{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "\n", "%matplotlib inline\n", "matplotlib.rcParams['pdf.fonttype'] = 42\n", "matplotlib.rcParams['ps.fonttype'] = 42" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Matplotlib styles and data ink" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "02-classwork.zip critiques.pdf\r\n", "Matplotlib styles and data ink.ipynb data-ink.gif\r\n", "NBA stats.xlsx scrabble-point-spread.csv\r\n", "country-gdp-2014.csv scrabble-tournament.csv\r\n", "country-gdp-timeseries.csv timeuse.csv\r\n", "critiques.md tufte.pptx\r\n" ] } ], "source": [ "!ls" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CountryContinentGDP_per_capitalife_expectancyPopulation
0AfghanistanAsia66354.86322856302
1AlbaniaEurope419574.2003071856
2AlgeriaAfrica509868.96330533827
3AngolaAfrica244645.23413926373
4Antigua and BarbudaN. America1273873.54477656
\n", "
" ], "text/plain": [ " Country Continent GDP_per_capita life_expectancy \\\n", "0 Afghanistan Asia 663 54.863 \n", "1 Albania Europe 4195 74.200 \n", "2 Algeria Africa 5098 68.963 \n", "3 Angola Africa 2446 45.234 \n", "4 Antigua and Barbuda N. America 12738 73.544 \n", "\n", " Population \n", "0 22856302 \n", "1 3071856 \n", "2 30533827 \n", "3 13926373 \n", "4 77656 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"country-gdp-2014.csv\")\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFNX1//H3kUUEFXAJqHEDwyaiQhCi5MdEgkqUqKgo\nGmM0ZhM3vsYtRkFAjFFcosEFDUFcQI2IJIpoYNSYGJVF9gF3jQoiCi4oy5zfH7fGabGG6Rmmp6q7\nP6/n4Znqmqru00VPnzr33rpl7o6IiMimtko6ABERSSclCBERiaUEISIisZQgREQklhKEiIjEUoIQ\nEZFYWSUIM7vUzBaa2Twzu9fMGptZSzObbmZlZvaEmTXPdbAiIlJ/qk0QZrYn8AvgQHfvAjQEBgGX\nAE+5e3tgBnBpLgMVEZH6lU0FsQZYBzQzs4bANsD/gKOB8dE244FjchKhiIgkotoE4e4fAaOBtwiJ\nYbW7PwW0cvfl0TbvA9/KZaAiIlK/smliagMMAfYEdiVUEqcAm87RoTk7REQKSMMstvku8Jy7rwIw\ns8nAwcByM2vl7svNrDWwIm5nM1PiEBGpBXe3JF8/mz6IMqCnmTUxMwP6AIuAR4GfRducBkyp6gnc\nXf/cGTp0aOIxpOWfjoWOhY7F5v+lQbUVhLu/bGZ3A7OAjcAc4A5gO+ABMzsDeBMYmMtARUSkfmXT\nxIS7Xwtcu8nqVcAP6zwiERFJBV1JXY9KSkqSDiE1dCwq6VhU0rFIF8t1W5eZeVra00RE8oWZ4XnQ\nSS0iIkVICUJERGIpQYiISCwlCBERiaUEISIisZQgREQklhKEiIjEUoIQEZFYShAiIhJLCUJERGIp\nQYiISCwlCBERiaUEISIisZQgREQklhKEiIjEUoIQEZFYShAiIhJLCUJERGIpQYiISCwlCBERiaUE\nISIisZQgREQklhKEiIjEUoIQEZFYShAiIhJLCUJERGJVmyDMrJ2ZzTGz2dHP1WZ2rpkNNbN3ovWz\nzeyI+ghY8pc7PPIIdOgAffrAnDlJRyQim2Punv3GZlsB7wA9gDOAT9z9+mr28Zq8hhSmefNgyBB4\n/3247jp480248ko47DC46ir49reTjlAkXcwMd7ckY6hpE9MPgVfd/e3ocaLBS/p98AH8+tfQty8M\nGAAvvwz9+oV1ZWUhMey/P/z+9/DJJ0lHKyKZapogTgTuz3h8tpnNNbM7zax5HcYleW7dOhg9Gjp1\ngiZNYMkSGDwYGjas3Gb77UP1MHcuvP02tGsHt98OGzYkF7eIVMq6icnMGgHvAp3c/QMz2xlY6e5u\nZiOBXdz95zH7qYmpiLjD1KlwwQXhC3/06NDnkI3Zs8N+y5fDtdfCj34EphpVilQampgaVr/JV/oB\ns9z9A4CKn5GxwNSqdhw2bNhXyyUlJZSUlNQoSMkP8+fD//0f/O9/cPPNcEQNhy107QozZsA//gG/\n/S3ccEPorzjggNzEK5ImpaWllJaWJh3G19SkgrgfmObu46PHrd39/Wh5CNDd3U+O2U8VRIH74AMY\nOhQeegguvzz0LzRqtGXPuWEDjB0bOrKPOAJGjlRHthSXNFQQWfVBmFlTQgf1wxmr/2hm88xsLtAb\nGJKD+CTF1q0LZ/mdOoWEsGQJnHPOlicHCH0Vv/kNLF0Ku+0WOrIvv1wd2SL1qUbDXGv1AqogCo57\naAa64AJo0wauvx46dszta771Vhjp9OSTMGwY/PznX+/wFik0aagglCCkRhYuDP0Mb70VEkO/fvX7\n+rNmhf6JFStCR3a/furIlsKUhgShqTYkKx9+CGefDT/4ARx5ZLjwrb6TA0C3bqEj+w9/CInqsMPC\nMFkRqXtKELJZ69fDTTdVNiEtXgznnls3/Qy1ZQb9+4dRU8ceGzqxTz89jJ4SkbqjBCFVeuwx2G+/\n8HPmTLjlFthxx6SjqtSoEZx1Vrgiu3Vr6NIFrrhCHdkidUUJQr5h0aLQfDRkSLjQbdo02HffpKOq\nWvPmcPXVYfK/11+H9u3DEFldkS2yZZQg5CurVoXmo9694fDDQxPOkUfmTyfwHnvAhAnw6KNw773h\nArvHHw+jrkSk5pQghPXrw5XPHTrAxo2hn+H886Fx46Qjq53vfjc0iY0aFd7HYYeFSQJFpGaUIIrc\ntGnhIrRHHw2jg/78Z9hpp6Sj2nJm8OMfw4IFcMwxIUmccYY6skVqQgmiSC1ZEpqPzj0XrrkGpk+H\nzp2TjqruNWoUZpFduhS+9a3QkT10KHz6adKRiaSfEkSRWbUKzjsPvv/9cFe3BQvCkNF86WeorebN\nw7UTs2fDq6+GmWbvvDM0qYlIPCWIIrFhQ2g+6tgxzKG0aFG40Cxf+xlqa8894Z57QpPahAmhI3va\ntKSjEkknTbVRBKZPD0NWW7cOk+t16ZJ0ROngHhLFRRfBXnuFqTt0bCQtNNWG5FRZWWg+OuusMKLn\nqaf0BZjJDI4+urKZrW/fMAngu+8mHZlIOihBFKCPPgrNR4ccEq5pWLgwfBEWej9DbTVqFOaZWro0\njODab78wY6w6sqXYKUEUkA0b4NZbw/UMn30W+hl++1vYeuukI8sPzZuHEV2zZsGyZeGK7LvuUke2\nFC/1QRSIp54K/Qw77QQ33hiubZAt8+KL4Z4XH30Ubn16+OFJRyTFJA19EEoQeW7ZsvAltnBh+BI7\n5hg1JdUld5gyJXRkt2kTOrL32y/pqKQYpCFBqIkpT338cUgM3/se9OoVmpOOPVbJoa6ZhaS7cGG4\nsPCHP4Qzz1RHthQHJYg8s3Ej3H576GdYsyZ8cV10kfoZcq1Ro3C/7bKyMOX5fvvBlVeGvh6RQqUE\nkUdmzIADD4T77guzlI4dC61aJR1VcWnRorIju6wsXJGtjmwpVOqDyAOvvAIXXhhmJL32WhgwQE1J\nafHCC6Gpb/Xq0Ad02GFJRySFQn0QslmrV4fmo549oUeP0M9w3HFKDmly0EHwzDOhuWnw4HCjpQUL\nko5KpG4oQaTQxo1wxx1hHP6HH4YvnEsugSZNko5M4piFAQILF4YEceih8ItfwHvvJR2ZyJZRgkiZ\n0lLo1i1MKPfYY6F9u3XrpKOSbDRuHKZPX7oUWrYM06cPH66ObMlfShAp8dproW/h9NPhssvg6aeh\na9eko5LaaNEC/vhHeOmlcHe+du3gL39RR7bkHyWIhK1ZAxdfDN27h1tlLl4MJ5ygfoZCsPfecP/9\n8PDDIUF07QpPPpl0VCLZU4JIyMaNofmoQwdYsSL0M/zud+pnKEQ9esCzz4Y72Z11ljqypXrLliUd\nQaAEkYBnngkVw7hx4X4E48bBLrskHZXkklloQly4EI44InRk//KX8P77SUcmabFyZbipV8+e4Y6P\naaAEUY9efz00H/30p2FU0rPPhmYlKR6NG4dbvpaVhdlj990XfvOb0OekPori8+WX8Le/hen499kH\nnnsuVJrvvJN0ZEG1CcLM2pnZHDObHf1cbWbnmllLM5tuZmVm9oSZNa+PgPPVXXeFZLD//qGfYeBA\n9TMUs5Ytw0WPc+aE26Cefz7svnv4+fzzYZJAKUzu4eTwV7+CXXeFMWPCMOm33gqzJPTrBw0bJh1l\nUKMrqc1sK+AdoAdwNvChu//RzC4GWrr7JTH7FP2V1GvWQNu2YQjrvvsmHY2k1ZIlMGkSTJwIa9fC\niSfCSSeF+2brZCL/LVsW7oN+zz3QtCmceiqcfHI4MYiThiupa5ogDgMud/fvm9kSoLe7Lzez1kCp\nu3eI2afoE8SoUeEq6HvuSToSyQfuMH9+SBSTJkGDBiFRnHQSdOqUdHRSEytXhv/DCRPgjTdg0KDQ\nxJxN0s/HBHEX8JK732pmH7l7y4zfrXL3HWL2KeoE8emn4T4CTz8NHTsmHY3kG/dwPcWkSeFfixYh\nUZx4YmizlvT54gv4+99DUnj6afjRj0K10LdvzZqO0pAgsg7XzBoBPwYujlZt+q1fZRYYNmzYV8sl\nJSWUlJRkHWC+u/VW+MEPlBykdszCiLfu3cPFd//+d0gUvXrBt78dksXAgbDHHklHWtzKy0MH84QJ\nodP5gANCUrjnHthuu+yeo7S0lNLS0pzGWVNZVxBm9mPgLHc/Inq8GCjJaGKa6e7f+Bos5gri889D\n9fDkk7oLmdStDRvC2emkSeFCvPbtQ1VxwgkaMl2fli6t7Fdo1iwkhVNOCcl7S6WhgqhJgrgfmObu\n46PH1wCr3P0adVLHu+EG+Ne/whmFSK6sWxfuST5pUriu5sADQ7I47rhwj3KpWytXhv6hCRPCyKNB\ng0JiqOvBBHmTIMysKfAm0MbdP4nW7QA8AOwe/W6gu38cs29RJoi1a8PIpX/8I/zBitSHL76AadPC\nF9jjj8PBB4dkccwxof9CaueLL2Dq1JAUnnkm3H721FPDLWhzNSQ1bxLEFr1AkSaIW26B6dPDGZ1I\nEj77LHSWTpwY7kZYUhL6LPr3h223TTq69CsvDy0AFf0KXbuGpDBgQPb9CltCCaJAffllGGHy8MOh\nc1EkaatXw5QpIVk89xwcfnhIFv36wTbbJB1dupSVVfYrbLdd5fUKddGvUBNKEAXqtttC5fDYY0lH\nIvJNH34YTl4mTgz31u7fPySLvn3DVCDF6IMPKvsV3n47JIRTTw0zHyR1kaISRAFaty7M/3///fC9\n7yUdjcjmvf8+PPRQ+HJcvDhM+XDSSaE5Ki3TPeTK2rWV/QrPPgtHHRWSQp8+6XjvShAF6K67wh+b\n5v2XfPP22/DAA+Hz+9ZbcPzxIVkccghsVSDTepaXh2QwYUKoorp1C0nh2GPrp1+hJpQgCsz69WE8\n+vjx6ZmuV6Q2Xn218urtDz8MF+OddFLoU8vHeaGWLAlJ4d57YfvtK/sVdtst6ciqpgRRYMaPh7/+\nFWbOTDoSkbqzaFHlJILr14dhsyeemGz7fDZWrKjsV/jf/77er5APlCAKyMaNYTqN224LN4MRKTTu\n8PLLlZMIbr115bxQaZlKZu3aMEBkwoQwRLV//8p+hQYNko6uZpQgCsh994V53Z99Nt1nVSJ1wR1e\neKGyGWqnnSori7Zt6zeW8vJw8dqECTB5crjvSkW/Qj5f76EEUSDKy6FzZ7jxRjjssKSjEalfFReU\nTZoURkTtuWdIFAMHVn2vg7qweHFlv0KLFpX9CrvumrvXrE9KEAXiwQfhuuvCncBUPUgx27Ah9MFN\nmhTO5jt1Csni+OOhdestf/4VK8IQ8gkT4N13w8R4p54KXbps+XOnjRJEASgvD5N0XX11mJ9FRIJ1\n68J0M5MmhesNunULfRYDBsCOO2b/PGvXhqvAJ0wIV4H37x9uunPoofnXr1ATShAFYPJkGDky3NRF\n1YNIvLVrw8wCkybBE0+EaytOOgmOPhqax9zNvrw8TGde0a/QvXth9CvUhBJEnnMPZ0VDh4YPuohU\n79NPQ0UxcWJojurTJySLo46CN9+s7Fdo2bLw+hVqQgkiz/3973DZZTB3rqoHkdr4+GN45JGQLJ59\nNnQ2V1yvUIj9CjWhBJHH3KFHD7jootABJyJbZs2acFe2Qu5XqIk0JIgUTEmVn554Isy3P2BA0pGI\nFIbtt086AtlUgUzBVb/cYfhwuPzywpnETERkU/p6q4UZM2DVqnCDeBGRQqUEUQvDh4fOabWVikgh\nU4KooaefDjNDDhqUdCQiIrmlBFFDI0aE6iENd5wSEcklJYgaeO65cCOVn/wk6UhERHJPCaIGRoyA\nSy+FRo2SjkREJPfUUJKlF14Id9aaMiXpSERE6ocqiCyNGAEXXxzuoiUiUgw01UYWZs8OUwy/+io0\naZJ0NCJSDNIw1YYqiCyMGBHmXFJyEJFiogqiGvPmweGHh+qhadOkoxGRYpE3FYSZNTezB81ssZkt\nNLMeZjbUzN4xs9nRvyNyHWwSRo6ECy5QchCR4pNVBWFmfwWedvdxZtYQaAacD3zi7tdXs2/eVhAL\nF4bbGr76avHcxUpE0iENFUS1w1zNbHvg++7+MwB33wCstnCHnIK+Tc5VV8GQIUoOIlKcsmli2htY\naWbjoqakO8ysosHlbDOba2Z3mlnMnWXzV1kZPPUUDB6cdCQiIsnI5kK5hkBXYLC7v2RmNwKXADcD\nw93dzWwkcD3w87gnGDZs2FfLJSUllJSUbGHYuTdqFJxzDmy3XdKRiEgxKC0tpbS0NOkwvqbaPggz\nawX8x93bRI97ARe7e/+MbfYEprr7N+4im499EK+8Aj17hp8tWiQdjYgUozT0QVTbxOTuy4G3zaxd\ntKoPsMjMWmdsNgBYkIP4EnH11aFpSclBRIpZtqOY9gfuBBoBrwGnE5qYDgDKgTeAX0XJZNN986qC\neOMN6NYNli2DHXZIOhoRKVZpqCB0odwmfv3rkBhGjUo6EhEpZkoQKfP227D//rB0Key0U9LRiEgx\nS0OC0FxMGa65Bs48U8lBRARUQXzl3Xehc2dYvBhatUo6GhEpdmmoIJQgIkOGhJ833JBsHCIioASR\nGsuXQ8eOsGAB7Lpr0tGIiKQjQagPAhg9Gk45RclBRCRT0VcQH3wA7dvDyy/D7rsnHY2ISKAKIgVu\nuAEGDlRyEBHZVFFXEKtWwXe+A7NmwV57JR2NiEglVRAJu+kmOOYYJQcRkThFW0F8/DHssw/897/Q\ntm3S0YiIfJ0qiATdfDMceaSSg4hIVYqyglizJiSGf/0rjGASEUkbVRAJGTMG+vZVchAR2ZyiqyA+\n/TRUDzNmwL77Jh2NiEg8VRAJuO026N1byUFEpDpFVUF8/nmoHp54Arp84+7ZIiLpoQqino0dCz17\nKjmIiGSjaCqIL74I1cPUqdC1a9LRiIhsniqIenTXXSExKDmIiGSnKCqIL78Mcy499BAcdFCioYiI\nZEUVRD0ZPx46dVJyEBGpiYKvINavD9XDfffBwQcnFoaISI2ogqgHEyaESfmUHEREaqagK4gNG6BD\nh9BB3bt3IiGIiNSKKogcu/9+2G03JQcRkdoo2Api48bQMT1mDPTpU+8vLyKyRVRB5NCDD8JOO8Gh\nhyYdiYhIfsoqQZhZczN70MwWm9lCM+thZi3NbLqZlZnZE2bWPNfBZqu8HEaMgMsvB0s0/4qI5K9s\nK4ibgMfcvSOwP7AEuAR4yt3bAzOAS3MTYs09/DA0awaHH550JCIi+avaPggz2x6Y4+5tN1m/BOjt\n7svNrDVQ6u4dYvav1z6I8nI48EC46io46qh6e1kRkTqVL30QewMrzWycmc02szvMrCnQyt2XA7j7\n+8C3chlotqZOhQYNwv2mRUSk9hpmuU1XYLC7v2RmNxCalzYtC6osE4YNG/bVcklJCSUlJTUONBvu\nMHy4+h5EJP+UlpZSWlqadBhfk00TUyvgP+7eJnrci5Ag2gIlGU1MM6M+ik33r7cmpn/8Ay69FObO\nha0KdnyWiBSDvGhiipqR3jazdtGqPsBC4FHgZ9G604ApuQgwW5nVg5KDiMiWy6aJCeBc4F4zawS8\nBpwONAAeMLMzgDeBgbkJMTtPPgmffALHHZdkFCIihaMgrqR2h169YPBgOPnknL6UiEi9yIsmpnww\ncyasXAknnph0JCIihaMgEsSIEXDZZWF4q4iI1I28TxDPPANvvaWmJRGRupb3CWLECPjd76Bhtt3t\nIiKSlbxOEP/5DyxbBqeemnQkIiKFJ68TxIgRcMkl0Lhx0pGIiBSevG2YefFFmD8fJk9OOhIRkcKU\ntxXEiBFw8cWw9dZJRyIiUpjy8kK5OXPCbK2vvQZNmtTpU4uIpIIulKulkSPhwguVHEREcinvKoj5\n86Fv31A9NG1aZ08rIpIqqiBqYeRIuOACJQcRkVzLqwpi8WIoKYFXX4Vtt62TpxQRSSVVEDV01VVw\n3nlKDiIi9SFvKoilS+GQQ0L1sP32dRCYiEiKqYKogVGj4JxzlBxEROpLXlxJ/dprMHVqqB5ERKR+\n5EUFcfXVcNZZ0KJF0pGIiBSP1PdBvPkmdO0a+iB23LEOAxMRSTH1QWThD3+AX/5SyUFEpL6luoJ4\n5x3o0gXKymDnnes4MBGRFFMFUY0//hHOOEPJQUQkCamtIN57D/bdFxYtgtatcxCYiEiKqYLYjOuu\ng5/+VMlBRCQpqawgVqyADh3CzK277ZajwEREUkwVRBVGj4ZBg5QcRESSlLoKYuVKaNcO5s6FPfbI\nYWAiIimmCiLGjTfC8ccrOYiIJC2rCsLM3gBWA+XAenc/yMyGAr8AVkSb/c7dp8Xsm3UF8dFHsM8+\n8NJLsPfeWb4DEZEClIYKItvJ+sqBEnf/aJP117v79XUVzE03wdFHKzmIiKRBtgnCiG+OqrPstno1\n3HILPP98XT2jiIhsiWz7IBx40sxeNLNfZKw/28zmmtmdZtZ8SwK55Rbo1y80MYmISPKy7YPYxd3f\nM7OdgSeBs4EyYKW7u5mNBHZx95/H7FttH8Qnn0DbtvDMM+H6BxGRYpc3fRDu/l708wMzmwwc5O7/\nythkLDC1qv2HDRv21XJJSQklJSVf+/2YMdCnj5KDiBSv0tJSSktLkw7ja6qtIMysKbCVu39qZs2A\n6cCVwDx3fz/aZgjQ3d1Pjtl/sxXEZ5+F6uGf/wxzL4mISP5UEK2AyWbm0fb3uvt0M7vbzA4gjHB6\nA/hVbQK4/Xbo1UvJQUQkbRK9knrtWmjTBh5/HA44IKdhiIjklTRUEIleST12LPTooeQgIpJGiVUQ\nX3wRhrROmQLduuU0BBGRvFPUFcS4cbD//koOIiJplUgFsW5dqB4eeAB69szpy4uI5KWirSDGj4eO\nHZUcRETSrN4riPXroX17uPvuMLxVRES+qSgriHvvhb32UnIQEUm7eq0gNmwITUtjx8Ims22IiEiG\noqsgJk6EXXaB3r3r81VFRKQ26q2C2LgROneGP/0J+vbN6UuKiOS9oqogHnoIWrSAH/6wvl5RRES2\nRLZ3lNsi5eUwYgRcey1YovlQRESyVS8VxCOPwDbbwBFH1MeriYhIXaiXBDF8OFx+uaoHEZF8Um99\nEP3719criYhIXaiXBHHFFaoeRETyTb0Mc9240dkq0TtPiIjkl6IZ5qrkICKSf/TVLSIisZQgREQk\nlhKEiIjEUoIQEZFYShAiIhJLCUJERGIpQYiISCwlCBERiaUEISIisZQgREQkVlY3DDKzN4DVQDmw\n3t0PMrOWwCRgT+ANYKC7r85RnCIiUs+yrSDKgRJ3P9DdD4rWXQI85e7tgRnApbkIsJCUlpYmHUJq\n6FhU0rGopGORLtkmCIvZ9mhgfLQ8HjimroIqVPrwV9KxqKRjUUnHIl2yTRAOPGlmL5rZmdG6Vu6+\nHMDd3we+lYsARUQkGVn1QQCHuPt7ZrYzMN3MyghJI1NubywhIiL1qsY3DDKzocCnwJmEfonlZtYa\nmOnuHWO2V+IQEamFpG8YVG0FYWZNga3c/VMzawYcBlwJPAr8DLgGOA2YErd/0m9QRERqp9oKwsz2\nBiYTmpAaAve6+x/MbAfgAWB34E3CMNePcxyviIjUk5zfk1pERPJTja6kNrNjzKzczNplrLvWzOab\n2TUx2/c3s4vqItC0izs2VWz3dzPbvr7iygUz22hms81sTvSz4P6Po//LazMeX2BmV2S57/lmttbM\ntsthfKn52zKz3czsETNbambLzOwGM8t2AMyWvO4uZvZArl8n5nUvM7MFZvZy9PnvnuV+j5jZf3Ic\n25VmdmidPV9NKggzmwg0BWa5+5XRuo+Blr7JE5lZA3ffWFeBpl3csSlUZrbG3WuV5PLlc2Fma4F3\nge7uvsrMLgCaufvwLPZ9HlgB/M3dx1e3fS1iS9UxNLP/An9297vNzICxwCp3T0UCq0tm1hMYDfR2\n9w1RU3vjaKj/5vZrDswizEhxnLu/kYPYtnL38rp8zqwriKiDugcwGDgpWjcF2BaYZWYnmNk4M7s1\nypLXmNlpZnZztO23zOxhM5sbnXn2jNZPjq6vmJ9xjUVeqeLYtDazp6MzjHlmdki0/vXoQ5XP7z12\n4MEm762bmc2Mloea2d1m9i/gbjPb2sz+Eh2XWWZWEm13WnSWNdPMyjLP2M3sFDP7b3Q8b42+iHJp\nA3AH8H812cnM2gCNgKuAkzPWnxb9f083s9fM7OyoKpltZv82sxYV+5vZ49Hn4umKijStf1vR2epa\nd78bIDpRHAKcbmbbmNl10evPNbPB0T5dzaw0iu1xM2sVrT/TzF6I3sODZtYk473fZGbPmdkrZjYg\nWr+nmc3PWH7GzF6K/vXMxfsFdgFWuvuG6P2uqi45RAYQBvY8AAyqWBm9tzFm9p/ovZWY2V/NbJGZ\n/SVju77R5+QlM5tkYfBQxd/cH8zsJeD46Pkqjk/36JjNNbPnzaxZjY+Tu2f1j/Bhvy1afho4MFpe\nk7HNOODRjMenAX+KlicC50bLBmwXLbeIfjYB5hOqkazjSsO/uGND+GK5NOP9NouWXwN2yOf3Tvjy\nnA3MiX6eEPPeugEzouWhwIuEMy2iY3NntNyeMMihcfR5+R/QIuOYdAU6RH9cDaJ9/gz8JMfvcQ3h\n5Od1YDvgAuCKLPb7HXBxtPwKsHO0fBqwlFBl7kQ4k/xF9LvrM/42ngLaRssHAf+MllP5twWcA4yO\nWT8bOJfwhVjRUtGCMNDlOWDHaN1A4K5ouWXG/iOAwRnvfVK03BFYFi3vCcyLlrfJ+HztA7yYo89F\ns+hzvyT6HP6/LPebTjiJbFMRc8Z7uy9a/nH0uesUPX4J6ALsSPhe2SZafxHw+2j5deC3mzzfAMJJ\nyqtA12j9toSCoElNjlNN2gkHATdEyw9Gj+fwzbPJB6vY/1DgVPjqLOOTaP35ZlYxTce3ge8AL9Qg\nrjTY9NicTBj2O87MGgFT3P3l6PeZxytf3/vn7t41Zv3mzuofdfd10XIv4E8A7l5mYTLIir6bJz0a\nDWdmf4u23UhIOC9GlUMTYPkWv4tqeBjaPR44D1ib5W6DCNPQADwCnACMiR7PdPfPgc/N7CPg79H6\n+cB+FirRg4EHMyqkRhnPnW9/W72BMVFMuPvHZrYv0JkwM0PFFD7vRtt3MbMRhETSDHgi47keiZ5j\nsZnFzdo8Jz4sAAAF3ElEQVTQCLjdzA4gfF6+k4s35O6fmVlX4PuE4z7RzC7xqIKKE8W7j7v/N3q8\nzsw6ufuiaJOp0c/5wHsZ6xcCexFGinYCnouOWSPg3xkvMSnmZdsD77r77CjuT6PXbgzcku1xynY2\n15aEg9HZwoVvDQjDXuPaGD+r4mm+0dlhZr2j5+3h7l9aaJJokk1MaVHVsXH3C83s+8CRwF/NbLS7\n35OxX96/9xgbqGy23PS9VPW5gK8nFt9kfcXjv7r7ZVsWXq3cRDgb/kt1G5pZZ8If3FPR93tjwhle\nRYL4MmNzz3hcTvhb3Ar4qIrkC+n821oEHL/Ja28H7EF4798IDVjg7ofE/G4c8GN3X2BmpxESTIXM\nYxd3IjIEeN/du5hZA7JP6DUWJbxngGeiJq6fAlUmCEKV1NLMXiOq8AgnEpdHv8/8HGS+z4rPRTkw\n3d1PqeL5q/pcbPFxyrYP4gTgbnff293buPuewOvRF2C2/gmcBaEzxcJInuaEP4gvzawDkKt2w1yq\n6tj8P2CFu98F3EloKsmUz++9qkrhdcKZPsBxm9n/WeAUgKiNfXegLPpdXzNrYWbbECaAfI4wW/Dx\nFqZ6wcxamtkeW/YWqmUA7v4RoZkkmzb8QcDQ6HPQxt2/DexqZrtn84Lu/gnhs/PVF66Zdcli18T+\nttz9n8A2ZvaT6PUbEDpxxxEqgF9H6ypOpsqAna2yn6ShmXWKnm5b4P2o6q7qyxDiP3/Ngfei5Z8S\nTtTqnJm1M7N9MlYdQGgi3ZxBwOHRZ2Jv4Ltk9ENs+hIx654HDjGztlEMTc2sugqpDGhtZt2ifbaN\n/h9qdJyyTRAnEi6Wy/Q3wpvM7DXf3JCo84EfmNk8QttaR2Aa0MjMFgKjgJwOAcuRuGPzMOEPZK6Z\nzSacQdwY/a7iGOXze29iXx/mOipaPxz4k5m9QKgmqjIGaBB9Fu4HTnP39dHvXiAcv7nAg+4+290X\nA78nzAP2MqE9t3UO3lemzM/yaEI7cGjkD0NMh8XsE/dZmEwYuJDt3GU/AX4edSwuILRLb257SP5v\n61hgoJktJbTNryX0xdwFvAXMM7M5wKDo//l4Qkf7XEIz9fei57mC8P//LLA44/mzOXZjgJ9Fr9OO\nzVesW2JbYLyFYa5zCcd6GHw1xPSozI3NbE9gD3f/qmnPwwimjy0Mj93ce6tomltJmLXi/ujz/29C\nE9Km22fus57webwlinM6sDU1PE66UE5SI2pW6Obu5yYdi4jolqMiIlIFVRAiIhJLFYSIiMRSghAR\nkVhKECIiEksJQkREYilBSKqZWSszu9/CNNIvWpgufZ/q9/zG85xn0eRv0eM6n3bdwkRoVV0AJZJ3\nlCAk7SYTJv37jrt3By4FWtXiec4nTJQHgLsf5e5r6ijGCnuTMYOrSL5TgpDUMrMfAOvcfWzFOnef\n7+7PWeWNql42s4HR9r0tTBX+oJktNrMJ0fpzgF2BmWb2z2jd62a2Q3TWv8jM7oiujp1mZltH22xu\n6u1vTD8NXA30iq4uP6/eDpRIjihBSJp1Jtxk5WuiL+Qu7r4f0Be41qJ7ChDmxjmXMPtlWzM72N1v\nJkwjXuLufaLtMi8A2ge42d07E93QJVp/B3B2VLlcCNyasU/raMK5/kDF3RQvAZ51967uftOWvHGR\nNMj5bQFFcqAXYQ4n3H2FmZUC3QnTXL/g7u8BRHPQ7EWYu8b4+kRomcuvu/v8aHkWsJdVP/V2ddNP\ni+Q9JQhJs4VsMpV0FTK/7DOnS95Idp/xTfdpQvVTb1c3/bRI3lMTk6SWu88AGlvG7TLNbD/gY+DE\naGrrnQk3b6nuRjhrgKpGLX3jC76GU29X7P8JYa5/kYKgBCFpdyzhHhGvWLg5yyjgXmAe8DLhFp0X\nuvuKmH0z+xnGAtMqOqmJmVY5RrZTb1c8ngeUR9Ogq5Na8p4m6xMRkViqIEREJJYShIiIxFKCEBGR\nWEoQIiISSwlCRERiKUGIiEgsJQgREYmlBCEiIrH+Pyx1ab8LEAkCAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.groupby(\"Continent\")['life_expectancy'].median().plot()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAD7CAYAAADZ9stpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGJpJREFUeJzt3XmUZWV97vHv0wi2zSRqKBKJjQitgHYYFSRqiZoYjWiI\nCu2ErOBKboyK3pg4Rei4ohe96MIB702iRIxxQEZdCjhQIUG0mbsBwQkUIw1yBUUkyPC7f5xd9KGs\n6jpVdU7V2VXfz1pn1d7v2cPvnB6e2u9+996pKiRJaoNlC12AJEm9MrQkSa1haEmSWsPQkiS1hqEl\nSWoNQ0uS1BoPWegCFoMkXjcgSbNQVZnJ8h5p9UlVDf3r2GOPXfAarNM621xnG2psU52zYWhJklrD\n0JIktYahtYSMjo4udAk9sc7+ss7+aUON0J46ZyOz7VfUJknK71GSZiYJ5UAMSdJiZWhJklrD0JIk\ntYYXF/dJMqNuWUmaFyMjK9m48YaFLqNvHIjRB507Yvg9ShpGmfWFvIPmQAxJ0qJmaEmSWsPQkiS1\nxsBDK8nbk1yV5MoklyU5oMf1zkxy0YBrW5vkkEHuQ5LUPwMdPZjkQOB5wN5VdW+SRwBb9bDe9sAT\ngZ8n2aWqbhhAbcuq6th+b1eSNDiDPtL6beDWqroXoKp+VlUbe1jvMOBs4HPAmvHGJCcnOSnJRUm+\nl2Q0yb8kuSbJx7uWe06SbyS5JMlnk6xo2q9P8r+SXAK8uNneYc17ByS5MMkVSb6ZZOskK5Nc0Gzn\nkiaEJUkLZNChdR7wmCTXJvlIkqf3uN4a4LPAqXSFVuPhVXUQ8CY6wfbeqtoTWJ1kdZJHAu8AnlVV\n+wOXNsuOu7Wq9q+qz403JNkS+AzwuqraG3g2cBdwM/DsZjtHAB+a0aeXJPXVQLsHq+rOJPsCTwMO\nAT6T5C1VdcpU6yTZEditqr7VzP86yZ5VdU2zyBeanxuAm7rarwZ2AX4X2BO4MJ0rfrcEvtG1i89O\nstvHAz+pqsuaun/Z7Hsr4MNJ9gbuA3af+tMe1zU92rwkSePGxsYYGxub0zYGfkeM5vbnFwAXJNkA\nvAqYMrSAlwI7JPkBEGBbOkdbf9e8f3fz8/6u6fH5hzQ/z6uql0+x/TunaJ/sArc3AhuranWSLegc\nfU3huKnfkiQxOjr6oMemrF27dsbbGGj3YJJVSXbratob+OE0q60B/rCqdq2qxwL785tdhA/sYpK2\nbwIHJ3lcU8OKJJs5QgLgOmCnJPs162zThNT2wE3NMq8CtphmO5KkARr0Oa1tgE80Q96vAPagOSRp\nhpv/cffCSVYCj6mqdeNtzcjB25uh8hPvRVITp6vqVuDVwKeTXEmna/Dxkyzfvc49wOF0ugKvoHMu\n7qHAScCrk1wOrGLqozRJ0jzw3oN94L0HJQ0v7z0oSdKCMLQkSa1haEmSWsPQkiS1hqElSWqNgV9c\nvHTMaACMJM2LkZGVC11CXxlafTKsQ0olaTGxe1CS1BqGliSpNQwtSVJrGFqSpNYwtCRJrWFoSZJa\nw9CSJLWGoSVJag1DS5LUGoaWJKk1DC1JUmsYWpKk1jC0JEmtYWhJklrD0JIktYahJUlqDR8C2SeJ\nTy6WNFgjIyvZuPGGhS5jQcUn7s5dkgK/R0mDlkX1lPQkVNWMfuO3e1CS1BqGliSpNQwtSVJrDG1o\nJXl0kjOTfCfJd5N8IMnAB44k+e0knxv0fiRJMze0oQWcDpxeVauAVcC2wLsHvdOquqmqXjro/UiS\nZm4oQyvJIcBdVXUKQHWGy7wROCrJw5L87yQbklyR5LXNOvsmGUtycZIvJxlp2o9Osi7J5UlOTbK8\naT85yYlJLkzyvSSHNe0rk2zomr4gySXN68AF+DokSY2hDC1gL+DS7oaqugO4EXgN8BhgdVXtDXyq\n6Tb8EPCnVXUAcDKbjspOq6onV9U+wLXAn3VtdqeqOhh4AXB89+6an7cAz66q/YEjmn1IkhZIGy8u\nfgZwUnP0RVXdnmQv4InAV9K5yncZ8JNm+dVJ3gU8HNgaOLdrW2c22/h2kh0n2deWwP9NsjdwH7D7\n1GUd1zU92rwkSePGxsYYGxub0zaGNbSuAV7c3ZBkWzpHWNdPsnyAq5qjpolOBg6tqquSHEkn9Mbd\nPWEbE70R2FhVq5NsAdw1dcnHTf2WJInR0VFGR0cfmF+7du2MtzGU3YNV9TXgYUleAdAExgl0Auhc\n4C+aNpLsAFwH/Nb4OackD0myZ7O5bYCNSbYEXr6Z3U4WWtsDNzXTrwK2mNMHkyTNyVCGVuNPgJcm\n+Q6dc1F3AW8DPgb8CFif5HJgTVXdQ+fI7PgkVwCXAwc123knsA74D+DbXdufeC+Uye6NchLw6mY/\nq4A7+/HBJEmz470H+8B7D0qaH957cJiPtCRJehBDS5LUGoaWJKk1DC1JUmsYWpKk1hjWi4tbaEYD\nYCRpxkZGVi50CQvO0OqTxTQMVZKGld2DkqTWMLQkSa1haEmSWsPQkiS1hqElSWoNQ0uS1BqGliSp\nNQwtSVJrGFqSpNYwtCRJrWFoSZJaw9CSJLWGoSVJag1DS5LUGoaWJKk1DC1JUmv4EMg+SXxysaTh\nMzKyko0bb1joMvomPnF37pIU+D1KGkYZ2ierJ6GqZvQbv92DkqTWMLQkSa1haEmSWmOgoZXk/iTv\n65r/n0ne2eO6xyS5K8m2A6zvBUn+ZlDblyT1V0+hleQNvbRN4m7gsCSPmGlhwBHAV4DDZrHutJJs\nUVVfqKr3DmL7kqT+6/VI68hJ2l7dw3r3Av8IvKnXggCS7ApsCfwD8LKu9iOTnJHkvCQ/SPJXzdHb\nZUm+keTh4+sn+XKSi5P8e5JVTfvJST6a5CLg+GZ7H2re2zHJ6UmuSHJ5kgOb9jOa7WxIcvRMPock\nqb82e51WkjV0QuOxSc7uemtb4Gc9bL+AjwAbkhw/g7qOAD5XVd9K8rgkv1VVP23e2wvYG1gBfB/4\n66raN8n7gVcBH6QTlH9eVd9P8mTgo8CzmvUfXVUHNZ/vSDaNVf8gMFZVh6Vz0dU2TftRVXV7kuXA\nxUlOq6rbZvBZJEl9Mt3Fxd8AbgIeBZzQ1X4HsL6XHVTVL5N8AngDcFePda0BXthMnwm8BDipmT+/\nqn4F/CrJbcAXm/YNwJOSbA08FTg1m6743bJr26dOsc9DgFc2NRedzwhwTJIXNdM7A7sD63r8HJKk\nPtpsaFXVD4EfAgfNcT8nApcBH59uwSRPpBMMX20yZyvgejaF1t3dJXbN30/n8ywDbquqfafYxZ1T\ntP/G1XdJnkEnzJ5SVXcnOR9YPvnqx3VNjzYvSdK4sbExxsbG5rSNnm7jlOQw4HhgRyDNq6pqu+lW\npbPgbUk+BxwNfGyaddYAx1bVA92JSb6f5Hd7qbWq7khyfZIXV9Xnm/VXV9V0R4ZfA/4SODHJMjrd\ng9vTCcC7kzwBOHDq1Y/rpTxJWrJGR0cZHR19YH7t2rUz3kavAzHeCxxaVdtX1XZVtW0PgQUPPno5\nAXjkeFsz3Py4SdY5HDhjQtsZdM5zTTwamureJK8A/qwZVHEVcOg0ywMcAzwzyXrgEmAP4BxgyyRX\nA+8GLtrM+pKkAevp3oNJLqyqg+ehnlby3oOShtfiuvdgr3d5vyTJZ+kMinjgnFJVnT6TnUmSNBe9\nhtZ2wK+AP+hqK8DQkiTNGx9N0gd2D0oaXoure7DX2zitSvK1ZlADSVYnecdsipQkabZ6HT34T8Bb\ngXsAmuHjRwyqKEmSJtPrOa0VVbVuwiPl7x1APS02oyNcSZoXIyMrF7qEvuo1tG5N8jg2XWP1Yjq3\nd1JjWPuMJWkx6fU6rV3p3IT2qcBtdG6r9IqqumGg1bVEkjK0JGlmZjMQY0ajB5ub0S6rqjumXXgJ\nMbQkaeYGdnFxkocCfwrsAjxk/NxWVf39DGuUJGnWej2ndRbwc+BSHnyXdUmS5k2vobVzVT13oJVI\nkjSNXq/T+kaSJw20EkmSptHr6MFrgN3ojBq8m03P01o92PLawYEYkjRzg7zL+x/Noh5Jkvpqs6GV\nZLuq+gXgEHdJ0oLbbPdgki9W1R8nuZ7O3TC6D+OqqnYddIFtYPegJM3cwC8u1uQMLUmauUE+muRr\nvbRJkjRI053TWg6sAB6VZAc2dQ9uBzx6wLVJkvQg040e/HPgGOB36NwNYzy0fgF8eIB1SZL0G3q9\nTut1VfWheainlTynJUkzN9CBGEmeSnPD3PG2qjplJjtbrAwtSZq5Qd7l/ZPA44ArgPua5gIMLUnS\nvOn1jhj7A3t6ODG18ce1SNJiNzKyko0bb1iQffcaWlcBOwE3DbCWljPPJS0NN9+8cL+k9xpajwKu\nSbKOrudpVdWhA6lKkqRJ9Bpaxw2yCEmSejGT0YMjwAHN7LqqumVgVU1dw33AlTSPRgE+U1Xvne86\nJkpSdg9KWjpCP4Y4DGzIe5KXAu8DxugExtOAN1fV52dR56wl+UVVbTfLdbeoqvumX3JW2za0JC0h\nCxdavT65+O3AAVV1ZFW9Cngy8HczLbAPJv1wSa5P8ohmer8k5zfTxyY5Jcl/AqckeWiSjydZn+TS\nJKPNckcmOTPJ+UmuS/LOrm2/PMm3klyW5KNxmKAkLZhez2ktm9Ad+P/oPfD66WFJLmNT9+B7qupU\nfvMwp3t+D+Dgqvp1kjcB91fV6iSPB85Lsnuz3AHAXsB/Axcn+SLwK+Bw4KlVdV+SjwAvB/51UB9Q\nkjS1XkPrnCTnAp9u5g8HvjSYkjbrV1W17yTtmzv6Obuqft1M/z7wQYCqui7JDcCq5r2vVNXtAElO\na5a9D9iPTogFWA7cPOdPIUmalenu8r4bMFJVb05yGJ3/yAEuAj416OJm4F42Hfktn/DenZtZ70EP\ntZzQPj7/L1X19ulLOK5rerR5SZLGjY2NMTY2NqdtTPvkYuCtVbVhQvuTgHdX1QvmtPcZSnJHVW07\nSft5wAlVdW6S9wN7V9UhSY4F7qiq9zfLvZHOnT1ek2QVcC6dI62XAf8APJHOdWjfBI4C7gLOBH6/\nqn7aPJ5l26r60YT9OxBD0hKycAMxpuseHJkYWABVtSHJLjPZUZ8sn3BO65yqehvw98DHkvyczgjH\nqZwEfDTJeuAe4MiquqcZW7EOOJ3Oc8I+WVWXASR5B51zX8uAXwOvBX402cYlSYM13ZHWd6tq9yne\n+15V7TawyuZRkiOB/arq9bNc3yMtSUvI8A55vyTJaybZ0dF0HgopSdK8me5IawQ4g0632HhI7Q9s\nBfxJVW0ceIUt4JGWpKVl+O+I8Uw6gxQArq6qr8+ivkXL0JK0tAx5aGnzDC1JS8vwntOSJGlo9HpH\nDE3LWxJKWhpGRlYu2L4NrT6xm1WSBs/uQUlSaxhakqTWMLQkSa1haEmSWsPQkiS1hqElSWoNQ0uS\n1BqGliSpNQwtSVJrGFqSpNYwtCRJrWFoSZJaw9CSJLWGoSVJag1DS5LUGoaWJKk1DC1JUmv45OI+\nSbLQJUjSg4yMrGTjxhsWuoy+io+Jn7skBX6PkoZNGOb/45NQVTP6jd/uQUlSaxhakqTWMLQkSa2x\nZEIryYuS3J9k1TTLfTHJdvNVlySpd0tmIEaSzwArgEuram2ft+1ADElDyIEYrZRka+ApwGuBI5q2\nnZL8e5LLkqxPcnDTfn2SRzTTZyS5OMmGJEcv2AeQJAFL5zqtFwLnVtWNSW5Jsg/wTOCcqnpPOhdZ\nrWiW7f615Kiquj3JcuDiJKdV1W3zXLskqbFUQmsN8IFm+lTgZcBZwMlJtgTOqqorm/e7D1WPSfKi\nZnpnYHdg3eS7OK5rerR5SZLGjY2NMTY2NqdtLPpzWkl2AH4M3ELnKGoLoKpqlyQ7Ac8H/go4oar+\nNcn1wH7Ak4B3Ac+pqruTnA8cW1UXTLIPz2lJGkKe02qjlwCnVNVjq2rXqloJXJ/k6cAtVfUx4J+B\nfSestz1wWxNYTwAOnN+yJUkTLYXuwcOB4ye0nQ6cDNyZ5F7gDuCVzXvjv5acA/xFkquB64CL5qFW\nSdJmLPruwflg96Ck4WT3oCRJC8bQkiS1hqElSWoNQ0uS1BpLYfTgPPHJxZKGy8jIyoUuoe8MrT4Z\n5hE6krRY2D0oSWoNQ0uS1BqGliSpNQwtSVJrGFqSpNYwtCRJrWFoSZJaw9CSJLWGoSVJag1DS5LU\nGoaWJKk1DC1JUmsYWpKk1jC0JEmtYWhJklrD0JIktYahJUlqDZ9c3CdJFroEaVEbGVnJxo03LHQZ\nWmDxMfFzl6TA71EarOD/V4tLEqpqRr/x2z0oSWoNQ0uS1BqGliSpNRZNaCV5UZL7k6zqantfkg1J\njp9k+Rck+Zv5rVKSNBeLZiBGks8AK4BLq2pt03Y7sENN+JBJtqiq+/q4bwdiSAPnQIzFZjYDMRZF\naCXZGrgKeDpwXlXtkeQs4PnAeuA9wPOA/wb2Bi4ENgD7V9XrkuwI/B9gVzrp8z+q6ptJzgB2BpYD\nJ1bVP0+xf0NLGjhDa7GZTWgtluu0XgicW1U3JrklyT5V9cIkv6iqfQGSPA94dFUd1Mwfyaak+SAw\nVlWHpXPB1TZN+1FVdXuS5cDFSU6rqtvm96NJksYtltBaA3ygmT61mb8cmJjgp06x/iHAKwGarsQ7\nmvZjkryomd4Z2B1YN/kmjuuaHm1ekqRxY2NjjI2NzWkbre8eTLID8GPgFjpHTlvQyZ5dktxRVds2\ny50MfKGqTm/mjwT2q6rXJ7kZ2Lmq7una7jOAdwHPqaq7k5wPHFtVF0xSg92D0sDZPbjYLNWLi18C\nnFJVj62qXatqJXB9kqfNYBtfA/4SIMmyJNsB2wO3NYH1BODAvlcuSZqRxRBahwNnTGg7jU4X4f1d\nbZv7Fe0Y4JlJ1gOXAHsA5wBbJrkaeDdwUd8qliTNSuu7B4eB3YPSfLB7cLFZqt2DkqQlwtCSJLWG\noSVJag1DS5LUGoaWJKk1FssdMYbAjAbASJqhkZGVC12ChoCh1ScOxZWkwbN7UJLUGoaWJKk1DC1J\nUmsYWkvIXB8JMF+ss7+ss3/aUCO0p87ZMLSWkLb8RbbO/rLO/mlDjdCeOmfD0JIktYahJUlqDR9N\n0gedR5NIkmZqpo8mMbQkSa1h96AkqTUMLUlSaxhac5TkuUmuTfKdJH+70PWMS/KxJDcnWd/VtkOS\n85Jcl+TcJNsvcI07J/l6kquTbEjy+iGt86FJvpXk8qbWdw9jneOSLEtyWZKzm/mhqzPJDUmubL7T\ndUNc5/ZJTk3y7ebP/inDVmeSVc33eFnz8+dJXj+Edb61+Q7XJ/lUkq1mU6OhNQdJlgEfBv4Q2AtY\nk+QJC1vVA06mU1e3twBfrarHA18H3jrvVT3YvcCbqmov4CDgtc33N1R1VtXdwDOrah9gNXBIkoMZ\nsjq7vAG4pmt+GOu8Hxitqn2q6slN2zDWeSLwparaA/g94FqGrM6q+k7zPe4L7AfcCZzBENWZZCXw\nGmCfqlpN52bta2ZVY1X5muULOBD4ctf8W4C/Xei6uupZCazvmr8WGGmmdwKuXegaJ9R7JvDsYa4T\nWAGsA/YcxjqBnYGvAKPA2cP65w5cDzxyQttQ1QlsB3x/kvahqnNCbX8A/Mew1Qns0NSzQxNYZ8/2\n37pHWnPzaODGrvkfN23DasequhmgqjYCOy5wPQ9IsguwN/BNOn+Jh6rOpsvtcmAjMFZV1zCEdQIf\nAN4MdA8LHsY6C/hKkouTHN20DVudjwVuTXJy0/X2j0lWMHx1djsc+LdmemjqrKrbgBOAHwH/Bfy8\nqr46mxoNraVtKK53SLIN8HngDVX1S36zrgWvs6rur0734M7A05KMMmR1Jnk+cHNVXcHmn0q64N8n\ncHB1urOeR6db+GkM2fdJ54hgX+AjTa130ulNGbY6AUiyJXAocGrTNDR1JtkVeCOd3p/fAbZO8vJJ\napq2RkNrbv4LeEzX/M5N27C6OckIQJKdgFsWuB6SPIROYH2yqs5qmoeuznFV9QvgS8D+DF+dBwOH\nJvkB8Gk6594+CWwcsjqpqpuanz+l0y38ZIbv+/wxcGNVXdLMn0YnxIatznF/BFxaVbc288NU5/7A\nhVX1s6q6j845t6fOpkZDa24uBnZLsjLJVsARdPpqh0V48G/cZwOvbqaPBM6auMIC+DhwTVWd2NU2\nVHUmedT4qKYkDwOeA1zOkNVZVW+rqsdU1a50/i5+vapeCXyBIaozyYrm6JokW9M5D7OB4fs+bwZu\nTLKqaXoWcDVDVmeXNXR+WRk3THVeBxyYZHmS0Pkur2E2NS70icO2v4DnNn8g3wXestD1dNX1b8BP\ngLvp9CMfReck6Febes8DHr7ANR4M3AdcQScELmu+z0cMWZ1Pamq7HLgS+OumfajqnFDzM9g0EGOo\n6qRzrmj8z3zD+L+bYauzqen36PxyegVwOrD9kNa5AvgpsG1X21DVSedc69XAeuATwJazqdHbOEmS\nWsPuQUlSaxhakqTWMLQkSa1haEmSWsPQkiS1hqElSWoNQ0uS1BqGliSpNf4/ZR5H6Bu1+jwAAAAA\nSUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAD7CAYAAABaMvJSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFbhJREFUeJzt3XuUJnV95/H3BxxELiK4oclCHCUyCijhqiBRW6KbrK7K\nsiqMRJETPScbjYKbizFZYeKJLmaNB42464kSMReEcNUTuag8IYsglwFmBMEkwoorA3ICikhGLt/9\n46mGh7aH6e7p/j3VM+/XOc/pql9X/er71Fw+T/2qnqpUFZIktbLVuAuQJG1ZDB5JUlMGjySpKYNH\nktSUwSNJasrgkSQ19ZRxF9AXSbyuXJLmoaoyl+U94hlRVb1/nXTSSWOvwTqtcynXuRRqXEp1zofB\nI0lqyuCRJDVl8Cwxk5OT4y5hVqxzYVnnwlkKNcLSqXM+Mt8xus1NknJfSNLcJKG8uECS1GcGjySp\nKYNHktSUXyAdkcxpmFKSmpiYWM66dbePu4wF48UFneGdC9wXkvoo8/6y5mLz4gJJUu8ZPJKkpgwe\nSVJTswqeJH+Y5JtJbkyyOskhs1zv/CRXblqJG93GqiRHLOY2JEkLZ6NXtSU5FHg1sH9VPZxkF2Cb\nWay3E/AC4IdJnl1Vt29qsTNsY6uqOmmh+5UkLZ7ZHPH8PHBPVT0MUFX/WlXrZrHeUcCFwFnAyqnG\nJKcnOS3JlUn+Oclkkr9McnOSz44s96okX09ybZIvJNmua78tyf9Ici3whq6/o7rfHZLkiiQ3JLkq\nyfZJlie5vOvn2i5IJUljMpvguQR4VpJbknwyyctm2fdK4AvA2YwET+cZVXUY8F6G4fSRqtoH2C/J\nfkmeCfwR8CtVdTBwXbfslHuq6uCqOmuqIcky4Ezgt6tqf+CVwIPAXcAru36OAT4xy/olSYtgo0Nt\nVfVAkgOBlwJHAGcmeV9VnbGhdZLsCjy3qr7Rzf80yT5VdXO3yBe7n2uBO0fabwKeDfwCsA9wRYbf\n6lwGfH1kE1+YYbPPA75fVau7un/cbXsb4M+T7A88Auy14Xd78sj0ZPeSJE0ZDAYMBoNN6mNWdy7o\nbtt8OXB5krXAW4ENBg/wJmDnJN8BAuzI8Kjnv3e/X9/9fHRkemr+Kd3PS6rq2A30/8AG2mf6EtOJ\nwLqq2i/J1gyPgjbg5A3/SpLE5OTkEx7ZsGrVqjn3sdGhtiQrkjx3pGl/4P9uZLWVwK9W1Z5V9Rzg\nYH52uO2xTczQdhVweJJf7GrYLsmTHKkAcCuwW5KDunV26IJmJ+DObpm3AltvpB9J0iKazTmeHYDP\ndZdT3wDsTXdo0F3K/J9GF06yHHhWVV091dZd0XZfdxn29Ps+1PTpqroHeBvwt0luZDjM9rwZlh9d\n5yHgaIbDajcwPDf1VOA04G1JrgdWsOGjJUlSA96rreO92iT1l/dqkyRp3gweSVJTBo8kqSmDR5LU\nlMEjSWrKR18/gY++ltQ/ExPLx13CgjJ4RvT1ckVJ2pw41CZJasrgkSQ1ZfBIkpoyeCRJTRk8kqSm\nDB5JUlMGjySpKYNHktSUwSNJasrgkSQ1ZfBIkpoyeCRJTRk8kqSmDB5JUlMGjySpKYNHktSUD4Ib\nkfgEUkmLa2JiOevW3T7uMsYqPnVzKEmB+0LSYstm9bTjJFTVnD61O9QmSWrK4JEkNWXwSJKaWtTg\nSbJ7kvOTfDvJPyX5WJJFv6Ahyc8nOWuxtyNJmrvFPuI5Fzi3qlYAK4AdgQ8t8japqjur6k2LvR1J\n0twtWvAkOQJ4sKrOAKjhZRwnAscneVqS/5lkbZIbkryzW+fAJIMk1yT5cpKJrv3tSa5Ocn2Ss5Ns\n27WfnuTUJFck+eckR3Xty5OsHZm+PMm13evQxXrPkqSNW8wjnn2B60Ybqup+4A7gHcCzgP2qan/g\nr7shuE8A/6WqDgFO5/Gjo3Oq6kVVdQBwC/AbI93uVlWHA68FThndXPfzbuCVVXUwcEy3DUnSmIzr\nC6QvB07rjoKoqvuS7Au8ALg0w29ybgV8v1t+vyQfBJ4BbA9cPNLX+V0f30qy6wzbWgb87yT7A48A\ne224rJNHpie7lyRpymAwYDAYbFIfixk8NwNvGG1IsiPDI53bZlg+wDe7o5fpTgdeV1XfTHIcw+Ca\nsn5aH9OdCKyrqv2SbA08uOGST97wryRJTE5OMjk5+dj8qlWr5tzHog21VdVXgacl+XWA7j/9jzIM\nkYuB3+zaSLIzcCvwc1PnYJI8Jck+XXc7AOuSLAOOfZLNzhQ8OwF3dtNvBbbepDcmSdoki31V238G\n3pTk2wzPzTwIvB/4DPBdYE2S64GVVfUQwyOkU5LcAFwPHNb18wHgauAfgW+N9D/9vhMz3YfiNOBt\n3XZWAA8sxBuTJM2P92rreK82SW14rzbvXCBJasrgkSQ1ZfBIkpoyeCRJTRk8kqSmfPT1E/joa0mL\na2Ji+bhLGDuDZ8TmdImjJPWVQ22SpKYMHklSUwaPJKkpg0eS1JTBI0lqyuCRJDVl8EiSmjJ4JElN\nGTySpKYMHklSUwaPJKkpg0eS1JTBI0lqyuCRJDVl8EiSmjJ4JElN+SC4EYlPIJXUPxMTy1m37vZx\nl7Fg4lM3h5IUuC8k9VF6+4TkJFTVnD61O9QmSWrK4JEkNWXwSJKa2mjwJHk0yZ+OzP+3JB+YTedJ\nTkjyYJIdN6XIjWzjtUl+b7H6lyQtrNkc8awHjkqyyzz6Pwa4FDhqHutuVJKtq+qLVfWRxehfkrTw\nZhM8DwOfBt47l46T7AksA/4EePNI+3FJzktySZLvJHlXdxS1OsnXkzxjav0kX05yTZJ/SLKiaz89\nyaeSXAmc0vX3ie53uyY5N8kNSa5PcmjXfl7Xz9okb5/L+5AkLazZBE8BnwSOneOQ2THAWVX1DeAX\nk/zcyO/2BY4EXsQwmH5UVQcCVwFv7Zb5NPCuqjoE+F3gUyPr715Vh1XV74zUCPBxYFBV+wMHAjd1\n7cd3/RwCvCfJznN4H5KkBTSrL5BW1Y+TfA54D/DgLPteCby+mz4feCNwWjd/WVX9BPhJknuBL3Xt\na4EXJtkeeAlwdh7/Vueykb7P3sA2jwDe0tVcwP1d+wlJjuym9wD2Aq6e5fuQJC2gudy54FRgNfDZ\njS2Y5AUM/3P/Spcb2wC38XjwrB9ZvEbmH+1q2gq4tzsKmskDG2j/mW9YJXk5w0B6cVWtT3IZsO3M\nq588Mj3ZvSRJUwaDAYPBYJP6mE3wBKCq7k1yFvB24DMbWWclcFJVnfJYJ8m/JPmF2RRVVfcnuS3J\nG6rq77r196uqNRtZ9avAbwGnJtkK2AHYiWGIrU/yfODQDa9+8mzKk6Qt1uTkJJOTk4/Nr1q1as59\nzPYcz5SPAs+causuZT55hnWOBs6b1nYew/M+049KNnQfiF8HfqO7UOCbwOs2sjzACcArkqwBrgX2\nBi4CliW5CfgQcOWTrC9JWmTeq63jvdok9Zf3apMkad4MHklSUwaPJKkpg0eS1JTBI0lqykdfP4GP\nvpbUPxMTy8ddwoIyeEb09XJFSdqcONQmSWrK4JEkNWXwSJKaMngkSU0ZPJKkpgweSVJTBo8kqSmD\nR5LUlMEjSWrK4JEkNWXwSJKaMngkSU0ZPJKkpgweSVJTBo8kqSmDR5LUlMEjSWrKJ5COSHz0taQt\nw8TEctatu30s246Pex5KUuC+kLSlCAvx/38SqmpOn9odapMkNWXwSJKaan6OJ8kjwI1AGI5tnVlV\nH2ldhyRpPJqf40nyo6p6+jzX3bqqHlnomrq+PccjaQuyZZ3jmbHAJLcl2aWbPijJZd30SUnOSPJ/\ngDOSPDXJZ5OsSXJdksluueOSnJ/ksiS3JvnASN/HJvlGktVJPhUvX5OksRnH5dRPS7Kax4faPlxV\nZ/Ozhxuj83sDh1fVT5O8F3i0qvZL8jzgkiR7dcsdAuwL/BtwTZIvAT8BjgZeUlWPJPkkcCzwV4v1\nBiVJGzaO4PlJVR04Q/uTHYVcWFU/7aZ/Gfg4QFXdmuR2YEX3u0ur6j6AJOd0yz4CHMQwiAJsC9y1\nye9CkjQvffoC6cM8PvS37bTfPfAk640GVk1rn5r/y6r6w42XcPLI9GT3kiRNGQwGDAaDTepjHBcX\n3F9VO87Qfgnw0aq6OMmfAftX1RFJTgLur6o/65Y7Edinqt6RZAVwMcMjnjcDfwK8AFgPXAUcDzwI\nnA/8clX9IMnOwI5V9d1p2/fiAklbkPFdXDCOI55tp53juaiq3g/8MfCZJD8EBk+y/mnAp5KsAR4C\njquqh7rrBa4GzgV2Bz5fVasBkvwRw3NBWwE/Bd4JfHemziVJi2uzuWVOkuOAg6rq3fNc3yMeSVuQ\nLetyaknSFmyzOeLZVB7xSNqyeMQjSdpCGDySpKYMHklSU336AmkPeAs3SVuGiYnlY9u2wTPCCy0k\nafE51CZJasrgkSQ1ZfBIkpoyeCRJTRk8kqSmDB5JUlMGjySpKYNHktSUwSNJasrgkSQ1ZfBIkpoy\neCRJTRk8kqSmDB5JUlMGjySpKYNHktSUwSNJasonkI5IfPS1pH6ZmFjOunW3j7uMBRUf9zyUpMB9\nIalvQp//n05CVc3pU7tDbZKkpgweSVJTBo8kqaklFTxJjkzyaJIVG1nuS0me3qouSdLsLamLC5Kc\nCWwHXFdVqxa4by8ukNRDXlwwNkm2B14MvBM4pmvbLck/JFmdZE2Sw7v225Ls0k2fl+SaJGuTvH1s\nb0CSBCyt7/G8Hri4qu5IcneSA4BXABdV1Ycz/BLOdt2yox8Pjq+q+5JsC1yT5Jyqurdx7ZKkzlIK\nnpXAx7rps4E3AxcApydZBlxQVTd2vx897DshyZHd9B7AXsDVM2/i5JHpye4lSZoyGAwYDAab1MeS\nOMeTZGfge8DdDI9mtgaqqp6dZDfgNcC7gI9W1V8luQ04CHgh8EHgVVW1PsllwElVdfkM2/Acj6Qe\n8hzPuLwROKOqnlNVe1bVcuC2JC8D7q6qzwB/ARw4bb2dgHu70Hk+cGjbsiVJ0y2VobajgVOmtZ0L\nnA48kORh4H7gLd3vpj4eXAT8ZpKbgFuBKxvUKkl6EktiqK0Fh9ok9ZNDbZIkbRKDR5LUlMEjSWrK\n4JEkNbVUrmprxCeQSuqXiYnl4y5hwRk8I/p85YgkbS4capMkNWXwSJKaMngkSU0ZPJKkpgweSVJT\nBo8kqSmDR5LUlMEjSWrK4JEkNWXwSJKaMngkSU0ZPJKkpgweSVJTBo8kqSmDR5LUlMEjSWrK4JEk\nNeUTSEckPvpaWkwTE8tZt+72cZehMYuPex5KUuC+kBZXfMT8ZiYJVTWnT+0OtUmSmjJ4JElNGTyS\npKZ6FTxJjkzyaJIVI21/mmRtklNmWP61SX6vbZWSpE3Rq4sLkpwJbAdcV1Wrurb7gJ1rWqFJtq6q\nRxZw215cIC06Ly7Y3Mzn4oLeBE+S7YFvAi8DLqmqvZNcALwGWAN8GHg18G/A/sAVwFrg4Kr67SS7\nAv8L2JNhgvzXqroqyXnAHsC2wKlV9Rcb2L7BIy06g2dzM5/g6dP3eF4PXFxVdyS5O8kBVfX6JD+q\nqgMBkrwa2L2qDuvmj+PxtPg4MKiqozL8Qs4OXfvxVXVfkm2Ba5KcU1X3tn1rkqQpfQqelcDHuumz\nu/nrgelJevYG1j8CeAtANyx3f9d+QpIju+k9gL2Aq2fu4uSR6cnuJUmaMhgMGAwGm9RHL4bakuwM\nfA+4m+ERzNYM8+PZSe6vqh275U4HvlhV53bzxwEHVdW7k9wF7FFVD430+3Lgg8Crqmp9ksuAk6rq\n8hlqcKhNWnQOtW1ulvIXSN8InFFVz6mqPatqOXBbkpfOoY+vAr8FkGSrJE8HdgLu7ULn+cChC165\nJGlO+hI8RwPnTWs7h+Fw26MjbU/2UekE4BVJ1gDXAnsDFwHLktwEfAi4csEqliTNSy+G2vrAoTap\nBYfaNjdLeahNkrSFMHgkSU0ZPJKkpgweSVJTBo8kqak+3bmgB3z0tbSYJiaWj7sE9YDBM8LLPCVp\n8TnUJklqyuCRJDVl8EiSmjJ4lphNvR15K9a5sKxz4SyFGmHp1DkfBs8Ss1T+MlrnwrLOhbMUaoSl\nU+d8GDySpKYMHklSUz4WoTN8LIIkaa7m+lgEg0eS1JRDbZKkpgweSVJTBg+Q5NeS3JLk20l+f9z1\nTEnymSR3JVkz0rZzkkuS3Jrk4iQ7jbnGPZJ8LclNSdYmeXdP63xqkm8kub6r9UN9rHNKkq2SrE5y\nYTffuzqT3J7kxm6fXt3jOndKcnaSb3V/9i/uW51JVnT7cXX384dJ3t3DOv+g24drkvx1km3mU+MW\nHzxJtgL+HPhVYF9gZZLnj7eqx5zOsK5R7wO+UlXPA74G/EHzqp7oYeC9VbUvcBjwzm7/9arOqloP\nvKKqDgD2A45Icjg9q3PEe4CbR+b7WOejwGRVHVBVL+ra+ljnqcDfV9XewC8Bt9CzOqvq291+PBA4\nCHgAOI8e1ZlkOfAO4ICq2o/hTaZXzqvGqtqiX8ChwJdH5t8H/P646xqpZzmwZmT+FmCim94NuGXc\nNU6r93zglX2uE9gOuBrYp491AnsAlwKTwIV9/XMHbgOeOa2tV3UCTwf+ZYb2XtU5rbb/APxj3+oE\ndu7q2bkLnQvn+299iz/iAXYH7hiZ/17X1le7VtVdAFW1Dth1zPU8Jsmzgf2Bqxj+RexVnd3w1fXA\nOmBQVTfTwzqBjwG/C4xectrHOgu4NMk1Sd7etfWtzucA9yQ5vRvG+nSS7ehfnaOOBv6mm+5NnVV1\nL/BR4LvA/wN+WFVfmU+NBs/S14vr4ZPsAPwd8J6q+jE/W9fY66yqR2s41LYH8NIkk/SsziSvAe6q\nqht48icTjn1/AofXcGjo1QyHWF9Kz/Ynw0/mBwKf7Gp9gOGoRt/qBCDJMuB1wNldU2/qTLIncCLD\nUZh/D2yf5NgZatpojQbPMLmfNTK/R9fWV3clmQBIshtw95jrIclTGIbO56vqgq65d3VOqaofAX8P\nHEz/6jwceF2S7wB/y/Bc1OeBdT2rk6q6s/v5A4ZDrC+if/vze8AdVXVtN38OwyDqW51T/iNwXVXd\n0833qc6DgSuq6l+r6hGG56BeMp8aDR64BnhukuVJtgGOYTh22RfhiZ98LwTe1k0fB1wwfYUx+Cxw\nc1WdOtLWqzqT/Lupq22SPA14FXA9Pauzqt5fVc+qqj0Z/l38WlW9BfgiPaozyXbdUS5Jtmd4XmIt\n/dufdwF3JFnRNf0KcBM9q3PESoYfOKb0qc5bgUOTbJskDPflzcynxnGfSOvDC/i1bqf+E/C+cdcz\nUtffAN8H1jMcVz2e4Ym9r3T1XgI8Y8w1Hg48AtzA8D/y1d3+3KVndb6wq+164Ebgd7r2XtU5reaX\n8/jFBb2qk+G5k6k/87VT/276VmdX0y8x/IB5A3AusFNP69wO+AGw40hbr+pkeO7xJmAN8Dlg2Xxq\n9JY5kqSmHGqTJDVl8EiSmjJ4JElNGTySpKYMHklSUwaPJKkpg0eS1JTBI0lq6v8DhwGsipKlFmoA\nAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# ax comes from the plotting\n", "ax = df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh')\n", "ax.set_ylabel(\"\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAEzCAYAAABEybVMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGSFJREFUeJzt3XuUZWV95vHvw0WRiwjOUGZA2mBo5ZIOVwGRUBIdZ3AE\nhjFCyygScdYYEgUyZhKTETqzomKiLjRC4hJbUROk5SI6CaCRE0YEuTTYDSjeQHFiQ1jhJhAu3b/5\n4+yGk6K6u6q7q8+per+ftc6qvd/a+93v+a0D/dS7z947VYUkSZLmts2GPQBJkiTNPEOfJElSAwx9\nkiRJDTD0SZIkNcDQJ0mS1ABDnyRJUgO2GPYARkUS710jSZJmjarKdLZ3pm9AVfma8DrjjDOGPoZR\nfFkX62JNrIt1sS7DfK0PQ58kSVIDDH2SJEkNMPRprcbHx4c9hJFkXSZnXZ7NmkzOukzOukzOumwc\nWd/zwnNNkrIWkiRpNkhCeSGHJEmSJjL0SZIkNcDQJ0mS1ABDnyRJUgMMfZIkSQ3wMWwDkmldBCNJ\nkoZkbGweK1bcNexhzCresqXTf/autZAkaXbIej+ObC7wli2SJEmalKFPkiSpAYY+SZKkBhj6JEmS\nGmDokyRJasCUQl+SP0pya5LvJFma5MAp7ndpkms3bIjrPMaiJEfM5DEkSZJmu3Xepy/JwcCRwD5V\n9VSSHYHnTGG/7YG9gQeTvKSq7trQwU5yjM2q6oyN3a8kSdJcM5WZvl8C7quqpwCq6p+rasUU9jsW\nuAy4EFi4ujHJ4iTnJLk2yQ+TjCf5TJLbk3x6YLvXJvlWkhuTfDHJ1l37nUk+mORG4I1df8d2vzsw\nyTVJbklyXZJtksxLcnXXz41diJUkSWrKVELflcCuSb6X5BNJfn2KfS8EvggsYSD0dV5QVYcAp9MP\nhh+qqj2BBUkWJHkh8MfAb1TVAcBN3bar3VdVB1TVhasbkmwJXAD8blXtA7wGeAy4B3hN18/xwMen\nOH5JkqQ5Y52nd6vqkST7AYcBRwAXJPmDqjp/Tfsk2Qn4lar6drf+RJI9q+r2bpOvdD+XAz8faL8N\neAnwYmBP4Jr0n422JfCtgUN8cZLDvgz4x6pa2o37F92xnwP8RZJ9gJXA7ut6z5IkSXPNlJ69W/3n\nnFwNXJ1kOfBWYI2hD3gTsEOSHwMBtqM/2/e/ut8/3v1cNbC8en2L7ueVVXXCGvp/ZA3tkz2O5DRg\nRVUtSLI5/dm/NThzYHm8e0mSJA1Xr9ej1+ttUB9TuZBjPrCqqn7YNe0D/GQduy0EXldV13d9vAT4\nOs+Evn91iEnarqM/O/fSqvpR932+navqB2s55h3Ai5LsX1U3JdmWfsDbHri72+atwOZr7uLMtXQv\nSZI0HOPj44yPjz+9vmjRomn3MZXv9G0LfLa7ZcstwB506ai7Xcp/Gtw4yTxg19WBD6C7cveB7lYv\nE5+OXBOXq+o+4G3A3yT5Dv1Tuy+bZPvBfZ4EjqMfFm+h/13E5wLnAG9LcjMwnzXPEkqSJM1Z6Z+5\nVZJ6dp6UJEmjKbScYZJQVZOdLV0jn8ghSZLUAEOfJElSAwx9kiRJDTD0SZIkNcDQJ0mS1ABDnyRJ\nUgMMfZIkSQ0w9EmSJDVgSs/ebce07nEoSZKGZGxs3rCHMOsY+ga0fGdvSZI0t3l6V5IkqQGGPkmS\npAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaYOiTJElqgKFPkiSpAYY+SZKkBhj6JEmS\nGmDokyRJaoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaYOiTJElq\ngKFPkiSpAVsMewCjJMmwhyBJ0pwxNjaPFSvuGvYw1ElVDXsMIyFJgbWQJGnjCeaMmZGEqprWbJWn\ndyVJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaMKOhL8nOSS5N8v0kP0jy0SQzfpuYJL+U5MKZ\nPo4kSdJsMdMzfRcDF1fVfGA+sB3w/hk+JlX186p600wfR5IkabaYsdCX5Ajgsao6H6D6N+o5DTgp\nyfOS/HmS5UluSXJKt89+SXpJbkjyd0nGuvaTk1yf5OYkS5Js1bUvTnJ2kmuS/DDJsV37vCTLB5av\nTnJj9zp4pt6zJEnSqJrJmb69gJsGG6rqYeBu4B3ArsCCqtoH+EJ32vfjwH+pqgOBxTwzK3hRVb2i\nqvYFvge8faDbF1XVocAbgLMGD9f9vBd4TVUdABzfHUOSJKkpw3oM2+HAOd3sH1X1QJK9gL2Br6X/\nPLTNgH/stl+Q5H8DLwC2Aa4Y6OvSro/vJtlpkmNtCfxVkn2AlcDuM/GGJEmSRtlMhr7bgTcONiTZ\njv4M352TbB/g1m7WbqLFwFFVdWuSE+mHxtUen9DHRKcBK6pqQZLNgcfWPOQzB5bHu5ckSdJw9Xo9\ner3eBvUxo8/eTXI98LGq+nwXuM4FHgR+ALwWOL6qVibZAfgFcBvw1qq6rjvdO7+qbk9yL7Bnt+//\nAX5WVb+VZDHwlaq6uDvew1W1XZJ5XfuCJB8B7q6qjyY5CfhUVW0+yVh99q4kSRuVz96dKaP47N3/\nDLwpyffpfxfvMeC9wHnAT4FlSW4GFlbVk/RnBs9KcgtwM3BI18/7gOuB/wt8d6D/iZ+kyT5Z5wBv\n644zH3hkY7wxSZKk2WRGZ/pmE2f6JEna2JzpmymjONMnSZKkEWDokyRJaoChT5IkqQGGPkmSpAYY\n+iRJkhpg6JMkSWqAoU+SJKkBw3r27oia1u1uJEnSWoyNzRv2EDTA0DfAG0hKkqS5ytO7kiRJDTD0\nSZIkNcDQJ0mS1ABDnyRJUgMMfZIkSQ0w9EmSJDXA0CdJktQAQ58kSVIDDH2SJEkNMPRJkiQ1wNAn\nSZLUAEOfJElSAwx9kiRJDTD0SZIkNcDQJ0mS1ABDnyRJUgMMfZIkSQ0w9EmSJDXA0CdJktQAQ58k\nSVIDDH2SJEkN2GLYAxglSYY9BEmStA5jY/NYseKuYQ9j1klVDXsMIyFJgbWQJGn0hdbzSxKqalqz\nVZ7elSRJaoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWrAOkNfklVJ/mxg/feSvG8qnSc5NcljSbbb\nkEGu4xhvSPL7M9W/JEnSXDCVmb7HgWOT7Lge/R8PfA04dj32Xackm1fVV6rqQzPRvyRJ0lwxldD3\nFPBJ4PTpdJxkN2BL4E+BNw+0n5jkkiRXJvlxkt/pZg+XJvlWkhes3j/J3yW5Ick/JJnftS9Ocm6S\na4Gzuv4+3v1upyQXJ7klyc1JDu7aL+n6WZ7k5Om8D0mSpLlgKqGvgE8AJ0zzNO3xwIVV9W3gpUn+\n7cDv9gKOAV5BPxQ+VFX7AdcBb+22+STwO1V1IPAe4NyB/XeuqkOq6n8MjBHgY0CvqvYB9gNu69pP\n6vo5EHh3kh2m8T4kSZJmvSk9hq2qfpHks8C7gcem2PdC4Ohu+VLgN4FzuvWrqupR4NEk9wNf7dqX\nA7+aZBvglcCSPPNstC0H+l6yhmMeAbylG3MBD3ftpyY5plveBdgduH6K70OSJGnWm86zd88GlgKf\nXteGSfamH6y+3mW25wB38kzoe3xg8xpYX9WNaTPg/m72bzKPrKH9Wc9kSXI4/TB4UFU9nuQqYKvJ\ndz9zYHm8e0mSJA1Xr9ej1+ttUB9TCX0BqKr7k1wInAyct459FgJnVNVZT3eS/CjJi6cyqKp6OMmd\nSd5YVV/q9l9QVcvWsevfA78NnJ1kM2BbYHv6AfLxJC8HDl7z7mdOZXiSJEmb1Pj4OOPj40+vL1q0\naNp9TPU7fat9GHjh6rbudilnTrLPccAlE9ouof89v4mzcWt6YvJ/Bd7eXZRxK3DUOrYHOBV4dZJl\nwI3AHsDlwJZJbgPeD1y7lv0lSZLmpPS/+qYktfY8KUmSRkNoPb8koaqy7i2f4RM5JEmSGmDokyRJ\naoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGTOfZuw2Y1j0OJUnSEIyNzRv2\nEGYlQ9+A1u/uLUmS5i5P70qSJDXA0CdJktQAQ58kSVIDDH2SJEkNMPRJkiQ1wNAnSZLUAEOfJElS\nAwx9kiRJDTD0SZIkNcDQJ0mS1ABDnyRJUgMMfZIkSQ0w9EmSJDXA0CdJktQAQ58kSVIDDH2SJEkN\nMPRJkiQ1wNAnSZLUAEOfJElSAwx9kiRJDTD0SZIkNWCLYQ9glCQZ9hAkSdIsMTY2jxUr7hr2MKYs\nVTXsMYyEJAXWQpIkTVUYVo5KQlVNa7bK07uSJEkNMPRJkiQ1wNAnSZLUAEOfJElSAwx9kiRJDdjk\nt2xJshL4DhD6l8teUFUf2tTjkCRJaskmv2VLkoeq6vnrue/mVbVyY4+p69tbtkiSpGnwli3rMukA\nk9yZZMduef8kV3XLZyQ5P8k3gfOTPDfJp5MsS3JTkvFuuxOTXJrkqiR3JHnfQN8nJPl2kqVJzo13\nYZYkSY0ZxhM5npdkKc+c3v1AVS3h2dNsg+t7AIdW1RNJTgdWVdWCJC8Drkyye7fdgcBewL8ANyT5\nKvAocBzwyqpameQTwAnA52fqDUqSJI2aYYS+R6tqv0na1zb7dllVPdEtvwr4GEBV3ZHkLmB+97uv\nVdUDAEku6rZdCexPPwQG2Aq4Z4PfhSRJ0iwySs/efYpnTjdvNeF3j6xlv8GwWBPaV69/pqr+aN1D\nOHNgebx7SZIkDVev16PX621QH8O4kOPhqtpukvYrgQ9X1RVJPgLsU1VHJDkDeLiqPtJtdxqwZ1W9\nI8l84Ar6M31vBv4U2Bt4HLgOOAl4DLgUeFVV/VOSHYDtquqnE47vhRySJGkaZteFHMOY6dtqwnf6\nLq+q9wJ/ApyX5EGgt5b9zwHOTbIMeBI4saqe7K7NuB64GNgZ+FxVLQVI8sf0v/u3GfAEcArw08k6\nlyRJmos2+UzfTElyIrB/Vb1rPfd3pk+SJE3D7Jrp84kckiRJDZgzM30bypk+SZI0Pc70SZIkacQY\n+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGjNJj2EbAtC6CkSRJDRsbmzfsIUyLoW+At6+RJElzlad3\nJUmSGmDokyRJaoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaYOiT\nJElqgKFPkiSpAYY+SZKkBhj6JEmSGmDokyRJaoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+S\nJKkBhj5JkqQGGPokSZIasMWwBzBKkgx7CJIkaS3GxuaxYsVdwx7GrJSqGvYYRkKSAmshSdJoC2aX\n/kRVVU1rtsrTu5IkSQ0w9EmSJDXA0CdJktQAQ58kSVIDDH2SJEkNmFWhL8kxSVYlmb+O7b6a5Pmb\nalySJEmjblbdsiXJBcDWwE1VtWgj9+0tWyRJGnnesgXm+C1bkmwDHAScAhzftb0oyT8kWZpkWZJD\nu/Y7k+zYLV+S5IYky5OcPLQ3IEmSNESz6YkcRwNXVNXdSe5Nsi/wauDyqvpA+o/T2LrbdvBPgJOq\n6oEkWwE3JLmoqu7fxGOXJEkaqlkz0wcsBC7slpcAbwauB34ryfuABVX1SPf7wenOU5PcAlwH7ALs\nvonGK0mSNDJmxUxfkh2AI4C9+9+9Y3Ogquo9SQ4DXg98JsmHq+rzA/sd3u13UFU9nuQqYKs1H+nM\ngeXx7iVJkjRcvV6PXq+3QX3Migs5kvw3YN+qeudA21XAGcA3q2pVklOAl1bV6UnuBPYHXgW8vaqO\nTvJy4GbgdVV19STH8EIOSZJGnhdywPpdyDErZvqA44CzJrRdDCwGHknyFPAw8Jbud6s/DZcD/z3J\nbcAdwLWbYKySJEkjZ1bM9G0KzvRJkjQbONMHc/yWLZIkSVp/hj5JkqQGGPokSZIaYOiTJElqgKFP\nkiSpAYY+SZKkBhj6JEmSGmDokyRJasBseSLHJjKtexxKkqRNbGxs3rCHMGsZ+gZ4h29JkjRXeXpX\nkiSpAYY+SZKkBhj6JEmSGmDokyRJaoChT5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5J\nkqQGGPokSZIaYOiTJElqgKFPkiSpAYY+SZKkBhj6JEmSGmDokyRJaoChT5IkqQGGPkmSpAYY+iRJ\nkhpg6JMkSWqAoU+SJKkBWwx7AKMkybCHIElah7GxeaxYcdewhyHNOqmqYY9hJCQpsBaSNPqC/3ap\ndUmoqmnNVnl6V5IkqQGGPkmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBIxX6khyTZFWS+QNtf5ZkeZKz\nJtn+DUl+f9OOUpIkafYZqVu2JLkA2Bq4qaoWdW0PADvUhIEm2byqVm7EY3vLFkmaFbxli7Q+t2wZ\nmdCXZBvgVuDXgSurao8kXwZeDywDPgAcCfwLsA9wDbAcOKCqfjfJTsBfArvRT2/vrKrrklwC7AJs\nBZxdVZ9aw/ENfZI0Kxj6pPUJfaP0RI6jgSuq6u4k9ybZt6qOTvJQVe0HkORIYOeqOqRbP5FnktrH\ngF5VHZv+ozW27dpPqqoHkmwF3JDkoqq6f9O+NUmSpOEape/0LQQu7JaXdOsAE1PskjXsfwRwLkD1\nPdy1n5rkFuA6+jN+u2+0EUuSJM0SIzHTl2QH+qFt7/5pVjanP4M32UUaj6yhm2fN9Sc5vOv3oKp6\nPMlV9E/zrsGZA8vj3UuSJGm4er0evV5vg/oYidAH/CZwflW9c3VDkquSHDaNPv4e+G3g7CSb0T+9\nuz1wfxf4Xg4cvPYuzpzmsCVJkmbe+Pg44+PjT68vWrRo2n2Myund44BLJrRdRP8U76qBtrV9c/dU\n4NVJlgE3AnsAlwNbJrkNeD9w7UYbsSRJ0iwyMlfvDptX70rSbOHVu9L6XL07KjN9kiRJmkGGPkmS\npAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaMCpP5BgR07rdjSRpCMbG5g17CNKsZOgb\n4M0+JUnSXOXpXUmSpAYY+iRJkhpg6JMkSWqAoU+SJKkBhj5JkqQGGPokSZIaYOjTWvV6vWEPYSRZ\nl8lZl2ezJpOzLpOzLpOzLhuHoU9r5X9ok7Muk7Muz2ZNJmddJmddJmddNg5DnyRJUgMMfZIkSQ2I\njx7rS2IhJEnSrFFVmc72hj5JkqQGeHpXkiSpAYY+SZKkBhj6gCT/Icn3knw/yf8c9niGJcl5Se5J\nsmygbYckVya5I8kVSbYf5hg3tSS7JPlGktuSLE/yrq699bo8N8m3k9zc1eb9XXvTdQFIslmSpUku\n69abrwlAkruSfKf7zFzftTVdmyTbJ1mS5Lvdf0cHWZPM7z4jS7ufDyZ5V+t1AUjyh93nZFmSLyR5\nznTr0nzoS7IZ8BfA64C9gIVJXj7cUQ3NYvp1GPQHwNer6mXAN4A/3OSjGq6ngNOrai/gEOCU7vPR\ndF2q6nHg1VW1L7AAOCLJoTRel867gdsH1q1J3ypgvKr2rapXdG2t1+Zs4G+rag/g14Dv0XhNqur7\n3WdkP2B/4BHgEhqvS5J5wDuAfatqAbAFsJBp1qX50Ae8AvhBVf2kqp4ELgCOHvKYhqKqvgncP6H5\naOCz3fJngWM26aCGrKpWVNUt3fIvgO8Cu9B4XQCq6tFu8bn0/19yP43XJckuwJHApwaam67JgPDs\nf3OarU2S5wOHVdVigKp6qqoepOGaTOI1wI+q6m6sy0PAE8A2SbYAngf8P6ZZF0Mf7AzcPbD+s65N\nfTtV1T3QD0DATkMez9AkeQmwD3AdMNZ6XbrTmDcDK4BeVd2Odfko8B5g8LYIrddktQK+luSGJCd3\nbS3X5peB+5Is7k5lfjLJ1rRdk4mOA/66W266LlV1P/Bh4Kf0w96DVfV1plkXQ5+mq8l7/CTZFvgS\n8O5uxm9iHZqrS1Wt6k7v7gIclmSchuuS5PXAPd3M8NrundVMTSY4tDtldyT9r0kcRsOfF/qn5/YD\nPtHV5RH6p+parsnTkmwJHAUs6ZqarkuS3YDTgHnAv6M/43cC06yLoa+fmHcdWN+la1PfPUnGAJK8\nCLh3yOPZ5Lqp9C8Bn6uqL3fNzddltap6CPhb4ADarsuhwFFJfgz8Df3vOX4OWNFwTZ5WVT/vfv4T\ncCn9r9a0/Hn5GXB3Vd3YrV9EPwS2XJNB/xG4qaru69Zbr8sBwDVV9c9VtZL+9xxfyTTrYuiDG4Bf\nSTIvyXOA44HLhjymYQr/epbiMuBt3fKJwJcn7tCATwO3V9XZA21N1yXJv1l9lViS5wGvBW6m4bpU\n1Xurateq2o3+/0e+UVVvAb5CozVZLcnW3Ww5SbYB/j2wnLY/L/cAdyeZ3zX9BnAbDddkgoX0/3ha\nrfW63AEcnGSrJKH/ebmdadbFJ3LQv2UL/auoNgPOq6oPDnlIQ5Hkr4Fx4IXAPcAZ9P8iXwK8GPgJ\n8KaqemBYY9zUuitSr6b/D1R1r/cC1wMX0m5dfpX+l4ZXfzn/c1X150l2pOG6rJbkcOD3quooawJJ\nfpn+zETRP635har6YOu1SfJr9C/62RL4MXASsDkN1wT6fyTQf++7VdXDXVvTnxWAJO+hH/BW0v8j\n+2RgO6ZRF0OfJElSAzy9K0mS1ABDnyRJUgMMfZIkSQ0w9EmSJDXA0CdJktQAQ58kSVIDDH2SJEkN\nMPRJkiQ14P8DcaWs9LVAZccAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(10,5))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax)\n", "ax.set_ylabel(\"\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADDCAYAAAA/djDGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGhZJREFUeJzt3X+UXWV97/H3JzH8/pFgZaiiM1CJIogxiEapusVy7Q/L\n5VIRAlWwpWu5xCrV64/aW2PLvVaoXpe0wKqrmAG1Kqn8XlWhkA2KaIJJSAqCbUlQLBnLNcjPAsL3\n/nGegcMwSWbm7JNnP2c+r7X2mv3s2Wefz/dk4Dn7efY+RxGBmZmZNWNO7gBmZmaDxB2rmZlZg9yx\nmpmZNcgdq5mZWYPcsZqZmTXoObkDtIUkXx5tZmbPEhGazv4+Y+0SEUUvy5Yty57BNbiGNiyl53cN\n7Vlmwh2rmZlZg9yxDpBNmzbljtAz19AOpddQen5wDSVzxzpAFi1alDtCz1xDO5ReQ+n5wTWUTDMd\nQx40ksKvhZmZdZNE+OIlMzOzfHy7TRdpWm9KzMxsGoaGhtm8eVPuGH3nM9ZniMKXlS3I4BpcQxuW\n0vMPZg1jY3cxG3iONel8QIRfCzOz/tGM7w3NpW9zrJL+TNK/SLpF0hpJR0zxcZdJumk6gaZL0l9I\nOqqfz2FmZjZV2+1YJS0BfhtYFBGvAH4D+MkUHrc3cCiwk6SR3mJu9TnmRMSyiLiuH8cvT507QAPq\n3AEaUOcO0IA6d4Ae1bkDNKDOHaABde4AWUzljPVXgXsj4pcAEfHziNg8hccdB1wBXAwsHd8oabmk\n8yTdJOnfJFWSRiXdJukLXfsdLem7km6W9DVJu6XtGyV9StLNwNvS8Y5LvztC0o2S1kn6nqTdJQ1L\nuiEd5+b0RsHMzKwvtjvHKml34DvArsC1wNci4obtHli6Gvhz4D+ByyLisLR9ObBzRJwk6RjgS8CS\niLgtdZZ/APwUuAT4zYh4RNKHgZ0i4n9L2gicGxGf7jrelWm5HTg+ItZI2gN4GNgJeDIiHpP0YuAr\nEfGsoWzPsZqZ9dvsmGPd7u02EfGQpMXA64GjgK9K+mhEXLSNIPsCL46I76f2Y5JeFhG3pV2uTD83\nAPd0bb8VGAFeCLwMuFGde2DmAd/teoqvTfK0LwH+IyLWpNwPpufeCfhbSYuAJ4CDtl7tqenpAeYD\ni4Aqtev002233Xbb7Zm1U6vutKuqal27rmtGR0cBGBkZYUZm8En/vwdcvp193gtsAe4ENgL3Amem\n3y0Hjkvrw8D6rsctpzOE/Fbgy1s59kZgn0kecyjwnUn2XwacndbnAo9t5bgBUfiysgUZXINraMNS\nev5BrYEoTcrMdJapXLy0MA2hjlsEbO9mpKXAWyLiwIg4AHgVXfOsE59ikm3fA46U9Gspw26StnGm\nCcAdwH6SDk+P2UPSXGBv4J60zzvpdK5mZmZ9MZWLl/YALky326wDDgY+AU/d6vLW7p0lDQMviohV\n49siYhNwX7pNJyYcPyauR8S9dMZlvyLpFjrDwC+ZZP/uxzwOnEBn2HcdcDWwM3AecKqktcBC4KEp\n1FyoKneABlS5AzSgyh2gAVXuAD2qcgdoQJU7QAOq3AGy8AdEJL54ycys32bHxUv+SMOBUucO0IA6\nd4AG1LkDNKDOHaBHde4ADahzB2hAnTtAFu5YzczMGuRvt3kGf7uNmVm/DA0N546wQ7hj7VLa2L+Z\nmbWPh4IHyPhNziVzDe1Qeg2l5wfXUDJ3rGZmZg3y7TaJpPBrYWZm3Xy7jZmZWWbuWAfIIMxnuIZ2\nKL2G0vODayiZO1YzM7MGeY418RyrmZlN5DlWMzOzzNyxDpBBmM9wDe1Qeg2l5wfXUDJ3rGZmZg3y\nHGviOVYzM5vIc6xmZmaZ+UP4u0j+dhszs60ZGhpm8+ZNU96/rmuqqupbnrbyGeszROHLyhZkcA2u\noQ1L6fnbWcPY2F3Y9nmONZEUnT8eMzObnGbd12u2bo5V0gskXSbpR5L+VdJnJfV9+FnSr0q6uN/P\nY2ZmNlG/h4IvAS6JiIXAQmBP4JN9fk4i4p6IeHu/n6d96twBGlDnDtCAOneABtS5A/Sozh2gAXXu\nAD3zfawNk3QU8EhEXASQ7mX5E+BdknaV9GlJGyStk3R6esxiSbWk1ZK+IWkobT9N0ipJayWtkLRL\n2r5c0uck3Sjp3yQdl7YPS9rQtX6DpJvTsqRfNZuZmfVtjlXSHwMjEfHBCdvXAKPArwMnRERImg88\nCFwPHBMR/0/S24G3RMQfSloQEVvS488ENkfEuZKWA7tFxAmSDgauiIiDJA0DV0bEYZJ2BZ6IiMck\nvRj4SkQcMUlez7GamW2T51inItftNm8Ezhv/RIaIuE/SIcChwDXq3PcyB/iPtP9hqUOdD+wOfKvr\nWJelY/xQ0r6TPNc84O8kLQKeAA7aeqxTgZG0Ph9YBFSpXaefbrvtttuztZ1aaYh3/FaaQWrXdc3o\n6CgAIyMjzEhE9GUB3gxcP2HbnsC9wNeBN0/43aHAjVs51p3AoWn9FOALaX05cFzXfvenn8PA+rS+\nDDg7rc8FHtvKcwRE4cvKFmRwDa6hDUvp+dtaAzEdK1eunNb+bZRqZjpL3+ZYI+JaYFdJvw8gaS7w\nmdQZfgt4d9qGpAXAHcDzxudAJT1H0svS4fYANkuaB5y8jaed7HR9b+CetP5OOp2rmZlZX/T7quD/\nAbxd0o+A24FHgI8BFwA/BtZLWgssjYjHgbcBZ0laB6wFXpuO83FgFfBt4Iddx48JzzexDXAecGp6\nnoXAQ00U1k5V7gANqHIHaECVO0ADqtwBelTlDtCAKneAns3GT10Cf0DEU3zxkpnZ9vjipanwRxoO\nlDp3gAbUuQM0oM4doAF17gA9qnMHaECdO0DPfB+rmZmZ9cxDwUlnKNjMzLZmut9uMwhKuo+1lfwm\nw8zMeuWh4AEyCPMZrqEdSq+h9PzgGkrmjtXMzKxBnmNNJIVfCzMz6+bbbczMzDJzxzpABmE+wzW0\nQ+k1lJ4fXEPJ3LGamZk1yHOsiedYzcxsIs+xmpmZZeaOdYAMwnyGa2iH0msoPT+4hpK5YzUzM2uQ\n51gTz7GamdlEnmM1MzPLzB/C30Wa1psSMzObotn0zTg+Y32GKHxZ2YIMrsE1tGEpPf/g1TA2dhez\nhedYk873sfq1MDPrDxX51Zx9mWOV9KSkv+5qf1DSx6cY6AxJj0jaczqhpkPS70r6cL+Ob2ZmNh1T\nGQp+FDhO0j4zOP6JwDXAcTN47HZJmhsRV0bE2f04fnnq3AEaUOcO0IA6d4AG1LkD9KjOHaABde4A\nDahzB8hiKh3rL4HPAx+YzoElHQjMA/4PcFLX9lMkXSrpakl3SnpvOgteI+m7kuaPP17SNyStlnS9\npIVp+3JJ50u6CTgrHe9v0u/2lXSJpHWS1kpakrZfmo6zQdJp06nDzMxsOqbSsQZwLnDyNId0TwQu\njojvA78m6XldvzsEOBZ4NZ2O9/6IWAx8D3hn2ufzwHsj4gjgQ8D5XY9/QUS8NiL+Z1dGgHOAOiIW\nAYuBW9P2d6XjHAG8X9KCadRRkCp3gAZUuQM0oModoAFV7gA9qnIHaECVO0ADqtwBspjS7TYR8aCk\nC4H3A49M8dhLgf+e1i8DjgfOS+2VEfEw8LCkLcBVafsG4OWSdgdeB6zQ0/fAzOs69oqtPOdRwDtS\n5gAeSNvPkHRsWt8fOAhY9eyHnwqMpPX5wCKe/sOo00+33Xbbbbdn1k6t9FGHVVW1rl3XNaOjowCM\njIwwIxGxzYXO2STAAmAj8OfAx7fzmEOB/wLuTMvdwLfT704BzunadyOwT/fvgD2Bn27l2MuB47ra\nTx0PGAPmTdj/jcANwM6pvRJ4wyTHDYjCl5UtyOAaXEMbltLzD2INRIlSbqazTGUoWKkD3gJcDExl\njnIpsCwiDkzL/sDzJb1wCo8lIh4ANkp621MhpMOm8NBrgfek/edI2gvYG9gSEY9KeimwZCoZzMzM\nZmKqc6zjPgM8d3xbutXlE5M85gTg0gnbLqUz7xoTtk9sj/t94A/ThUj/Ahyznf0BzgDeJGk9cDNw\nMPBNYJ6kW4FPAjdt4/GFq3IHaECVO0ADqtwBGlDlDtCjKneABlS5AzSgyh0gC39AROIPiDAz6yd/\nQIQVqc4doAF17gANqHMHaECdO0CP6twBGlDnDtCAOneALNyxmpmZNcjfbvMM/nYbM7N+GBoazh1h\nh3HH2qXE8X8zM2sXDwUPkPGbnEvmGtqh9BpKzw+uoWTuWM3MzBrk220SSeHXwszMuvl2GzMzs8zc\nsQ6QQZjPcA3tUHoNpecH11Ayd6xmZmYN8hxr4jlWMzObyHOsZmZmmbljHSCDMJ/hGtqh9BpKzw+u\noWTuWM3MzBrkOdbEc6xmZjaR51jNzMwy84fwd5H87TZmZiUaGhpm8+ZNuWMAPmOdIApfVrYgg2tw\nDW1YSs/vGqa7jI3dRVt4jjWRFJ1/IDMzK4/68tWfM5lj3eFDwZKeAG6h863iAXw1Is7e0TnMzMz6\nIcdQ8EMRsTgiXpl+TrlTlTS3n8HKV+cO0IA6d4AG1LkDNKDOHaBHde4ADahzB2hAnTtAFjk61klP\nqSVtlLRPWj9c0sq0vkzSRZK+A1wkaWdJX5C0XtIPJFVpv1MkXSZppaQ7JH2869gnS/q+pDWSzpev\nUjIzsz7JcVXwrpLW8PRQ8F9FxAqePcHZ3T4YODIiHpP0AeDJiDhM0kuAqyUdlPY7AjgE+C9gtaSr\ngIeBE4DXRcQTks4FTga+1K8C86lyB2hAlTtAA6rcARpQ5Q7Qoyp3gAZUuQM0oModIIscHevDEbF4\nku3bOou8IiIeS+u/DpwDEBF3SNoELEy/uyYi7gOQ9PW07xPA4XQ6WgG7AGOTP82pwEhanw8s4uk/\njDr9dNttt912u53t1EofpVhV1bTbdV0zOjoKwMjICDOxw68KlnR/ROw1yfZ/BV4bEfdKOhI4MyKO\nkrQMeCAi/m/a7xLgnIioU/sG4D10Os8qIt6Vtv8FcC/wJPD8iPiz7eQagKuCa8p/h1jjGtqgpuwa\nasrOD65hutpzVXBr5liBjXQ6R4Df28bjv01nKBdJC4EXAnek3x0tab6kXYFjgRuB64C3SXpeeswC\nSS/qrQQzM7PJ5RgK3mXCHOs3I+JjwF8CF0j6Bdu+lOw84HxJ64HHgVMi4vF0PdIq4BLgBcAXI2IN\ngKT/RWcudg7wGHA68ON+FJdXlTtAA6rcARpQ5Q7QgCp3gB5VuQM0oModoAFV7gBZDMwHREg6BTg8\nIt43w8cPwFCwmdlsNbuHgq1v6twBGlDnDtCAOneABtS5A/Sozh2gAXXuAA2ocwfIYmA+hD8iLgQu\nzJ3DzMxmt4HpWJvhz40wMyvR0NBw7ghPccfaZVDmm83MLB/PsQ6Q8ZucS+Ya2qH0GkrPD66hZO5Y\nzczMGjQwt9v0SlL4tTAzs26+3cbMzCwzd6wDZBDmM1xDO5ReQ+n5wTWUzB2rmZlZgzzHmniO1czM\nJvIcq5mZWWbuWAfIIMxnuIZ2KL2G0vODayiZO1YzM7MGeY418RyrmZlN5DlWMzOzzPwh/F0kf7uN\nmVnThoaG2bx5U+4YO4zPWJ8hCl9WtiCDa3ANbVhKzz9YNYyN3cVs4jnWRFJ0/hDMzKxZKvZrOQd+\njlXSsZKelLRwO/tdJWmvHZXLzMxsXFEdK3AicBWwdFs7RcRbI+L+HROpTercARpQ5w7QgDp3gAbU\nuQP0qM4doAF17gANqHMHyKKYjlXS7sBrgNPpdLBI2k/S9ZLWSFov6ci0faOkfdL6pZJWS9og6bRs\nBZiZ2axQzByrpJOAN0TEuyVdD5wBvAnYOSL+Sp1LeneLiIck3Qm8KiJ+Lml+RNwnaRdgdTrGlkmO\n7zlWM7O+mF1zrCXdbrMU+GxaXwGcBFwOLJc0D7g8Im5Jv+9+Ec6QdGxa3x84CFg1+VOcCoyk9fnA\nIqBK7Tr9dNttt912e3rtzscbVlX11DrQynZd14yOjgIwMjLCTBRxxippAXA38DM6p5VzgYiIEUn7\nAb8DvBf4TER8SdJG4HDg5cCZwNER8aiklcCyiLhhkucYgDPWmu4/5DLVuIY2qCm7hpqy88Ng1TC7\nzlhLmWM9HrgoIg6IiAMjYhjYKOkNwM8i4gLg74HFEx63N7AldaovBZbs2NhmZjbblHLGei1wVkRc\n3bXtj+nMsz4E/BJ4AHhHRPx4fI4VeBC4DBgG7qAzvvuJwT1jNTNro9l1xlpEx7ojuGM1M+uX2dWx\nljIUbFNS5w7QgDp3gAbUuQM0oM4doEd17gANqHMHaECdO0AW7ljNzMwaVNLtNjuAv93GzKxpQ0PD\nuSPsUO5Yu5Q6B2BmZu3hoeABMn6Tc8lcQzuUXkPp+cE1lMwdq5mZWYN8u00iKfxamJlZN99uY2Zm\nlpk71gEyCPMZrqEdSq+h9PzgGkrmjtXMzKxBnmNNPMdqZmYTeY7VzMwsM3esA2QQ5jNcQzuUXkPp\n+cE1lMwdq5mZWYM8x5p4jtXMzCbyHKuZmVlm/hD+LpK/3cZsthkaGmbz5k25YzxLXddUVZU7Rk8G\noYaZ8BnrM0Thy8oWZHANrqENy9Tzj43dhVmTPMeaSIrOf2hmNrvIXxlpW1X8HKukYyU9KWlh17a/\nlrRB0lmT7P+7kj68Y1OamZltXas6VuBE4Cpgade2PwIOi4iPdO8oaW5EXBkRZ+/IgO1W5w7QgDp3\ngAbUuQM0oM4doEd17gA9G4R7QAehhploTccqaXfgNcDpdDpYJF0O7AH8QNLxkpZLOl/STcBZkk6R\n9Ddp330lXSJpnaS1kpak7ZdKWp3Oek/LU52Zmc0WrZljlXQS8IaIeLek64EzImKtpPsjYq+0z3Lg\nuRFxTGqfAhweEe+T9FXguxFxjjqX9+4REQ9Imh8R90naBVidnmPLJM/vOVazWclzrLZ1M5ljbdPt\nNkuBz6b1Fam9FphY0IqtPP4o4B0A6ZMeHkjbz5B0bFrfHzgIWDX5IU4FRtL6fGARUKV2nX667bbb\ng9YeH7IcvzXE7dnbruua0dFRAEZGRpiJVpyxSloA3A38jM5p41w6/eOIpAciYs+033Lgyoi4JLW7\nz1jHgP0j4vGu474ROBM4OiIelbQSWBYRN0ySYQDOWGue/h9HqWpcQxvUlF1DzdTzt/OMdRDuAR2E\nGkq+Kvh44KKIOCAiDoyIYWCjpNdP4xjXAu8BkDRH0l7A3sCW1Km+FFjSeHIzM7MubelYTwAunbDt\n63SGg5/s2ratt5VnAG+StB64GTgY+CYwT9KtwCeBmxpL3EpV7gANqHIHaECVO0ADqtwBelTlDtCz\n0s/0YDBqmIlWDAW3wWAMBZvZ9LVzKNjaoeShYGtEnTtAA+rcARpQ5w7QgDp3gB7VuQP0bBDuAR2E\nGmbCHauZmVmDPBScdIaCzWy2aeu321g7lH4fa3Z+k2FmZr3yUPAAGYT5DNfQDqXXUHp+cA0lc8c6\nQNatW5c7Qs9cQzuUXkPp+cE1lMwd6wC57777ckfomWtoh9JrKD0/uIaSuWM1MzNrkDvWAbJp06bc\nEXrmGtqh9BpKzw+uoWS+3Sbx7TZmZjaZ6d5u447VzMysQR4KNjMza5A7VjMzswa5YzUzM2uQO1ZA\n0m9Kul3SjyR9JHeeqZB0gaSx9P2z49sWSLpa0h2SviVp75wZt0XS/pKuk3SrpA2S3pe2l1TDzpK+\nL2ltquOTaXsxNYyTNEfSGklXpHZRNUjaJOmW9G+xKm0rrYa9Ja2Q9MP09/SakmqQtDC9/mvSz19I\nel9hNfxpeu3XS/qypJ1mkn/Wd6yS5gB/C7wFOARYKumleVNNyXI6mbt9FPjniHgJcB3wpzs81dT9\nEvhARBwCvBY4Pb3uxdQQEY8Cb4qIVwKHAUdJOpKCaujyfuC2rnZpNTwJVBHxyoh4ddpWWg2fA/4p\nIg4GXgHcTkE1RMSP0uu/GDgceAi4lEJqkDQM/BHwyog4jM5n6S9lJvkjYlYvwBLgG13tjwIfyZ1r\nitmHgfVd7duBobS+H3B77ozTqOUy4DdKrQHYDVgFvKy0GoD9gWuACriixL8lYCPw3AnbiqkB2Av4\n90m2F1PDhNz/Dfh2STUAC1LWBalTvWKm/0+a9WeswAuAn3S1707bSrRvRIwBRMRmYN/MeaZE0giw\nCPgenT/gYmpIQ6hrgc1AHRG3UVgNwGeBDwHd996VVkMA10haLem0tK2kGg4A7pW0PA2lfl7SbpRV\nQ7cTgH9I60XUEBFbgM8APwZ+CvwiIv6ZGeR3xzrYWn+TsqQ9gH8E3h8RD/LszK2uISKejM5Q8P7A\n6yVVFFSDpN8BxiJiHbCtm+BbW0NyZHSGIH+bzrTC6yno34HOGdJi4NxUx0N0Rs9KqgEASfOAY4AV\naVMRNUg6EPgTOiOBzwd2l3QyM8jvjrXzzuRFXe3907YSjUkaApC0H/CzzHm2SdJz6HSqX4yIy9Pm\nomoYFxH3A/8EvIqyajgSOEbSncBX6MwTfxHYXFANRMQ96ed/0plWeDVl/TvcDfwkIm5O7a/T6WhL\nqmHcbwE/iIh7U7uUGl4F3BgRP4+IJ+jMD7+OGeR3xwqrgRdLGpa0E3AinbH1EohnnmVcAZya1k8B\nLp/4gJb5AnBbRHyua1sxNUj6lfErBCXtChwNrKWgGiLiYxHxoog4kM7f/nUR8Q7gSgqpQdJuaeQD\nSbvTmd/bQFn/DmPATyQtTJveDNxKQTV0WUrnTdq4Umq4A1giaRdJovNvcBszyO+PNKRzuw2dK/Lm\nABdExKcyR9ouSf9A52KT5wJjwDI679RXAC8E7gLeHhGt/N6mdPXsDXT+Bxhp+RidC4AupowaXg5c\nSOfNzRw6Z96flrQPhdTQTdIbgQ9GxDEl1SDpADpnF0FnSPXLEfGpkmoAkPQK4O+BecCdwLuAuZRV\nw250ch4YEQ+kbcX8O0j6EJ1O9Ak6b5JPA/ZkmvndsZqZmTXIQ8FmZmYNcsdqZmbWIHesZmZmDXLH\namZm1iB3rGZmZg1yx2pmZtYgd6xmZmYN+v9DbEh2Gv0eDgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax)\n", "ax.set_ylabel(\"\")\n", "ax.grid(True)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADDCAYAAAA/djDGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF5pJREFUeJzt3XuQXHWZxvHvkxAMIRiCK4NyGUAIVyMEkGCWZYKyrroC\ny3KLCIESay2xFHC9oQuy7qKoLAUK1FpCFC8gWQigpVwEWlxEEkggAQRWSRSVAVkTxMAGSN794/za\ndIZJ0tM5k3N+Pc+nqivdp/uc8z4zA2+f37kpIjAzM7NyjKq6ADMzs27ixmpmZlYiN1YzM7MSubGa\nmZmVyI3VzMysRJtUXUBdNKSYXnURGyCABuAM1XKG6uVePzhDXQQgICI0lPncWJMGkPWpR5Iz1IEz\nVC/3+sEZ6kJD6qd/4aFgMzOzErmxmpmZlciNNemruoAS9FVdQAn6qi6gBH1VF1CCvqoL2EB9VRdQ\ngr6qCyhBX9UFVERZj3+XSQpy/lk09wU4Q7WcoXq51w/OUBdSRwcveYvVzMysRN5ibZKG9pWkZpq/\nRWeoljNUL/f6oXsz9PT00t+/pIJqOtThFqsba5MUIt+fRaQ/X2eoljNUL/f6oZszKK/TbzwUbGZm\nVr22GqukT0t6UNIDkuZLOqDN+a6XdPeGlbjedZwr6dDhXIeZmVm71nvlJUlTgXcC+0TEy5K2AjZt\nY74JwN7As5J2jIglG1rsIOsYFRHnlL1cMzOzTrWzxfo64JmIeBkgIv4YEf1tzHcUcCNwDTCjOVHS\nLEmXSrpb0i8l9Un6hqSHJV3R8rnDJP1M0r2SvidpXJq+WNIXJN0LHJ2Wd1R67wBJd0m6X9LPJW0u\nqVfSnWk596YvCmZmZsOinWsF3wKcLekR4DbgexFxZxvzzQD+BfgDcD3w+Zb3toyIgyQdTtF8p0bE\nw6nxTQZ+B3wGeGtEvCDp48CZwL+l+Z+JiP0BJL0j/TsGuBo4JiLmSxoPvAA8BbwtIl6UtAtwFTDo\nUHZkfQxewRnqwRmql3v90KUZOrz+bk7W21gjYrmkKcDBwKHA1ZI+GRFXrm0eSVsDu0TEPen1i5L2\njIiH00e+n/5dBDzZMv0hYEdge2BP4C5JAsYAP2tZxfcGWe1uwO8jYn6q+89p3ZsCX5W0D7AS2HWw\nmhvp0dTHyL1qiJnZSNVgzV7QibbubhPF8dF3AndKWgScBKy1sQLHAhMlPU5xGtMWrN6CBViR/l3V\n8rz5epP07y0RccJalr98LdMH+yp0BtAfEZMljabYin2FPmB6y2Hh565lBXXVvYfn58UZqpd7/dDN\nGep/uk0fLRtVUke9YL37WCVNSkOoTfsAv17PbDOAt0fEzhGxE7A/LftZB65ikGk/B6ZJekOqYZyk\nQbc0WzwKbCNpvzTP+NRIJwBPps+cBIxez3LMzMw61s7BS+OBb6bTbe4H9gA+C3851eXvWz8sqRfY\nISLmNqelI4KXpdN0Bn5diYHPI+IZ4GTgKkkPUAwD7zbI51vneQk4jmLY936KfcOvAi4FTpa0AJjE\n2rd2zczMNpivvNTkKy9VzhnqIfcMudcP3Zyh/kPBa/CVl8zMzKrnxmpmZlaito4KHjm64fwqZ6gH\nZ6he7vVDt2Xo6emtsI6Nx421RVZj/wOlk66doWLOUL3c6wdnyJyHgs3MzErkxmpmZlYiN1YzM7MS\nubGamZmVyI3VzMysRG6sZmZmJXJjNTMzK5Ebq5mZWYncWM3MzErkxmpmZlYiN1YzM7MSubGamZmV\nyBfhbyHleyeJ5mWunaFazlC93OuH+mbo6emlv39J1WXUnkbinQcGJcWad7rPS6RbMzlDtZyhernX\nD3XOoPbvVtP8UpBzj5EQEBFD+objoWAzM7MSDWtjlbStpOslPSbpfyRdKGnYh58lvU7SNcO9HjMz\ns4GGe4v1OuC6iJgETAK2AM4b5nUSEU9GxLHDvR4zM7OBhq2xSjoUeCEirgSIYmD+DOAUSZtJ+rKk\nRZLul3RammeKpIakeZJ+JKknTT9V0lxJCyTNljQ2TZ8l6SJJd0n6paSj0vReSYtant8p6d70mDpc\nmc3MzIZzWHYv4L7WCRHxnKQngPcDOwCTIyIkbZmGiL8CHB4R/yvpWIqt2/cB10bE1wEkfS5NuyQt\ndpuImCZpD+BGiq1kWH1g3dPA2yLiRUm7AFcBBwxWcPOAgZw5Qz04Q/Vyrx9qmmGoRyrX7MjmjaGq\n020OAS5NW7FExDJJewF7A7eqOMZ8FPD79PnJqaFuCWwO3NyyrOvTMn4haetB1jUG+E9J+wArgV0H\nK6iRHk196WFmZiNHgzV7QSeGs7E+DBzdOkHSFhRbqosH+byAByNi2iDvzaLYkn1Q0kyKxty0YsAy\nBjoD6I+IyZJGAy8MVmwfML3l0PZzB/tQjdX38Pz2OUM95J4h9/qhzhm6/3SbPlo2qqSOesGw7WON\niNuAzSS9FyA1tQsomuTNwAfSNCRNBB4FXtvcByppE0l7psWNB/oljQFOWMdqB2usE4An0/OTgNEb\nFMzMzGwdhvuo4H8AjpX0GPAIxdbiWcDlwG+AhZIWADMi4iWKLdzzJd0PLAAOSss5G5gL/BT4Rcvy\nB34VGuyr0aXAyWk9k4DlZQQzMzMbjK+81OQrL1XOGeoh9wy51w91ztD9Q8Fr8JWXzMzMqufGamZm\nViLf3WYN3XC+lTPUgzNUL/f6oW4Zenp6qy4hC26sLbLe35z2ZzhDxZyhernXD92RYQTzULCZmVmJ\n3FjNzMxK5MZqZmZWIjdWMzOzErmxmpmZlciN1czMrERurGZmZiVyYzUzMyuRG6uZmVmJ3FjNzMxK\n5MZqZmZWIjdWMzOzEvlG503S0O5kWzPN36IzVMsZqpd7/dCdGXp6eunvX1JRNR3q8EbnbqxNUoh8\nfxaR/nydoVrOUL3c64duzaD87tbTYWP1ULCZmVmJ1ttYJa2S9KWW1x+VdHY7C5d0uqQXJG2xIUWu\nZx3vlvTx4Vq+mZnZULSzxboCOErSVh0s/3jgVuCoDuZdL0mjI+L7EfHF4Vi+mZnZULXTWF8Gvgac\nOZQFS9oZGAP8O/CelukzJc2RdIukxyV9KG0Fz5f0M0lbNueX9CNJ8yT9RNKkNH2WpMsk3Q2cn5b3\nlfTe1pKuk3S/pAWSpqbpc9JyFkk6dSg5zMzMhmKTNj4TwCXAIknnD2HZxwPXRMQ9kt4g6bUR8Yf0\n3l7APsA44FfAP0fEFEn/AZwEXEzRzP8pIn4l6c3AZcBb0/zbRsRBUDRqVh+AdjHQiIijJAkYn6af\nEhHLJI0F5km6NiKWvjJozsfgFZyhHpyhernXD12YQfnnaUc7jZWI+LOkbwIfAV5oc9kzgCPS8+uB\nY4BL0+s7IuJ54HlJS4EfpOmLgDdK2hx4CzA7NUgotn6bZq9lnYcCJ6aaA3guTT9d0pHp+XbArsDc\n1hkb6dHUlx5mZjZyNFizF3SircaaXATMB65Y3wcl7U3RvH6c+uKmwGJWN9YVLR+PlterUk2jgKUR\nMWUtq1i+lumvOJZb0iEUDffAiFgh6Q5g7MDP9QHTW2Y/dy0rqKvuPDw/P85Qvdzrh27NkMfpNn20\nbFRJHfWCdvaxCiANnV4DtLOPcgZwTkTsnB7bAa+XtH07RUXEc8BiSUf/pQhpchuz3gZ8MH1+lKRX\nAxMomvQKSbsDU9upwczMrBPtNNbWrxgXAK9pTkununx2kHmOA+YMmDaHYr/rwK8sa/sK817gfelA\npAeBw9fzeYDTgemSFgL3AnsANwFjJD0EnAfcvY75zczMNoivvNTkKy9VzhnqIfcMudcP3Zohj6Hg\nNfjKS2ZmZtVzYzUzMyvRUI4KHgG64RwrZ6gHZ6he7vVDN2Xo6emtuI6Nx421RXbj/63S6b7OUDFn\nqF7u9YMzZM5DwWZmZiVyYzUzMyuRG6uZmVmJ3FjNzMxK5MZqZmZWIjdWMzOzErmxmpmZlciN1czM\nrERurGZmZiVyYzUzMyuRG6uZmVmJ3FjNzMxK5BudN0lDu5Ntzay+lXC+nKEecs+Qe/3gDJ3o6eml\nv39JuQvt8EbnbqxNUqy+031+Iv35OkO1nKF6udcPztAZlX8nnQ4bq4eCzczMSrTR78cqaSXwAMUI\nQQBXR8QXN3YdZmZmw6GKG50vj4gpncwoaXRErCy7IDMzs7JUMRQ86Fi1pMWStkrP95N0R3p+jqQr\nJf03cKWkV0m6QtJCSfdJ6kufmynpekl3SHpU0tktyz5B0j2S5ku6TFLOxwSYmVmNVbHFupmk+awe\nCv58RMyGV+zhbn29BzAtIl6UdCawKiImS9oNuEXSrulzBwB7Af8HzJP0A+B54DjgLRGxUtIlwAnA\ntwcWFlkfg1dwhnpwhurlXj84w5DVZJupisb6/FqGgtf1E7kxIl5Mz/8auBggIh6VtASYlN67NSKW\nAUi6Nn12JbAfRaMVMBZ4auAKGunR1JceZmY2cjRYsxd0oorGujYvs3poeuyA95avY77WhhwDpjdf\nfyMiPr2ulfcB01tmP3ddH64hH55fD85QvdzrB2foTDmn2/TRslElddQLarOPFVhMsWUJ8I/rmP+n\nFEO5SJoEbA88mt47TNKWkjYDjgTuAm4Hjpb02jTPREk7bFgEMzOzwVWxxTp2wD7WmyLiLOBfgcsl\nPcu6t8QvBS6TtBB4CZgZES+l45HmAtcB2wLfioj5AJI+Q7EvdhTwInAa8JvhCGdmZiNb11x5SdJM\nYL+I+HCHC/CVlyrmDPWQe4bc6wdn6IyvvGRmZtaVumaLdYN5i7VyzlAPuWfIvX5whs7UZ4u1TkcF\n10A9zoHaMM5QD85QvdzrB2doX09P70ZZTzvcWFtkvfWeTox2hoo5Q/Vyrx+cIXPex2pmZlYiN1Yz\nM7MSubGamZmVyI3VzMysRG6sZmZmJXJjNTMzK5Ebq5mZWYncWM3MzErkxmpmZlYiN1YzM7MSubGa\nmZmVyI3VzMysRL5tXJM0tPsC1Uzzt+gM1XKG6uVeP3Rfhp6eXvr7l1RYTYc6vG2cG2uT78daOWeo\nh9wz5F4/dGOGYbhX6sbQYWP1ULCZmVmJsmqsko6UtErSpPV87geSXr2x6jIzM2vKaihY0tXAOOC+\niDi35IV7KLhizlAPuWfIvX7oxgweCq4lSZsDBwKnAcenadtI+omk+ZIWSpqWpi+WtFV6PkfSPEmL\nJJ1aWQAzMxsRNqm6gCE4Arg5Ip6Q9LSkfYHpwE0R8XlJotiaBdb4mndKRCyTNBaYJ+naiFg62Aqa\n37By5gz14AzVy71+6LIMyj9Lu3JqrDOAC9Pz2cB7gBuAWZLGADdExAPp/dbf4OmSjkzPtwN2BeYO\nXHgjPZr60sPMzEaOBmv2gk5ksY9V0kTgt8DTFFujo4GIiB0lbQO8C/gQcEFEfFvSYmA/4I3A54DD\nImKFpDuAcyLizkFW4n2sFXOGesg9Q+71Qzdm8D7WOjoGuDIidoqInSOiF1gs6W+ApyPicuDrwJQB\n800AlqamujswdeOWbWZmI00uQ8HHAecPmHYdMAtYLull4DngxPRe86vRTcAHJD0EPArcvRFqNTOz\nESyLoeCNwkPBlXOGesg9Q+71Qzdm8FCwmZmZdciN1czMrES57GPdSLrhPCtnqAdnqF7u9UO3ZOjp\n6a26iI3KjbVFlvsAmtLJ185QMWeoXu71gzNkzkPBZmZmJXJjNTMzK5Ebq5mZWYncWM3MzErkxmpm\nZlYiN1YzM7MSubGamZmVyI3VzMysRG6sZmZmJXJjNTMzK5Ebq5mZWYncWM3MzErki/C3kPK9k0Tz\nMtfOUC1nqN5Q6+/p6aW/f8mw1WMjj0binQcGJYXI92cR6fZSzlAtZ6je0OtX/e7A0vxSULe6hqJL\nMgiIiCF9y/RQsJmZWYlq1VglHSlplaRJLdO+JGmRpPMH+fy7JX1841ZpZma2drUaCpZ0NTAOuC8i\nzk3TlgETY0ChkkZHxMoSV+6h4Io5Qz3knsFDwTXRJRmyHgqWtDlwIHAacHyadgMwHrhP0jGSZkm6\nTNLdwPmSZkr6Svrs1pKuk3S/pAWSpqbpcyTNS1u9p1aTzszMRoo6HRV8BHBzRDwh6WlJ+0bEEZL+\nFBFTACS9E9g2Ig5Kr2ey+iDAi4FGRByl4nDA8Wn6KRGxTNJYYJ6kayNi6WAFNL/p5swZ6sEZqjek\n+ut6BHRd6xqKbsgwRHVqrDOAC9Pz2en1AnjFfx2z1zL/ocCJAGnY+Lk0/XRJR6bn2wG7AnMHztxI\nj6a+9DAzs5GjwZq9oBO1aKySJlI0xr0lBTCaYkt0sAOTlq9lMa8YyJd0SFrugRGxQtIdwNjBZu4D\nprcs4twh1F8Hue8XA2eoi9wzeB9rTWSaoY+WjSqpo15Ql32sxwBXRsROEbFzRPQCiyUdPIRl3AZ8\nEEDSKEmvBiYAS1NT3R2YWnrlZmZmLerSWI8D5gyYdi3FcPCqlmnr+upzOjBd0kLgXmAP4CZgjKSH\ngPOAu0ur2MzMbBC1Ot2mUj7dpnLOUA+5Z/BQcE10SYasT7cxMzPrBm6sZmZmJarFUcH10Q3nWzlD\nPThD9dq/u41ZmdxYW9RuP8tQpP0ZzlAxZ6he7vVb9jwUbGZmViI31qRRdQElaFRdQAkaVRdQgkbV\nBZSgUXUBG6hRdQElaFRdQAkaVRdQETfWpFF1ASVoVF1ACRpVF1CCRtUFlKBRdQEbqFF1ASVoVF1A\nCRpVF1ARN1YzM7MSubGamZmVyFdeStLF/83MzNYw1CsvubGamZmVyEPBZmZmJXJjNTMzK5Ebq5mZ\nWYncWAFJfyfpEUmPSfpE1fW0Q9Llkp5K959tTpso6RZJj0q6WdKEKmtcF0nbSbpd0kOSFkn6cJqe\nU4ZXSbpH0oKU47w0PZsMTZJGSZov6cb0OqsMkpZIeiD9LuamabllmCBptqRfpL+nA3PKIGlS+vnP\nT/8+K+nDmWX4VPrZL5T0HUmbdlL/iG+skkYBXwXeDuwFzJC0e7VVtWUWRc2tPgn8OCJ2A24HPrXR\nq2rfy8CZEbEXcBBwWvq5Z5MhIlYA0yNiX2AycKikaWSUocVHgIdbXueWYRXQFxH7RsSb07TcMlwE\n/DAi9gDeBDxCRhki4rH0858C7AcsB+aQSQZJvcD7gX0jYjLFtfRn0En9ETGiH8BU4Ectrz8JfKLq\nutqsvRdY2PL6EaAnPd8GeKTqGoeQ5XrgbblmAMYBc4E9c8sAbAfcCvQBN+b4twQsBl4zYFo2GYBX\nA78aZHo2GQbU/bfAT3PKAExMtU5MTfXGTv+fNOK3WIFtgSdaXv82TcvR1hHxFEBE9ANbV1xPWyTt\nCOwD/JziDzibDGkIdQHQDzQi4mEyywBcCHwMaD33LrcMAdwqaZ6kU9O0nDLsBDwjaVYaSv2apHHk\nlaHVccB30/MsMkTEUuAC4DfA74BnI+LHdFC/G2t3q/1JypLGA/8FfCQi/swra651hohYFcVQ8HbA\nwZL6yCiDpHcBT0XE/az7Bqa1zZBMi2II8p0UuxUOJqPfA8UW0hTgkpRjOcXoWU4ZAJA0BjgcmJ0m\nZZFB0s7AGRQjga8HNpd0Ah3U78ZafDPZoeX1dmlajp6S1AMgaRvg6YrrWSdJm1A01W9FxA1pclYZ\nmiLiT8APgf3JK8M04HBJjwNXUewn/hbQn1EGIuLJ9O8fKHYrvJm8fg+/BZ6IiHvT62spGm1OGZre\nAdwXEc+k17lk2B+4KyL+GBErKfYPv4UO6ndjhXnALpJ6JW0KHE8xtp4DseZWxo3Ayen5TOCGgTPU\nzBXAwxFxUcu0bDJI+qvmEYKSNgMOAxaQUYaIOCsidoiInSn+9m+PiBOB75NJBknj0sgHkjan2L+3\niLx+D08BT0ialCa9FXiIjDK0mEHxJa0plwyPAlMljZUkit/Bw3RQvy9pSHG6DcUReaOAyyPiCxWX\ntF6SvktxsMlrgKeAcyi+qc8Gtgd+DRwbEcuqqnFd0tGzd1L8DzDS4yyKA4CuIY8MbwS+SfHlZhTF\nlveXJW1FJhlaSToE+GhEHJ5TBkk7UWxdBMWQ6nci4gs5ZQCQ9Cbg68AY4HHgFGA0eWUYR1HnzhHx\nXJqWze9B0scomuhKii/JpwJbMMT63VjNzMxK5KFgMzOzErmxmpmZlciN1czMrERurGZmZiVyYzUz\nMyuRG6uZmVmJ3FjNzMxK9P9VQZDPUNM+0wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='r', linestyle='-', linewidth=2)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADDCAYAAAA/djDGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGQdJREFUeJzt3X2UXXV97/H3J5MZnk6IwStDCzISJchDR4iAE6mCoLeE\nW5GbqpASRRDX6pLeigqt2l6n9q5rReJyKQq9rkIalFbJ5ZlVAqgglgcTSGBSELwZEsSWDJdVnhK5\nIQnf+8f5JZxMZpJz5uyZvX+Tz2utvWbv39kP30+Sle/sffY5WxGBmZmZFWNK2QWYmZlNJm6sZmZm\nBXJjNTMzK5Abq5mZWYHcWM3MzAo0tewCqmKPPd4Sr776VNlltKWrqwdnKJ8zlC/3+sEZqiQi1Mr6\nPmNNIjYTEVlPJ574+6XX4AzOUIUp9/qdoTrTWLixmpmZFciN1czMrEBurElHx75ll9C2t761t+wS\n2uYM1ZB7htzrB2fImRtrMnXq9LJLaNtk+EfsDNWQe4bc6wdnyJkbq5mZWYE01rueJptp0+bE+vUP\nlF1GW2q1PpyhfM5Qvtzrh8mZobu7h3Xr1pZX0BhIIlr8uI0/x7qd3H/JWAqcWnYRbXKGasg9Q+71\nw2TMMDTUUn/Kli8Fm5mZFaipxirpLyX9q6RHJK2QdFyT290o6f72StzlMb4i6eTxPIaZmVmzdnkp\nWFIfcBpwdERslrQf0NXEdtOBo4AXJb0lIta2W+wIx5gSEf1F79fMzGysmjlj/R3guYjYDBAR/xER\n65rYbh5wM3AtMH/roKRFki6XdL+k1ZJOkvQPkh6TdFXDeh+QdJ+kByX9SNLeaXyNpK9JehD4cNrf\nvPTacZLulfSwpAck7SOpR9I9aT8Ppl8UzMzMxkUzjfUO4GBJj0v6rqT3Nrnv+cCPgCU0NNbkDREx\nB/gc9eb79Yg4AuiV1CvpjcBfAadExLHAQ2ndrZ6LiGMj4tqtA5I6gR8C/y0ijgbeD7wCDAHvT/s5\nC7isyfrNzMxatstLwRGxQdJs4D3AycAPJX0hIq4ebRtJ+wNvