3i2x/zNFqXYwyeCmKkpIS1NXVAfAn99u6dSu2bt2KwsLClApHoVBGF602\nH/SOyDdoq8eHEF3SG2Q3MXKm2GhEyiJr8/jgpWlkAfBUFPfddx9yc3MBAHfeeSckEgkcDseAEgJS\nKBRKX1w+gmPtNuxtsqDbGX7ZJ5whW9fZCFYsg1UX/7ITADgysyHxOCHxOIO2e1iOej5dgpfXU35+\nfuB/jUaDdevWpUwgCoUyOjnX44ad8SuCPc0WLC/ThNSuDpcxduy5Q7g4YV5Cy04AAIEQ1ix/PEVP\n4Tepggjxx2xkymgUAa9PYM+ePWhtbQXgj3p+6qmnsGnTJrS1hU7XKBQKJV66nSzOdNkD711eFvua\nrbD28TzysAQ9zn6KgnADWnbqxZpdFNZO4fJRzyeAp6LYvn07VCoVAODNN99EeXk5pkyZgq1bt6ZU\nOAqFMvLxcQQnO+0h1eqsHh/2t1jh8Ppv1jaGg6ffjVvX2QifJPFlp14sEQzaTur5BICnorBardBq\ntWAYBvX19bj11lvx7W9/G01NTSkWj0KhjHRarF7obeFTghudXhxstcPtI7CGSQRYVrcHFyctSHzZ\n6RKRYinsUarojSZ4KYrMzEzo9XocO3YM5eXlkEgkSUk7TqFQRjd2L4fjHfaobfQ2Dw63O0KWnZS2\nHhQ31KBh+soBy2GNEEthoi6yAHgas2+55RY8/PDDEAqFgVTgJ0+eRElJSUqFo1AoIxdCCOoNLrh5\nLO+0mEOLFE0+/BEaK5eBUQy8WpwrQwshx0LmtMKjzAxsd3pZeFgCmWh0JwfkpShWrFiBRYsWAQBk\nMn/pwYkTJ+KnP/1p6iSjUIYQHweIqbNLSul0sDjX44zdMAxyuwnjzh7AR7f/IjnCCASw6MYg09gO\nQx9Fwfg4uHwcZKLRnfOJ10+B4zhIJBJIJBJwHAeO46BWq5GZmRn7YAplmMFyBGa6Np1SXF4fjuvt\nocFzPKk4+jGapyyGR6lJmkzW7CJoe1qDthH4XWRHO7xmFLfeemvEfdu3b0+aMBRKOuDwEZjdPuQo\nRvdTZKqwMhwuGKww9nd15YnMaUHJ6b34+Hs/S6pcluxiaLr717oDXDQ5ID9F0b+Knclkws6dOwM1\nrimUkYST4fw3sSzZUIsyonD6CBqNHpw22CEQSRPuZ/LRT9AyaSHcqqwkSuf3fBpXvz9kO42l4Ln0\nlJubG/SaNGkSNmzYgL///e+plo9CGXQcXhaddi9Yen9ICgxL0GD04JNzJpzQ2+DtHzARB1KXDWW1\nX+HM3NVJlNBPIIssCb7w4dxyRxu8ZhThcDqdsFqtyZSFQkkL7B4ODo8PNoaFVk6XnxKFIwRtNh9O\n6u2wuJPjZjrp2KdonTAfLrUu4T5UMhFEAiEs/epaMHIVvFIFMqw9cGhyA9tNbi8IgNHs98RLUbz8\n8ssQ9Alo8Xg8OH36NJYuXZoywSiUocJ86cZg9lBFkShelqDW4MbprugxEvEgddtRfqoan373yYT7\nKFTLMK9YhRaLB8fbQ20kluxiaHraghSFy8vC7SNQiEevquClKAoKCoLey2QyXHXVVZgxY0ZKhKIM\nL7wcgdntn67nKof3jdXHkUCQlcXlAzSJr6WPVhxeDofb7WizeGI3joOJxz5De9ksODNzEjp+cm4G\nKvMUkIkE0MrD3/p6l5/ax88KbPOyBC4vB4V4eH+3BwIvRfGd73wn1XJQhhEcAawMC6OTRbeTQYeV\ngdPLIk8lxRVlmUGzz+GG00vg9vnXpMNVUqNEp8fF4sBFK6xJWmrqReJxYsLJKnz+nUfjPlYkAGaP\nyUS5Vgqh0P/d1MpEEAsF8PWrN2HJLkZh88mQPvwGbaooYlJVVYWvvvoKRqMROp0Oy5Ytw8qVAw+d\npww/jumdONvtCPGB73YwsDEEmbLhrCi4wLjMbi/sDAeVlEbexYIQgos2Lw5dtIFJgRfAhBOfo6Nk\nGuza/NiN+yCXiLBwbCYKVcG3OqVECJ1Sgi57cI4pS84YVBz5Z0g/oz2WgpeieO+99/Dll1/i+uuv\nR05ODrq7u7Fr1y6YTCbcfPPNqZaRkkYQAJ02JmygFEeAHpcPmbLhu1zTt04yyxFYGZYqihj4OIKz\nPR6c0NsSDqCLhsjrwcTjn6Pq5v+M6ziNQoLF49TQyMLPBArU0hBFYcsqhMrSBSHrAyf65vboHOWx\nFLwUxeeff46nn346UOUOAGbOnImnnnoqKYpix44d2L17N4RCIcaNG4f169fD7XbjpZdegsFgQF5e\nHjZu3Bio200ZOlw+Aoc38rJCh5VBmXb4Kgq7J/iGYHH7UKSSDJE06Q1HCPQOFnWdDhgc4bO/JoOy\nuj3oLpwAm64oruOm5SkjKgkAYe0UrFgKhzoHalMHLDljA9vtYep0jyZ4PSp5PJ6QdB1qtRoMM/Av\nh8FgwOeff45f//rXeO6558CyLPbs2YOdO3di+vTp2Lx5MyorK7Fjx44Bn4sycFxeLqoffLvNPayn\n6eZ+LpOGKPWbRyuEEBicPuxtsePLC6aUKgkBx2LSsU9QP+dbcR2XKRejUB1dwffaKfpjyQnNJGsb\n5SldeCmKWbNm4be//S3a29vBMAza2tqwZcsWzJw5c8ACKBQKiMViuN1usCwLhmGg0+lQU1OD5cuX\nA/AnJTx06NCAz0UZOA4m+g/GyxIYXcPzR+X3eApWFN0OBp4BBIiNNMweFjXtTnxx3oRWizvl5ytu\nOAxXhjaoRCkfJucoIQmjBPqilAiQpQhVJr0usn1x+9gQw/dogtfS01133YXXX38dDz30EFiWhVgs\nxsKFC3HXXXcNWACVSoU1a9Zg/fr1kMlkmDFjBmbMmAGLxQKtVgsA0Gq1sFgsAz4XZeDEUhQA0OVg\nUJw5/JZr/B5PwbMhj4+DzcNBNszdfpNBq9WL/S2WwbthEoLJRz5C3YIb4jpMIRGhODP28qdAIECB\nWhoyI7JkF6OsbnfQNi9L4GFJ2BnIaICXolAqldiwYQPWr18Pm80GtVoNoTA5Br7Ozk58+OGH+N3v\nfgelUokXXngBu3fvDmkXyeWytrYWtbW1gfdr166FWj3w/PSDiVQqHRYyE0Lg7vJCKo2eA0nvJBDL\nFVBIYn+90mnsJp8TEkno2FxElBIZ02nssfD6WJxr6YFQLEUyLFAikSjm9yinpRYS1ovuyfMhFfC/\n30wvUiFHq+blpl3AiFBvDJ5FOgvKoN39txD5hBI51OqB5/9K5+v+1ltvBf6vrKxEZWUlgDjcY51O\nJ9rb2+F2B083p02bNiDBzp8/j8mTJwdqci9YsAD19fXQarUwm82BvxpN+HTCfQfTi81mG5BMg41a\nrR4WMhMAerMDDBM9voBhgLYeG/IzYn+90mnsRpsHDBMaJKY3OzA2I/nnS6exx6LN5oXenMQoa6ks\n7Gfdl/Kv38eZ2VeDiaOapkQkQL4CsNv5ySoDB9bLgO3jrsUoNZC6bCA2E7yybxxoLHYnFBi4PSZd\nr7tarcZEOutvAAAgAElEQVTatWvD7uOlKKqrq/Haa69BLpdDKv3meUIgEIRklo2XoqIivPvuu2AY\nBhKJBCdPnkR5eTnkcjmqq6tx0003obq6mmaqTQNieTz1xeDw8lIU6YTNE94Ir7cz8HEZo7aQESEE\nDT2pt0f0RWO4CE1PK/au2RDXcROylVBJ+F8olVQIrUKCHmcfBSAQwqorQmZPG3qKJgY2u0dxlkhe\nv+S//vWveOCBBzB79uykC1BaWorly5fjv/7rvyAUClFaWopVq1bB7XbjxRdfRFVVFXJzcwMlWClD\nRyyPp75ctLgxNVeB4bSk29/jqReHxwe7l4U2iqvlSMbgZNFhHVxFUXH0IzTMvBKciL+tSyQASrTx\nLQ0J4I+nCFIU8Kfy0PZTFJ5RnG6cl6LgOC4pHk6RuOGGG3DDDcEGK5VKhSeeeCJl56TEDx9Ddi8W\nlw9mNwvdMCn+4+MIzK7wioLAn2p6tCqKCyY3BtPfR2ntRkHzSRxZfltcx5VkKZCVQBLHrDDfUb/n\nU3C1O49v9Ho98Zqj3XjjjXj33XfBcaNXo1LiUxQEQHeCFcyGgnAeT30xj9KaBEYXi2aTK76DCEHR\nhaO4cvsvUNAUmjcpFpOOf4bGKUuC7AOxEAAoy5LHfS4A0MjFITNfc3YxMvu5yDq9o/M7AESZUaxb\nty7ovdlsxq5duwJG515effXV1EhGSTsscQYdtVo8mKiTDYskgY4+OZ7CobczmJGvGDyB0oQWiwfx\neMNmdzRgxt53IPU40DRlMeZ//jo+++6TcPGsRid121Fyei8++d6muOQszJQjJ0EXZrVUCI1cEhRD\n4w+6awUIAS59f+2jOOguoqL40Y9+NJhyUNIcAsAU5wyh2+GFzUuQKR0GiiLGbMni8sLh5ZARh6F0\nuGNjOJzrdvJqqzbpMX3/u9B1NqL2shvRVLEYRCiEkPXisk/+B1/e9BAID5f68pPVaB8/Gy5VfIWJ\nJmbLIUzwgUQAoFAtDVIUHqUGRCiCwmEOKDmHlwVL/LaQ0UZERTF16tTA//v378eiRYtC2hw4cCA1\nUlHSDr/HU3xPVCwh6HH6kClN/9xP9hhJ33wcgcXDjipFcdHCxAyuE7A+zN79N4w9dwj1s6/B11fd\nA7ZPLMqZudchr/UMptR8EDNwTuJxYsKJL/DlTQ/GJWeOUoq8jIEFeGYpQm+F/toUrQFF4WU5eFgC\n5SgsYMTrW//73/8+7PY//OEPSRWGkr444/B46ovelro8QMkkksdTX0ZT7WS3j6Cex2xi0rFPkWls\nxz9v/yXOzLs2SEkAABEK8fVV96D8ZDVy2+oj9qM2duDKt36B5opFsGaPiUvWibmKAbsua8PYKQI1\ntC/hZUlKUqgPB6J+vJ2dnejs7ATHcejq6gq87+zsxIkTJ4JiKigjG2cchuy+tFvdcKW5t4g3isdT\nX7odw8c4P1BarQzcMWaQSms3Ko58hJorvg9GoYrYzq3KwqEr78Rln/wPpK7QQLOCphNY+d6zqJ+z\nGicWx1ckTSERoWCAswnAH0+hlgXPKizZxdB0U88nIIZ77I9//OPA//1tFlqtlla+G0XYE1QUDEtg\ndPowJo1zP7lieDz1YnAwYFgC6TBapHZ4CTIk8cnr5fjNJmbt/hvOzbySVzEhfel0tExcgAWf/Ql7\n1ly6lxCCiiP/xMTjn2HvdRviTvwHABOyFZAnYSlIKPDX07b0qcxnyS7GhJNVQe1GayxFVEWxfft2\nAMBTTz2FTZvi80KgjCysA/D46HR401pR2L0sr4I7bh8HK8MhZ5jEhnAEOKF3YHZhRlw30w6bN2Yp\n08LG49AY23HgW/fx7vfUopux8t1fYeLxz9A6+ypc9sn/QG3W47PvPA6XOj7jNeC/uRepk7eqkaUM\nvh1adUVQm/QQcCyI0H/NR2smYV4re1RJjG4IAOMAYiJaLR540zhFczzVyxqNbnBpPJa+dDl9aDK5\n4qqpwRHgXE/0uAmR14PZX/0Fh5ffHlfkNCcS48A192FKzYdY9penAQBVt/xXQkoCAIoy5ciSJ8+5\nQCsXoa/jlE8qh1upgcrcFdg2WmcUo8eFYwQx2Dddl5eLK9iuPw7GB1Ma16iI5fHUl4YeJ5qt6W+r\nIITggtGfduOiNXryvb70uFgY7NEdEKYe+gDG/PHoGjc1artwODS5OLjqbjRPX4Gvr/4BWHHiM4LS\nLHlSY3TUUhHU0v52ijFBEdquYVyUayBQRTEMOdfjQbt98CqvOX1kwDUIDGkcpW10xueZVdNqRU+a\ne0AZ3Rwumv0zg1aLG1aeyrDV4omarkNtbEdZ7Vc4tvS7CcumL52OC3OuAQZwk1dJxchXJTfppEgA\nFParY2HJCS5iZPOMzoqHVFEMM5xeDme6HNjfbIHBOThf2oHMJnq5aI4vwnew8HIE1jh//D6O4Eir\nPa3Xq5vN7sDnzXIEXfbYitrp5XDBGMWITQjmVv8f6hbcAHeGNkmSJkZ5jgLSFGSc1MqDl9IsuuAZ\nhYPh0vJ7nGriVhQcxwW9KIPLRSsDD8uBYTnsabbCNAhPtkGKgo/VNwxmlzct8yU5vQTuBJYTup0M\n6rpc4BL8PFKJ1cPhfD87Q5PJHfMG12Hzgomi/Erq90PMuHF++spkiJkwIoEAY5JoxO6Lol9AZf8Z\nBcOyaf2AkCp4zd0uXLiA1157DS0tLWCY4Gl6r2cUJfV4WIJ6wzdPfG4vi73NViwr1SBTlrrJYd8c\nT8v+/gJ0XU2wZ+bCocmFXZMH+6W/prxS+KThE7MRAD1OX9plk3V42YQzo9YbHNApxSjRpFc8UYvF\nE7JU2O1gYHSzET22WAI0GCOnEpe4HZix9x3sWfMjXqk4UslYrRyaFH3fFf1ciW2aPCgcZoi8HrAS\nGbwsgZclUIyy6GxeiuKVV17B3LlzsW7dOshkAy8FSEmMdps3ZBnI5vFhf4sVS0oykSFN/o+nr8eT\nyOtBtv48Pr7t55A7LFBZuqCyGJDT0YDyU9XwKDKx+4afRuyrzebBBJ00rZIEOuIwZPeHADjcaoNG\nrk2bFOROL4ezhlCvJQJ/lHyOInxiQ4PTF9FWI2ZcWPyPV3Bx0gKY8suSKW5CjIuz5kQ8yERCSEWC\nwMyKiMSwafORaWyHKb8MBKPTRZaXouju7satt96aVj/w0YaPIzhrCL9+bHR58XWbDYuKM0OeiAaK\ny8sForJzOs7BnDMWTnU2nOpsGAvGB9oJWS9Wv/kodPoLQdv70mVnYPcSqNMoSeBA7S8elsORdjuW\njsuEJA0C8VptDDxs+DE1Gt2YnCOHJMza/kVzeM8oqduOpbtegim3BMeWhC+TOZho5eKUVk5UiAWQ\nS0Rg2L6Bd2Og7WkNKEm/i2x6PBgMFrweQefPn4/jx4+nWhZKFPR2H4xR0kx02hgcbrcj2Q87jj4e\nT3mt9TAUV4Rtx4kkODN3NabUfBCxL5bzJwlMJwYSH9JLp41BfQ9/F9RUwbAEZ7six0DYGV/YmAob\nw6EpTM0JmdOCFe/9BoaiSTiy4nZAMPS+L+XZCohTXDZRKw+TyqOPnWI0xlLwUs1erxfPPfccKioq\noNUGezts2BBfTVtK/HAEaDDGLh7TanHD6FIiN8G8/OHom+Mpt+0MTi28OWLbxqlLMaXmQ2gNzTDn\nloRto7czKNWmx5p+Ih5PkajrtKFALRnSqO12uxc2Jvp42m0MitTBnj0dttAssQqbEct3PoeWyQtR\nN//6AbmyJguxUIDCFBmx+xKa82kMClpqA+89ozAxIC9FUVxcjOLi4lTLQomAwemDnkfQFIH/R5+r\nTF6Bnd6lGTHjgqanDT2F5RHbcmIJ6ud8C1MPfoB9190ftk2bxQN3QXwpJVKFwcEm5PEUDpYAp/QO\nLClRp/yJNxw+DqgPY5voT5PJham5Cigveff4OBISiZ1h6cLync+jYfoVODvnmpTImwilWQqoU2CH\n609/z6feVB69uLzURhEWmvxv6CCE4LyRf83iRpMLFTnypCWu6/V4ymlvgCmvNGYk7YXKZag4/E9o\nulthyQl9uGBYDj0uH8aohzb3k8Hpw/4WS1JrQXfYPGixyjF+CGZMnQ4vr8BBL0vQ5fAFZnWdDl9Q\nXqdMYzuW7XwBdQvW4MK0FakSNyJioQAKafhZWSqN2H1R9lMUTrUOUo8DYsYFn1QRd12WkUBERVFX\nVxcoXnTq1KmIHUybNi35UlEC9I2w5YOTYWFwJCdba1+Pp7y2M+gaMznmMaxEhrOzr8aUQx/gwOof\nhm1jcHiHVFGY3H634lTUFjjeYUeeUgvVIDz59qXJFNm1tT/NZg9KNBIIBAI09zViE4LLPv4jai+7\nAY2Vy1IgZXS0cgkuG6dGdpgiQoD/oWkwkPcvbiEQwqbNh9rUCVN+KeyjMDo7oqJ47bXX8PzzzwOI\nXBdbIBBgy5YtqZGMAiA4wpYvrVZPUhSFs4/HU17rGd5eL+enrcC1Rx6B2tgOm64oZH+L2YNpeak3\nSobD6uGwt9kKV4qeCt1eFvXdLswpVA6al6DVw6HNwt+Yrre5YfEoAQHQ2uchJKurGRLGhcapS1Ih\nZlTGauWYU5gBpUQ4aAohEnKxAGKhIMhuY8sqRKapHab8Unh83LBLNz9QIiqKXiUB+OMoKIOPlQmN\nsOVDi9mNyjzlgJ9qe3M8STxOqE0dEd1e++OTynF21ipMrfkQX1/9g5D9DsYHo4tFXgrdHMPh8HLY\nf9Ga8nw953qcGJMpQ0GScxFFotPhBRvHzZUjgN7hBUcQ5CVXVrfbryQG0btJAKCyQIWKCG67Q4Fc\nLIRMLIKvj2OANasgYKdgLpVEHU2KYuj93SgRabfGrlkcDh9H0JmEamy9huyc9rMw5o+PK6V0w4wr\nkN98CipzZ9j93SlIEqh3+GBluLB2B5eP4OtWW1LcYWNBLtWBiJYOI1lwBGiKElEdiYZuF871icsR\neT0Ye+4gmqYsTqZ4URELBVg4ToNpuemjJAB/csBMebCdxD+j6ADg/8wH49qmExEVxSOPPIL9+/fD\n5wv/9OXz+bBv3z48+uijKRNutNMZI91zNJpN7gFP4fsuO3VFiJ+IhE+qQMPMKzGl5sOw+y+amaQm\nV+MIUNNqw0f1Pfj0vAWnulzosHvh9hF4OeBwux2dg1i/u8fJoNGc+vMZ3Sx64sx+C/gj+p19lt+K\nzx+GsaAcLlVitSHiJUMqworxWpRq0ytSv5fMfi6y1qzCIM8nPhURRxIR58b3338/tm/fjq1bt6Ks\nrAxFRUWQy+Vwu93o6OjAhQsXMG3aNKxfv37AQjidTvz+97/HxYsXIRAIsG7dOhQWFuKll16CwWBA\nXl4eNm7cCKVSOeBzDRfcPhK+RjMhELHemN5HXQ4GJjc3oNxKFvc3iuLIitvjPv7czFW49s1HkGEx\nwKHJDdpncjOweFhoEpYuGLePg8vLgiVAj4NBj8N/85SK/F40FtfgGyBP6e0oUElSlpcI8KflSIa+\nLavbg3MzrkhCT7ERCYAlpVqohOmber6/55NdmweVpStQ7W601c6OqCiKi4vx4IMPwmw248SJE2hp\naYHNZkNGRgaWLVuGDRs2QKNJzs/8T3/6E2bPno0HHngALMvC4/Hgvffew/Tp03HjjTdi586d2LFj\nB2677baknG84YPWwYb1yJh/5CGMbDuGztU9EDYIil9ahE1UUHPF7PEnddqgsBhjzSuPuwytT4vz0\nFZhS8yFqrrwjRL4epw/jEpIuFFeEmhkMS8AMgZLwn5tDXZcTl43JgDAFSysMR3CBRyBmLFTmTmQa\nO9BRNisJUsWmIk+FgkwZ7DxSnw8V/RUFK5HBlaFFhrUbdm3+qAu6i/moo9VqsWzZMtx+++247777\ncPvtt2Pp0qVJUxJOpxNnzpzBypX+1MUikQhKpRI1NTVYvnw5AGDFihU4dOgQ7z75FmlJZyxhalRL\n3A5MPvIRpG4nCptOxOyjsceVcMGhFgsDq8eH3Laz6C6cACJKzDB7buYqjD13EAIudDxtViZpHi7O\nJNTMSAVNJhfqjZ6UePIYHL6k1Aopq9uD5oqF4BK8xvGglokxKTu5lelSQYiLLACbtgDqS3aK0Taj\nGHJjdldXF9RqNX73u9/h4Ycfxh/+8Ad4PB5YLJZAuhCtVguLxcK7z7Pd6VknIB7CGV0nH/0Y7eNn\n4fjib2Pqwfdj1oawenzoTqAEqcnN4nCbDYB/2clQHDt+IhIehRqujCxkGttD9nXZPbBEyV8VD840\nLlF5vN2GC+bkPz23xVHiNBICjkXpmb24MHVpwn1kKSTQyPk5OswqVKVFVH4s5BIh+k8CbbpCZF6y\nUzhipEoZaQy5ouA4Do2Njbjmmmvw7LPPQiaTYefOnSHt4nkCaTS6oLen5xMmH1iOoLPftFzusKD8\nVDXqFtyAtvI5EPs8yO+TfyYS7XHeTDwsweE2e2DZK7ftDLrGxGfI7o8xvwy6zqaQ7T6OwOBIjsHX\nnqYzCsAfuFjTakGLNXnGbYeXQ4s5fm+n/hQ0n4RDnRM23oUvE7IVWFyiRoYk+jJniVaBIvXgukQn\nikIsgFTUL5VH1jczCluYGf9IZsivmk6nQ3Z2NsrL/TmEFi5ciJ07d0Kr1cJsNgf+Rlrqqq2tRW3t\nNzfMtWvXQiKRoq7Hg7E5aiilQz7EmEilUqjV6sD7LpsbPogg7ZPKoHLPR2idugS+7CJIAZxd9C+Y\nVvMBTBPmRLVVtDs4zJUqoJLF/hw4jsPpi1ZYvAJIpTJInVZk2E1wFE+CVDgAo/iYicjpbkabdFXI\nvi4Hiwk5mQNaiiCEwMm6IJWmd62UIx1uqBQKjMtSQCAQhFz3eGjrtEEgkiJCtgveTDi9DxdnrEz4\nsxMJgdLcTGgVElwplaPqvDHssoxYKMDcEh00Kv95BjL2wYAQgiyVKyjbsSuvBJr6A5BKZWAFQkgV\nSsjE8V+AdB77W2+9Ffi/srISlZWVANJAUWi1WmRnZ6O9vR1FRUU4efJkIAlhdXU1brrpJlRXV2Pe\nvHlhj+87mF4YLwODh+BkqwlTc8NXXEsn1Go1bDZb4H2nhYGH+WYmoLR2o/j0Xnx02y/AXNreVDoL\nk/e+C+2F4+gaOyVi3wwDNBusGKeJvTTQavPieKs54EWT13gChsIJ8Ph8ABKfahuyx2LciaqA7H1p\nNgowSSMY0HKElyPotjnBDAOXxaqzXVhWpkGuUhxy3flCCMG5LlvYzzMe5A4zsltPY/+qO+FLsK+S\nLAXErAd2uwcZAmB+oQJfNZpDbGOVRWrICAPbJRflRMc+mChFHDr6fC5GVTZUPW1gPG6wPiFMFntC\nxcLSdexqtRpr14bPvhBRUXzxxRe8Or/iioG71N155514+eWX4fP5kJ+fj/Xr14PjOLz44ouoqqpC\nbm4uNm7cGHe/tZ1+98R0K78ZC3M/L53Kg7twfvpKeJSZgW1EKMTp+ddh6qH3oyoKwB+pHUtRWD0c\nDrXaglwt85Kw7AQA5pyxUJs7A+Uk+8KwBEaXLyT1dTy4vCQpXigC1gel3QiFw4KegvEgA5hFRYJh\n/SlElpdpoFIlWH/cw6HTNnD7ROmZfWgtnwufNPFsw2M1wdczP0OMRSUa7GsyB6K+sxQSjM9K79le\nODL6Tdc8Cv8sQOa2w6NQw8MSZAyFYENAREWxe/fuwP+EENTX1wee/nt6emA2m1FRUZEURVFaWor/\n/u//Dtn+xBNPDKhfH0dQ2+XE5ePUiBZt72EJZGkSjk8AdNq+sU9kGttR2HQC//y3Z0Latky6DFMP\nvo+ctnp0R0nY1271oMelhE4hQrhRelmCIx12uPvlP8prrceFqweeHI4TS2DVFUFraEFP0cSQ/QaH\nd0CKwunlYtn1Q5B4nCir3Q21pRMZFgNUli4o7Ga4MzRgxVIwMgUOrrob9qyChOWKhOtSrfNrlEok\nMupOu3fgwYqEoLRuDw6tuivhLhRiUdg0LMVqCRaM1eDARQtAgJmFqmGZ7kLRf1lJIIAtqxBqYzs8\nYyaPqujsiIriqaeeCvz/+uuvY/78+bjuuusC2/7xj39Ar9eHOzStaLW40WqVoUQTGqBmZTg09Lhg\ncvqwpDQzLZSFw8vB4vlGUUw7sAP1s6+BVxYabEiEIpyZdy2mHvoAX0VRFCwh+KzBiCyFFEWZUugU\nYmgVYigvLfecNXrQ0c/oLXeYIXNaYMkZm5RxGfPLkN3ZGFZRXLT4kwSKEow1iNfjSeqyYdnfX4RD\nkwPDmAq0jZ8NuyYPTnW230WUcJhwogpXvvPfqFtwvT8QLUL+IwHHoaD5BNTmLlyoXMr76dzm8aGu\n046ZufGpCl+SYidy2s+BCIToKYhcXyQWpTp5xN9MqVYKhs2Exe1DQcbwmtH30r8uBQDYsgqQadKj\ne8xkuEdRLAUvG8Xu3bvx2muvBW371re+hbvvvht33ZX4E8lgcbzDjlylNhBE4/QRNBo9OG2ww3vp\nqaCuy4WZBQoIh9i/2+pmwV56XMzqbIROfwFfX3VPxPZNkxdh6sH3kd3RgJ7CCRHbccSfVqI33YNE\nJEC+SgatQoy6TntI+9y2enQXTQIRJscxzphfivyWurD7bB4fTG4OOQlW5nPGkQlW7jBj+c7n0V42\nCycX3RzeEUAgRMPMK6EvmYYFn76GMeeP4OCqu+DMzAnqZ3ztbpTVfgWXSguXSofJRz5C3fw1uFC5\njFfcyQWjC2NUwriq4vW4WFjcwUuTkw//E5nGdjg0ebBrcmHX5MGhyYVHroro6OBPALh0QJXrimJU\nm5ugk4Jh0zNFBx/C1Z/3p/LojaWgiiIIrVaLmpoaLFiwILCtpqYGmZmZUY5KHxwMi7M9HkzNVaDF\n4sGpTkdImul6gwPZGWKMyxzaMp2WPplNp+9/D6fnrwlZ1+8LEYlxet61mHrwfey+kb8dx8sS/2wr\nQnhKIvmdomHMH48ph8LnfQIAg5NBToKV+axufopCae3G8p3Po2nKEpyef13M9nZtPqpu+S9MOvox\nVm3/OU5efgsc6hyUn6pGfutpXJw4H3vXbAiUfdUamjFj7zuYdPwznFx0M1rL50a9EXMEONftQnZx\nBu+baXs/F9vxp75EWd0enJ19NTKs3Si6cAwqaxdUFgNACDzKzLApPuROK04sTrwgmVYhhi5C3Yhe\nhAIB5EPuLpM4cpEQUpEgaInJllWIvLZ6AKMr6I7XZbzzzjvx/PPPY9euXcjOzkZ3dzdaW1vxwAMP\npFq+pFFvsKPV7I5YU5gAqLloQ+YELbSyoZsqd9n98uW2noHKYvA/9cWgacpiTD30AbI6G2HKL0uK\nHHmtZ9CQxNw/Nm0B5E4rpC47GIUqZH+rhUFFjiKsDSUaBICJR9CeyqTH8r8/j7Ozrsa5WVfx718o\nRP3c1egonY75n/0ZItaL89NX4NCqO0OWmcy5JfjqpgeR33LKrzCOfowTl38H3WMmRey/2eRCebYc\necrYP0Wzh0Vjn2WnnPZzmHZgJ7645eGwthSp2w6ZK3S2CACMTBHkHBEvZVkKhAleHlHIxQLIJSIw\nbP904/4ZxUiqdGdlOESLpOGlKGbMmIGXX34Zx44dg9FoxJw5czBnzpy09QUOB0cQs/C8h+VwpN2O\npeMyIRkCe4WHJYGloUnHPsHp+dfxSqvAiSQ4M2c1ph56H3vX/HjAcqiNHRB73bBkjxlwX70QoRDG\n/FLouhqhL5kest/o9CcJjFdJu3wELl/0H6ymuxXLdr2AUwv/hZfiDYc1uxiff/dxXm07x03Dp2On\nYlz911j8j1dQdcvDsEYIaCPw17rOGaeKuuzpZQmOtNsD3l1KWw8WffQqvr4qssGdkavAyEOV8kAR\nCoAC1dCWsh0stHJxUKlYR2YOFA4zRD4GNs/Qrj4kk3Ybg2jrB7yfCTIzM7Fs2TLcdNNNWL58+bBS\nEvHQaWNwpmfgKboTwerh4PFxEPkY5LXWo3X8HN7HXqhchmz9BWRYugYsR/mpajRNSX4BG2NeGXSd\njWH3cZeSBMaLy8sF7EzhyOpsxLK/P49jS76bsJJICIEQLRWLcH76CpSfrI7atNXiRqcjsrIjhOBM\njzuQJl3k9WDxBy+jftY16CwZ/FLEBWp5SjPiphPqfoGqRCSGPTMXKnMnXAyLkeD45OUIzndHd5CI\n+Lj65JNP8lo33bRpU/ySpTm1nXZkKySDnm6g10iZ23oGptxx8Mr5e2lzYgkuTlyAkjP7UXfZjQnL\nIPJ6UFK/H59+98mE+4iEMb8UZaf3RtzfbmVQHqe/fTRDdk5bPS7/56uoueIOtI8fnMyo/blQuQxX\n/W0TTlx+S1Rb0+kuB/IyNGHduNvtPtT2OhwQggWfvQ5LzlicnX11iqSOzjitbNgaqOMlvOeTvzZF\nZ/44eFgS8B4crnQ5fLDGqPoY8U6YjPiI4QohwKFWK64o10I9wHKi8WC6FGhX1HQCHaUz4j6+qeJy\nLPro96hbcEPC3ixjzx1CT/74IA+fZGHMH4+51dv8H3AY+fQ2DxxMRlzRrpFcY/ObT+GyT/4HB665\nD13jpiYs80BxqrPRXTgB484eRGNl5BlNp51Bh82L4n61zm0Mh5pWWyBOZErNh1DajKi6+T8H5LGU\nKBKRAPmDXMJ2KFGEyyKbVYBMUwdaWQIvywEJpPFIFwghaDLFzhkW8YqvWLEimfIMO5xeFkfb7bhs\nrHpQ4itYDtDbGYAQFDYdx+7rfxp3H6a8ErAisd9VNky8Ah/KT1ajbsH1CR0bC5cqC0QggNLWE1YR\n+TiCHpcPGVL+a7+OMCnli84fwbyqN7H3ug0Jfw7J5Py0FZj29c6oigIA6rqcKFBlQnwpnsTHERzr\ncARmTUUXjqL8ZDU+W/sYOPHQ2AhKshQhtRpGMuFmFFZdIQqaTwHwFxjTDL+g8wAWD4dWS2xFwfuK\nV1VVYdOmTfjJT36CTZs2oaqqakACDgfarB4c7XDAm8yanRGweVk4PD5kGttABMKIxs+oCARorrgc\npaiGbpgAACAASURBVGf2JyRDVlcT5C5LWGNzUhAILmWSDW+nABB3re/+Hk/j6g9gbvX/YvcNP00L\nJQH4jdtStwNZYTLo9qXHyaC1T1T+OaMn8CMWMy7M//zP2HfterhVWakUNypjYsROjDTkYkFAcfdi\n7VM/e7jHUrTZ+JUk5qUo3nvvPezcuROLFy/GnXfeicWLF2PXrl147733Bipn2tNodOFUpwtsio3b\nFjcLgkvLTiUzEl5WaK5YiOLzNRD64q9/UH6yGhcqlyctyC4csRRFq9kDD08LoZcjsPVZWx1/6kvM\n2PsOvrzpIZgSqMiXKohQiAuVy1F+KvbDVV2nAwxL0Onw4WTHN4njihsOo7twAowF41MpalRUUjFy\nR9GyE+AvYNQ/Q6wtq8BfP5twvL+r6YiHJWjo4Rflz+uO8Pnnn+Pxxx/HqlWrMGvWLKxatQqPPvoo\nPvvsswEJOlw4Y3DgtMGTsmJIhJBAferCxsTsE724VDqYcktQ1HgsruMkHieKzx/m5Rk0TiuHMkbt\ngUgY80ujKgq3j4WRZ+lSl5cEitxPOP45ptR8iOqb/wPWJLr1JovGqUtQfP4IJG5H1HYWtw8XTAwO\ntdqCPGpKz+xDU8XlKZYSEACYlJOBKXmqkNfMIhUkKSjpms6IBECmPPi77pMqwMiUUNqMw3pG0Wn3\n8a4MyevxwOPxhERhq9VqMEzyCrGkOyf1NkhEAkzSJT8lASEEehsDqdsObffFAUdEN1cs8mcGnTif\n9zElZ/ZDP7YS7ozoJW51CikWjVWDJQRmNwej0wu93QuDwxPVTbUXU14psgzNEHBcxJmLweFDIQ8/\n/d5kgAKOw7QDO/Dpvz4JhyYv5nFDgUeZCf24aSit349zM0PrcvTlaLs16L3S2g1NTxs6yhJ/gODL\n+GwFZhcOfSqbdCJTJkYHgnOh9c4qXN5kVX0fXDhC0MjDiN0LrxnFrFmz8Nvf/hbt7e1gGAZtbW3Y\nsmULZs6cmbCgw5Gj7VY0WZJf0tLmYWFxe5HfUouu4skDNlS2jZ+DnPZzkDl5lo8lBOWnqnF++oqY\nTct0MggFgEQoQK5ShMk5ciwvVePaSTrML44d6cvIVXBnaKE2hZZG7eWi2Q0+D2q9Hk+ZPW1wKzVp\nqyR6aZi+AuNPVscsYdufkvr9uDhxPjhRag3YMpEQU3KVVEn0I5zx3nbJTmGL4VaarpjcHDpsfRRF\njO8kL0Vx1113QaFQ4KGHHsK//du/4T/+4z8gk8mGRULAZEIIcOiiJcjgmAzMLi98HEFR4/EBLTv1\n4pPK0T5+NsadPcirfU77OQgIgSFKBlrAPw3PV4U3ZiolQhSpJSGGv3D0ZpKNhNXjg5lHqcleb6Dc\n9rPoThPDdTS6iyYBAgFy28/yP4gQlJ7ZPyjLTjOLVIPqDj5cCOv5dCmWwsFwA0/5PgS0WZkg3TDu\n7NdR2/NaelIqldiwYQPWr18Pm80GtVoNYQoNnsmm6MIxzPny/yBzhq8qdWLxt3nn/2EJsL/ZgplF\napRopElxnTW5vBBwLApaTuHE4m8PuD8AaKpYhJl73+Y1rvJT1Tg/bXlMA3phphyZ0shtlBIhdEoJ\nuuzRlyR7DdrR7CFddgY5iuhJAq2XlElO+zl0lKbIUyuZCAQ4P20Fyk9WxVTKveg6L4DA/5mlklyV\nNGwqfkrkWIri84fh8rFweLlhpWDdPoLzfYzYAtaHaQd2Aj+5L+IxvBRFa2srVCoVtFotZDIZ3nnn\nHQgEAtxwww2QydLXiVjicWLW7r8ht+0sDlz9g7AeI5nGdix9fzPOT1/JK68S4PdvP9xqxdluMabl\nZ6CY55N0JLodDLL1F+BU6eBS6RLupy9dxRWQuuzQdLfCklMcsZ3MaUVh80kcWX5bzD7HamJH5Bao\npLEVRV4pSqNEaANAQ48LE3TyiAVvAskACUFux1mcvPyWqP3FQ4ZUDC/LgUlBvYHmikWY9vVOyJwW\nEGnspbLSM/vQXHF5SoPrhAJgRkHGgL7DIxm5RAiBIHh1pndGwXIE3U4f1HHE/gw1HXYv3H3yo42v\n2wO7JjfqMbzU4ObNm+F0OgEAb775Jk6fPo1z587hj3/84wDETS35LbW4+i9PgRVL8MmtT6N7zGRw\nIknIy5xbAmtWIYobauI+h83tw/5mC6obrWi3+xLyimq2MGi3MihMMBo7IgIhWiYvREl99JiKstN7\n0DZ+dsx0IVKRAPk8DMzaGKmnAcCcOw5qkx4iX2SF4mBYdNojr/+6fQQuL4sMazcIBHAMIJJcKhJg\nrEaOeWMycdVEHa6dpMXk3NBCUcnAK1OitXwuyur2xGwrZL0Ye64GzRWLUiJLL5NyMnhlrx2tKMQC\nyETBt0qXSgux1w2Jx4k2y8DL0g4WDobDKf03GYVFPgZTDr3vr80SBV6KoqurC0VFRSCE4ODBg9i4\ncSMeeOABHD9+fGBSp4hZX/wv5n3+Z9Rc+X0cWfFv8EnlUdufm3kVJh77LG4jYy8GB4MvL5iwt8WO\nHhf/1MPtNh++brGCI+CtKAQAxmn51W1oqliEkvr9EHARZCIcxp/6Eg3TV8bsqzRLAQWPnDYauSjm\nkykrlsKaVQitoSVqu0Zz5OSMvckAc9rPortwYkJP3AVqGVaM1+LaydlYUqLGxGwZchR++SPZYpLB\n+ekrUH7qS4CLPmMpbDwBc04xnOrslMmilIgwKSf672O0IxEKkCHtp0gFQti0fs+nDpsHtjAZAtIN\nlgDH9U7Y+7jETjjxBYwF42OWJ+ClKKRSKVwuFxoaGpCTk4PMzExIJBJ4vcn3AEoGIh+DT763CZ3j\n+GXW7CidAZnbjmz9+QGdt9XiRvUFM/6/vXsPb6pO9wX+XWvlfm/atE16h9ICpbRAQaTIVUeHUYfZ\no5wtMx7r4J7t3iIedGbQcZQZR2eOe3vjyOUM+9Ej6pYZHAe2zEW2Ch0REKhULi2FlpZSeqHXpNc0\nabLOH6GhocnKSnpJCu/neXggabLW+pWsvGv9Lu97yeYImn22uXcARy7Z4OJ5KDtboeixoj1BeDEV\nxzK4JVWPOUniahB3GS3oVRsRX3d22M/kvZ3IPbIbDoVaVA0Li8iCThopC4My+J1HsIV3ANDQaUeH\n3f8J2OMdyK4MeyA7O04Js0bqNwDGKDjoxqjqTkd8OuxKHZKCDCB6up3G9m4i36KB+iZKyREug58q\nhF1Xa1MMXO1+inbV7f2otV4bm5D29yL7xCc4M/97Qd8r6hNSWFiIF154AVu2bPHmgKqpqUF8fHRO\nR/z6W2v81pgOhGdZVOYtx5STI19A6HC5cbjWhvLW/oBTPNvtLhyq7fT2gSdUf4OmtFzBFdFqKYcl\nGQZkGGRQcBD1ZQxcW1MBAOB5xNWfw/xPfodvv/dzKHptOPqtHwfdhk4ugSmErgmziDQPYgIFzwOX\nO/13T/VdnRob13AeLZbAhYEC0SkkiBdYZSxhgTTD2F1ply5ejZn730NsY5Xfn8v7umCqP+epkjdG\nkvQKJEe4ouNEoZYNDxSdRjN0HU0AEPXdTy29Ayht9J3Mk1X632hMyxWVLkjU2V9UVISTJ0+C4zjM\nmOG5SmcYBg899FAYhxydLk4rxPRjH0PZ3T7iAWUewKnGLnTaB5BvVvtcsdr63ThUa4N9SHrsxJpv\nUDPlloDbi9fIMDdZC92QmRUJIgaNAeBS1jzM+Go3skr/GxnlBwGeR3XuEny95Iei05inGxUhDXQa\nFMFXbbcnpGNaSeDSqIMutPUhK1YBxXVX/d0ON+S9Nih6O8NaiT0lThm0TQkaGU6HvGVx2hMn4esV\nj6LwL1vw95VPDZtwkHL+GBoz8oZV0RstHMtgRrzKb1pzMpzST4bYrhgzUs99BQBo6OpHl0MdlbOf\n+gZ4lFzuhmvIPF55bycyT+8XXU5AdKvy8vK8QQIAJk+e7PN4onPKVbiUPT9okZlQXOzowxcXbbBe\nTc/R7XDj8KVOdA9ZI8A5+xF7uQJNAQrQTIlTYWGab5AAhqcVCMSh1OJS9i0wXqnGiSU/xL4f/BqV\nebeLDhIMPDOZQqFXSMAFGTPoirFA0WuDNECpzkH2AReauod3cVr7nIhrqEKbOTPk3FQSloFZRJti\nFBz0Y1j0uTl9JkoX/SNu+/gNqG0tPj/zpOwYu26nPLMWRj/dKcQ//2spEr13FK4o7X5yu3mcudIL\nq933HJr29V9xKesW0eUEoi/8RVDlzOWYVPaF4Gwc8Dzi68oh7+0M/Joh2nudOFDjWaR3tK4L1uuy\nncZfroAtPt1vV1m+WYvZZtWwGRcAoJNxoutLn1jyIL6661HP3P0QB31NGlnIXygaWfBxCp5l0ZKU\nDUvl8aDbu9De57OoacDNo7N/AKbGSrRcHZ9gGE/SOjHSY5SirvwkLJAWM7YDvXVZt+BswQos+q/X\nvCvpde0NUPRY0Zwsro6GlGMQpxIfzNMMypALRN3slNLh5023PgHqzhYwV2tqX47C7qfaTieq2np9\nnlN1tSGt4jDOFtwtejsUKIbojklEe3w6Us8FGGTkecw89CHmfvb/8O33n8Ut+7Yjrv5c0NlSdqcL\nB2usaO4ZHoDMtafQ5Kf6moRlkGqQBUynoJWxUEnHfkpjeoxCdEAaxABIFDFOUTFnBbKOfew90QJp\n6Xb4zCbrHeDRP+D2zHi6Oj6hk0swP00HMT1kqQbxX5IJ6rHvw78wcxlqs+dj0X+9Dml/L9IqjuBS\n9vygd0ocw2CqSY07pxixKEMHiy54u9QyDjMTVfCzhowIUEtZKK77pbklUnQZEr1jbdE2+6nd7kLJ\n5eEXtNOP7UV1zuKged2Goo/LdSrzb/cMal//5c+7Mbv4fZjqz+PTBzbiL//zf6M9IQMFB97DnR88\nj8yTn0Pa3+t/owHIezthqf4GVybNGvazGKVUsMQixzIwacc2949nmmh4+4gRcRfSapmCXl1c0PQB\nPHyv1vqcbrD9fdB2NKE9IR2AJzDFKVhMiROexGBUyRAXwsC8YYy7nwaVz7sXrZYpWPjn/4O0c0cE\nu50YAOlGJW7PjMEsswpaGQs5x2BushZxAoGNZYC5yTpoorAfPdpJWQaxfn63DRl5SLqaqdnl5tEy\nzt1Ptn43qjscfv+UXO7CwHX5RbQdTbBUl6Ji9l0h7SesT8yZM2dQXl4ezlsDcrvd2LBhA15++WUA\nQHd3N1588UU88cQTeOmll7wL/sbalZQcMG4XTPXnvM8xbhfmffo2dO0N+Pv3noJDoYFToUZl/h34\n5Ae/xoklP0RcYyW+s2MDZny1G2yQK2QAMLTU4vZdL6Jm+m3o8jPrIFEbPEutcYy/wJINCmjCnDqp\nV0hEXd2fm/89TC/5C5ggawqq23u9SQB7nW7ENlXDGpfqTZRnUEjBMAyy45RQCKRAzzQqQhrAHY/u\nJwAAw6B00QPo1RhhV+nQGet/Nb1ZJ8fSyTGYn6Qe1iWokjC4NVULg8J/cJ+RoIVZQwvrwhXr5wKj\nftIsWKqvpfQf79lP51v7cLTO5vdPW+91Y3s8j9zDf8T5Wd8SPUY5SNS3wMaNG1FRUQEA2LNnDzZt\n2oRNmzaNauGiv/71r0hKujZ7Zc+ePcjNzcWmTZuQk5OD3bt3j9q+BDEMqvJu906VZV1O3PrJ/4W8\nrwsH7/1fw2ehMAxakrLx1V2PYt/qF2BoqcPyXS9C31IXcBcp549h0Z7XcLLwfpTNX+l33CBGxArn\nsZrnPyhFRFdGIBopC32AL6yhWlOmwa7UIaVSOIGhw8Wj8Woyxl6nC3HXrZ/QXx3cV0tZzDJr/G5D\nxjEwh3EXFqz7iQEwP0WPuck6wSAVFMPi2B2P4O8rf+L3x/EaGW5L0yFBLQl4EaGRsliQph02ndOs\nkyMrlsYlRkInH/5/2xGfBonT7ilkhPHtfrL2u1DTLq7wEACkVB6HtqMJ5/O/FfK+RAWKuro6ZGV5\n+oI///xzbNy4ES+99BI+/fTTkHfoT1tbG0pLS7F8+XLvcyUlJVi8eDEAT/3u48eDD3qOlotTb4Wp\noRK69gYU/nkzwAOH7l4Ll1T4ROvTxODLux9HZf7tWLznFUw7/hffVdG8GzOO/Am5Rz7CFyufClgv\ngmMZ7xefEJ2MBTdG+XmUEm5E1cxYRtw4BRgG5fPuxrTjfwZ44ROsqt0ON+9JBmgasn5CJeWgk1/7\nKCfrZDD7CXKTjKqw6j3HKDnoBQJ3lkmFNIMUmUY57sw0IDdRG3beJJ5lA64BStbLRd0N6eUcFqbp\nvZXZFFIOs80aSGku7Iho5X4mkDAsGjPyvIXCxHQ/uYPcPYt1yeoQXXlT3mtD/sGdOH77j8IqYyDq\nrBlcZdzU5ImaycnJiIuLQ0+PcLUusXbs2IEHH3zQ5yrJZrPBYDAAAAwGA2w2kbUVRoFLKkfNtEIs\n3/UiHEoNjnz7UfG1ABgGF6ctxGf/+DxM9RVY9sffQtveCImjD4V/2Yy4xip8vuoXsJoCFzwxKKWi\nunxUMhY6+djcVaTGyEecGdco4q4I8HT3DciUSK76WvB17b0OtNvdsHX1Iab5ItrMkwF4ZmYNrbwm\nYYHcBLXPFF0Gni/acHAMkB5g8Z1RJcX0ITUcVFIWM+IVuHOKEVlxKlHdb2IwAOJU4k9wo5JDYZoO\nMo7B3CStTyAl4dFIWSj93DHWZ8yCpbr02mOB7qdepxul9Z1BMzcE0+N043yryO9fnsec4vdxcdrC\nsEvpijqTs7Oz8fbbb6OjowNz53qugpuamqDVasPa6VAnTpyAXq9Heno6ysrKAr4u0K12WVmZz/tW\nrVoFmVSGkZayrZl3Nwa0MagqWAEpE/pJNhBrwVf3P42Mk59j2Z9exoBMgSvpM1Gy9EHwnARDr7U5\njoNMdu1LLC1WDY1GE3SMgud5pBgH0NMy+uM3KbFaaLWh9WNeL4Hth6LJLpivn+M4yOQKnF/wPeQc\n3IXm6QsAgd93VYcTyqY69BoSwGhjIANgiVEP+yxqNDzy+4HTTZ6TKV4jRWqcDhI/U43FSHFLcbbN\nt89XwjJYONkIk254ENFqAUusDtO6+nGo1opO+/B8W9f/vwvRKzgkG7WQ+Fn4FYhGw0OnViJOLYu6\nsgAymWxUvj/GE8/zMMc4UGf1DQTWSTNh2Pc7aAb64VDp0Gbn4WTlMA7psuR5Hs3dDhyp70DPAJAW\nE4M4TXgXLjzPo7qhEwwng58F48MkVRyBznoFJ+5+HLIgdxO7du3y/jsnJwc5OTkARAaKxx57DHv3\n7oVOp8O9994LAGhoaMCKFSvEvF1QRUUFSkpKUFpaCofDgb6+Prz55pswGAywWq3ev/V6/1O5hjZm\nkMPp8FmFGA6HTIXyvDuAEeazOjd9ES4nTYW2owlN6TMBl8vzZwiZTA6H49qHT8Uq0N0tvBBtkJJ1\n+7x3NEg5BmrWha4u//U7RG+HB+SMCzaBKmCDba9LmoZshkVcxVE0TJ4d8PU1rf3Iri1DsznT224F\nVH6PNUXD4jzjQlf/AFK0CvT1hn8HrGIAJeeCbUg97/wUPdSME10ChaxUDJCi4VDaOTyYX///LiTR\nqEFfX+gXBEoAPT3Rl5NNq9WO+PMVCVqJ//OtKWU64s4fx8XpCwEAde1dkLqvBYrLXU4cu9SJfpcb\nMpkcdW1dkPPhlZK2D/A4VW+Fwxk8Aamix4bc/e/h4D3rYHe7gSCft1WrVvl9XlSg0Gq1WL16tc9z\ns2cHPplDsXr1au+2y8vLsXfvXjz++ON4//33UVxcjJUrV6K4uBgFBQWjsr9I6NHHiy7TyTGAIYRB\najFjGaGy6BSCU3PFYhnArJXDZhcxZZBhUD7vHuQc+xgNk2YJLgyMaziP2mzP9FEpxwRcpa6UMMgz\na/D15S4kqkc2lXiw++nk1ZXkk4xKZBjEbdOkloKBZ5pvuEwjPH4yOrQBFnU2ZOQjqfrEtUBh7cck\ng6dno7LNjpONXT531pesdkyOCT6z0e++uhzoExEkwPOYXfweaqYvDJr4M1gvs6j7UafTiZ07d2Lt\n2rXe/E4nT57EJ598IubtYVm5ciVOnz6NJ554AmfOnMHKlSvHbF/RRKeQhjTPXSNjIR/l1VOhpuwQ\nImb21qCGjHwwbjfMF08FfhHvRlxjFVrNmVe3L7zeJEkjwdxU3bBcUeGIv/p70SkkyE1Ui64tHaPg\nEKMM/3eqknKi1qWQsaeTc36vYRrTZyKh7qw3q8OVrn509LtxoqEHpQ1dw7pfW3ocsIUxO8rp4nFO\nZFdz6vmj0FqvoOyWewVfxzDA3BThxXeizuIdO3agvb0d69atw29+8xsAQEpKCnbs2IG77gpt4YaQ\n6dOnY/p0T9oCjUaD5557btS2PVFYdPKQVkLLOQaxKhkaOu3BXywCxyCkBWnBGJSc+Kvpq3cV04/v\n9dTm8HNG6tob4JSpYNfEAAhcw3sQyzJIGqW1AzEKDrEqKfItmpDuuFgGSIuRo70vvK6GZL0cMqo+\nFxXUUhZqmQTd13WnOpQadJhSEV93Fo0ZeXDxPPZXdQSskujmgZbuARj8TLkV0tQ9AKuIO3RFjxX5\nB/+Ag/c+EXQiziyLDul64deIuhQ9duwY1q1bh6ysLO+tktFoRHt7u5i3Rz39GM0cCoe/vPfBjGQa\n6/Vi1TJoBepih0or46AN4fd7efJsSJz9nnUVfmaGmBqu5XcCxqbrLRCOAW5J0YVVDW6w+ykc8WNY\nRImEhmOBuADdgA2T8pE0ZPZTsFK6l2yBC3P54+aByrbgdxOsy4mC/e+iOuc2dMSnC742N1GDKcbg\nXWCiAoVEIhk297ezs3PCzVrwZ1q8GvNSdJE+DACeK09DGEFLG+JViZBkXfC62KHgGMAcSs0DhsWJ\nxT/AjK/24I7f/wqTzhRD4ri2qMiz0M6zfoJlxj/I68OcZhpu95OUYxBL3U5RJSbAGGJDRj7MF08G\nXQ80qDXE7qfmngFcESotwLuRWnEE337vWbhZDuXz7hHcXrZJjWkmhaguVFFn2fz587F582YUFRUB\nADo6OvDOO+9gwYIFYt4etTKMSsyIV8LNAwoJC3ugSkPjRKeQhJWHRy+XDCv+Hg4Gga+WRiJGZJGl\nQS3JU/G3B19CQt1ZTD5TjNzDH6Euax4uzFiCuIZKlM3z9LlqZeH9viIh3O4ns1Ye1iJBMnb8rdAG\ngG5DAhwKDYxXatCeODnodkLpfuJ5HhcEVmEnXDqDmYf+CDcnxdE7HkFrknAxrwyjErkJyqDlAAaJ\nChSrV6/G+++/j6eeegoOhwPr1q3D8uXLcf/994vaSTRK1isw26z2rqBN1MlxMYTl8GPBrJWHtUBL\nLfPfbxoqnVIiquhQqAyKEMYpBjEsrqTm4EpqDpTdHcgoP4jbPt4Ehnej25AAAEjQykZtQdt4CGf2\nk78V5iSyNHIOLAO/64M8s5++ERUoAE/3U6aIrp82uxt1tuHjkIbmWsw8/Eeou9pw6tZ/QP3kOUFL\nCSTrFZhlVvssUg1GVKCQSCQoKipCUVGRt8tpNLsnxluCVoaC6+pOx6ulEQ8UocwQGopjgASNdMSB\nIlUfWsI8sXQyFvNT9TjT1IMuR+jH2KeJQfm8e3G24DueOiBXP3uh3qlEWoyCg1ElQ1uvuLsKlgFi\nw/xMkLGjkbLQyCTo9HO+1U/Kx9zP38HpBd8Xta3WHgds/W7BCzQXD1S29g3rMcgq3YfsE/tQPu8e\nVE+/DTwX/LMSr5ahwKIJOeuCqHvay5cvw2q1AvCsqPzwww/x4Ycfor8/+gp1BGNUSnFLstanPCkQ\n2tqFscAwIxuYHY0vzbHodgI8uavSDTLcMcWAOUk6yLnw2smznHe2EzC+A9mjgWU8qVHEilXJKPVG\nFGIZwBQg/X57QgZk9m5orFdEbcvNA81BFkTWdPTjYofvRWz62S8x5eRn+GzVL3Ahd6moIBGjlGJ+\nitZvEaZgRH0KN23a5E3z/e677+Ls2bOorKzE9u3bQ95hJGnlEtyaqoPaT5+vQe7pvokUnUwCnZj1\n+IHeP8IBbaWEG/PSmHKOQVasHHdmGZCToAk7cR7gGVPSTsAv0XiV+NlPKfrQpkqT8RPwwpJh0Zh+\nLUmgGJes/QG7I1t7XSht8F3BbqkuRe7hP+GLe59En9Yoah8aOYcFqTqowxzTE/Wu5uZmWCwW8DyP\nY8eOYf369XjyySdx8uTJsHYaCXEqGQrTdAGv0DiWQVIos3NGWaJuZP3tWjk3ouygKYbxm6uvlrKY\nmaDEHVNiYAnzdx6vkU3ItQWGq91PYsTSauyoJTTlu37SLFhqxH83tvY6YPOTC6xvgEdJvW/xIVP9\nORTs34Ev716HLqNZ1PYVUg6FafoR3Z2KeqdMJkNfXx+qqqoQFxcHnU4HqVQK5wjzII0Hz12EHksn\n6RATpKsiNoTsnKPNOMKuIyUHUfUfAokPs5LdSBjkHGYn6cK6s4jk/9VIiO1+0sklIS/GIuNHK2cD\nzhhqTpkGQ8slyPrE5Wvj/XQ/udw8ypp70dF37XlDSy1u/ds2fHXnj9FxtbJjMDKOxcI0HYwj7KYV\nFSgKCwvxwgsvYMuWLViyZAkAoKamBvHx4vIXRYJCwmFOkg53ZBqQbpCJ+jIyKP0vzxfLoJBibrJO\n9JSzQQxG3t/OMEzQVcqBeObqR6bbLVYtQ26i/0JDQiI9pjQSYrqfUgwKqmsdxVQSNuD6JZdEhubk\nqUi+UCJ6e9d3P9V1OlHZem1xncZ6Bbft3YSvl/wQzSnTRW2TYxksSNPDNAqZFkRtoaioCCdPngTH\ncZgxYwYAzxfTYN6naJMTr0Z6jNzvWIQQncxTH9naF/rMnBSDZ7qtSspCwjL4qs4mel2DWsZCO4Lx\niUGBkuMFE8m5+gzDICNGjosddp+rJyESlpnQg7yD3U9dAh8zSgIY3TwD2rKA6TQq5qxA4V82oy5z\nrqiyo629DljtLsQoOHTYXfi6/tq4hKK7A4v+6zWUzfsu6jN9k6NKWMbvRTDDALMto1f6VvRW1OLF\nJgAAE79JREFU8vLyfB5PnixunnAk5MQrg7/ID5YBLFp5SIGCAZCTqMHUOIV3XnK6QQanS4ev6ztF\nzZk36+SjcvUY7mC4WRvZufpyzpPl9e/VHaJ+XzFK6bBZaxPJ4OK7My3+p8mOx8QCMnJ6gbva9sRJ\nqJ80C7lH/oQTSx8Mui2eB1p6nFBJGZTUd3vTfzBuNxb8bStqpt+G6hmLh73vllQdzAG6jUNZJxGM\nqEDx/PPPB1w38atf/WrUDiYaGEO4TZOwDAqSPQm1rv/9TDbK4HBrcaoxeM790ZqWqr06c6snhLUK\nLOO/aPx4S1RzmByrQpWIXDYJmvDSM0cTk0oKBsMDhVzCIsukGnF1QTL2gl2Ynb71H3DXfz6Hi9MK\nRVWWu2TtR98Aj9aea5+LrNJ9cElkOFswvPaPQSGBRSMd0exBsUR9QyxbtsznsdVqxYEDB3DbbbeN\nyUFFkkEhAccwQWvRamQc5qfqAvb/sQyDaXFyOF1unG0OXDCHAa7mAAovs+hQUpZBToIKx+o6Rb8n\nWubqMwyDqSYl6qx29AdJpqa/Aa62DQoORrUUzU4HjCopLHoZjEopDHJuVFKik7GnkXu6mQcCFElz\nKtQ4VXgf5hS/h89W/QI8K/y5belxoGVIkNC1NyD7xCf47H8857fqY7ZJNS5BAhAZKAYHsIeaP38+\ntm7divvuu2+0jymiNFIGRpXU5z9s2GvkHJZkGKANMieZZRjMiFfC4XLjQpvvghmOZRCrlMKil8Og\nlKA/zBTU10vTy1BrleFKl7jtZRiVUTNXXytjkWfRCAY6JgKJAMcCywDzUnRwJcihkTIT/g7pZqSS\nstDKJYJja7XZtyKj/Etknj6AyrzbRW+bcbsw99O3UTb/e+jVxQ3ft4yDRTt+0/nDPuOMRiNqa2tH\n81iiAsMwMOtkgoFillkbNEgMkrAM8hPVcLh42PoGkKSXI1YlQYxSArXE8wUhk3AYrTXuEpZBboIG\nLd3tgrWqAc8AfJo+ulJYp+pluNghQ3OALJkTKRFgMAlahWAZVRLdGHjW8whOwmAYfL3kh1j20cuo\nmzzHJ7OAkOwT+zAgU+CCn3EJAMiOU43rnaeoQLF//36fxw6HA0ePHkVWlnCGwolKKOdSmkEJiza0\n+CrjGNySpAHLMmOSS+l6JhWHbJMGZ5sDz+NWyzjkm9VRNwVTyjKYmajG/gsOb6CTcQwSNHIkaGSI\nVUnG5XdIiBhiprV3GS2ozlmE/C//gK/uejTo63Vt9cgq3Xe1y2n4h13GMUgZ58XBor7xDh486PNY\nLpcjOzsb3/nOd8bkoCLNoJBAyjFwunwvySUsg5wEpegSmEONZNV0OLLiFKiz9qHbMXzFJ8sABck6\naKI0fbVJJUGeWQuXm4dRJUGMQkL99iQqiZ3WXj73btz5wfNIuFSGjszZAV/HuF2Y99nbOHOr/y4n\nAJgSpw47FUe4RAWKjRs3jvVxRBWVhIFJLR9WXjQ3UQP9BFktq5IwmGnW4HCtbdjPchK0sIzS/Oqx\nMjVOEelDICQozdXUOddfVF7PJZWjdNFqzP77f+JA+oyAr5v69SdwyFWozvHf5cQxDFIN499dLPrb\norGxEYcOHUJ7ezuMRiMKCwthNovLNTIRJWikPoEiRiVFRgiZP6NBik6GZL0Cl4fksTdr5ciOnVjt\nICRaKTkg1aBEdVtv0DVAjRl5mFT2BfI/fRt16Xno1pvQozNhQOa5KNK1XcaUb/4bn/3j8wFrSmQY\nlRFJ7SIqUJSUlODNN9/E7NmzYTKZ0NDQgKeffhqPP/44CgoKgm9gAjIOGadgAOQlhp7DPdJYBpiR\noEJTVz8G3DwUUg6zLZpx7wYj5EbFMAwKzCok6+Uob+5Bi1CpUgBfL30Q07/5FOlnv4TG1gJ1Zyuc\nMgV6dCYoem04c+s/oFcb639fADJiInOnLSpQ7Ny5Ez/96U+96TsAoKysDG+//fYNGyj0Cs5bHnVy\nrAqJ6onR5XS9GAWHGQkanGzswtwkbVSsmSDkRsKyDCwaCeJVOtR3OXHmSg86A6T2sKsNOLP0h3A4\nrs5z5N1Q9NigsbVA6uhDY/rMgPtJ1itgVEbm/BUVKNrb2zFt2jSf56ZOnYq2trYxOahoIOcYJGjl\naOp0YKpJOaHnuU8yysGyDJJCnK1FCBFPwjJI08uQqJHiks2BM1d6YHcOn0zig2Fh18SImjY7yagI\nayLNaBAVntLT07F3716f5/785z8jPT19LI4pasSrpcizqEWvmYhWco5Bloi6vISQkZNzDKYY5Vg2\nSQ/1KCT7BACTWoaECJQCGCTqEvORRx7Byy+/jL/97W+IjY1FW1sbZDIZNmzYMNbHF1EJGukNMy2T\nggQh40sv57AwTY/iGhv6B4LcWQjgWAZTTaqIrh9ieF5cMmyXy4Xz58+jo6MDRqMRmZmZkEhG3pXR\n1taGzZs3w2azgWEYLF++HCtWrEB3dzfeeOMNtLS0ID4+HuvXr4dKpRK1zYaGhhEf13jSarXo6gqe\nPPBGRG2ntt/omnsG8PcaqzcnlEwmvzZGIYBhgIwYJbLilEGLro0Gi8US+FjEBoqxYrVaYbVakZ6e\nDrvdjg0bNuBnP/sZDhw4AK1Wi+9+97vYs2cPenp68IMf/EDUNilQTBzUdmr7zaC+y4lDF61w8eIC\nRZJegWkmJeKU3Lj1BggFCsFbAqH04oNGmmbcYDDAYDAAABQKBZKSktDW1oaSkhL88pe/BOBJSvjL\nX/5SdKAghJBokqSVYl6KHl/VDV8AO1SsSoacBDXMGgmiqSS8YKC4Pr34W2+9hTVr1ozZwTQ3N6O2\nthZZWVmw2WzeAGIwGGCzCf+CCSEkmg0WNDvdcu1ugmM82aotOk+a+TgVN26pw0MhGCiuTy++Y8cO\nvynHR4Pdbsdrr72GoqIiKBTDF5UEurMpKytDWVmZ9/GqVaug1WrH5BjHikwmm3DHPFqo7dT2m0me\nWg2ZohfddidMGhmMKin0CgkYJjpSze/atcv775ycHOTk5AAYQZrx0eRyufDqq69i0aJFmDt3LgDP\nXYTVavX+rdfr/b53aGMGTbS+z5utv3Yoaju1/WaTk6BBd3c3ADfg6kdPz2gVGRgZrVaLVatW+f1Z\nVCwQ2LZtG5KTk7FixbVyf3PmzEFxcTEAoLi4+IZdAU4IublEw51DqATvKM6cOePz2O12D3tuaFqP\ncFRUVODgwYNITU3Fz372MzAMgwceeAArV67E66+/jgMHDsBkMmH9+vUj2g8hhJDwCE6Pfeyxx4Tf\nzDDYvHnzqB/USNH02ImD2k5tv9lEa9vDnh67ZcuWUT8YQgghE0tUjFEQQgiJXhQoCCGECKJAQQgh\nRBAFCkIIIYIoUBBCCBFEgYIQQoggChSEEEIEUaAghBAiiAIFIYQQQRQoCCGECKJAQQghRBAFCkII\nIYIoUBBCCBFEgYIQQoggChSEEEIEUaAghBAiiAIFIYQQQRQoCCGECKJAQQghRBAFCkIIIYIoUBBC\nCBFEgYIQQoggChSEEEIEUaAghBAiSBLpAwjmm2++wTvvvAOe57F06VKsXLky0odECCE3lai+o3C7\n3Xjrrbfw7LPP4tVXX8WhQ4dQX18f6cMihJCbSlQHiqqqKpjNZphMJkgkEhQWFuL48eORPixCCLmp\nRHWgaG9vR2xsrPex0WhEe3t7BI+IEEJuPlEdKAghhEReVA9mG41GtLa2eh+3t7fDaDT6vKasrAxl\nZWXex6tWrYLFYhm3YxwtWq020ocQMdT2mxO1Pfrs2rXL+++cnBzk5OR4HvBRzOVy8WvXruWbm5t5\np9PJ/+QnP+Hr6upGfT9/+MMfRn2boXj++ecjtm9qe+RQ2yMnku2fiG2P6jsKlmWxZs0avPjii+B5\nHsuWLUNycvKo78cbNSPEZDJFbN/U9sihtkdOJNs/Edse1YECAPLz87Fp06Yx3UekT5r4+PiI7Zva\nHjnU9siJZPsnYttpMDsKRPqkjSRq+82J2j6xMDzP85E+CEIIIdGL7igIIYQIokBBCCFEUNQPZk9E\n27Ztw4kTJ6DX6/HKK68AAGpra/Ef//Ef6O/vh8lkwrp166BQKPDll1/i448/BsMw4HketbW1+Ld/\n+zekpaWhuroaW7duhdPpxKxZs1BUVBTZhokQStudTie2bt2Kuro6uN1uLFq0yJv08UZv+8DAALZv\n347q6mqwLIuioiJMnz4dwMRse1tbGzZv3gybzQaGYbB8+XKsWLEC3d3deOONN9DS0oL4+HisX78e\nKpUKALB7924cOHAAHMehqKgIeXl5ACZe+0Nte3d3N1599VVcuHABS5YswY9+9CPvtqK27aM8RZfw\nPH/27Fm+pqaGf+qpp7zPPf300/zZs2d5nuf5AwcO8L///e+Hva+2tpZ//PHHvY+feeYZvrKykud5\nnv/Nb37Dl5aWjvGRj1wobT9w4AD/xhtv8DzP8/39/fy//uu/8i0tLTzP3/ht/+STT/itW7fyPM/z\nNpuN37Bhg/c9E7HtHR0dfE1NDc/zPN/X18evW7eOv3z5Mv/ee+/xe/bs4Xme53fv3s2///77PM/z\nfF1dHf/Tn/6UHxgY4K9cucKvXbuWd7vdPM9PvPaH2na73c5XVFTwn376Kf/WW2/5bCta205dT2Ng\n6tSpUKvVPs81NTVh6tSpAIDc3FwcPXp02PsOHTqEBQsWAACsViv6+vqQmZkJAFi0aNGESIgYStsN\nBgP6+/vhdrvR398PqVQKpVJ5Q7f92LFjAIDLly9jxowZAACdTge1Wo0LFy5M2LYbDAakp6cDABQK\nBZKSktDW1oaSkhIsXrwYALBkyRJvW0pKSrBgwQJwHIf4+HiYzWZUVVVNyPaH2na5XI7s7GxIJL4d\nOtHcdgoU4yQ5ORklJSUAgCNHjqCtrW3Yaw4fPoyFCxcCGJ4QMTY2dsImRAzU9vz8fCiVSvz4xz/G\nY489hnvuuQdqtfqGbvtgSpq0tDSUlJTA7XajubkZ1dXVaGtruyHa3tzcjNraWmRlZcFms8FgMADw\nfKHabDYAns93XFyc9z2DCT8nevvFtD2QaG47BYpx8i//8i/Yt28fnnnmGdjt9mFXE1VVVVAoFGOy\n8jzSArX9iy++gMPhwPbt27F582bs3bsXzc3NET7a0RWo7cuWLYPRaMQzzzyDHTt2IDs7Gyw78U9H\nu92O1157DUVFRVAoFMN+zjBMBI5qfNzIbafB7HFisVjw7LPPAgAaGxtRWlrq8/NDhw6hsLDQ+9ho\nNPrcdbS1tQ1LiDhRBGr7+fPnMW/ePLAsC51Oh+zsbFRXV2Pq1Kk3fNtZlsVDDz3kfd1zzz0Hs9kM\ntVo9Ydvucrnw6quvYtGiRZg7dy4Az5W01Wr1/q3X6wEMT/g52M6J+rkPpe2BRHPbJ/4lTJTieR78\nkLWMnZ2dADxV+z766CPccccdPq89cuSId3wC8HzIVCoVqqqqwPM8vvjiC+8HMNqJbbvFYsHp06cB\neK7GKisrkZSUdFO03eFwoL+/HwBw6tQpcBw34du+bds2JCcnY8WKFd7n5syZg+LiYgBAcXExCgoK\nAAAFBQU4fPgwBgYG0NzcjKamJmRmZk7Y9ofS9kCiue20MnsMbNq0CeXl5ejq6oJer8eqVavQ19eH\nffv2gWEYzJs3D6tXr/a+vry8HB988AFefPFFn+1UV1djy5Yt3qlyDz/88Hg3JWShtN3pdGLbtm2o\nra0FACxduhR33303gBu/7S0tLXjppZfAsiyMRiMeffRRb5/9RGx7RUUFNm7ciNTUVDAMA4Zh8MAD\nDyAzMxOvv/46WltbYTKZsH79eu+A/+7du7F//35IJJJh02MnUvvDaftjjz0Gu92OgYEBqFQq/OIX\nv0BSUlLUtp0CBSGEEEHU9UQIIUQQBQpCCCGCKFAQQggRRIGCEEKIIAoUhBBCBFGgIIQQIogCBSGE\nEEEUKAgJw5tvvomtW7f6PFdeXo41a9bAarVG6KgIGRsUKAgJw8MPP4yTJ096U5A4nU787ne/w0MP\nPeTNGDoa3G73qG2LkHBRUkBCwqDRaPDwww9j+/bteOWVV/DRRx8hMTERixYtAs/z3uptfX19yM3N\nxT/90z9BpVKB53m8/vrrqKiogNPpRHp6Oh555BEkJSUB8NypqFQqXLlyBRUVFXj66ae9le8IiRRK\n4UHICLz22msYGBjAuXPn8O///u8wGo3Yu3cvjh8/jieffBIajQZvvfUWnE4n1q5d6032Nn/+fHAc\nh3fffReVlZX47W9/C8ATKEpLS/Hzn/8cmZmZGBgYGJaSnpDxRl1PhIzAmjVrcObMGdx///3elNCf\nffYZHnjgARgMBkgkEnz/+9/HkSNHAHhqEixevBhyuRwSiQT33Xcfqqur4XA4vNucN2+et8oZBQkS\nDehTSMgI6PV6aLVan4JTra2tePnll30K1bAsC5vNBq1Wiw8++ABHjx5FV1eX9zWdnZ3e7LFDq5wR\nEg0oUBAyymJjY7Fu3TrvXcFQxcXF+Oabb7Bx40bExcWhq6sLjzzyiM9rJnIlNHJjoq4nQkbZ7bff\njp07d3oruNlsNm/d7L6+PkilUmg0GtjtduzcuTOSh0qIKHRHQcgIXX8HcM8994BhGPz617/2lsIs\nLCxEQUEBli5dilOnTuGf//mfodVqsWrVKnz++ecBt0VINKBZT4QQQgRR1xMhhBBBFCgIIYQIokBB\nCCFEEAUKQgghgihQEEIIEUSBghBCiCAKFIQQQgRRoCCEECKIAgUhhBBB/x8WStSkWgHckgAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We now know we can look at the range IN AN EVEN COOLER WAY\n", "ax = df.resample('A')['val'].median().plot()\n", "x_values = df.resample('A').index\n", "min_values = df.resample('A')['val'].min()\n", "max_values = df.resample('A')['val'].max()\n", "ax.fill_between(x_values, min_values, max_values, alpha=0.5)\n", "ax.set_ylim([0,130])\n", "ax.set_ylabel(\"Houses sold (in thousands)\")\n", "ax.set_xlabel(\"Year\")\n", "ax.set_title(\"The Housing Bubble\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }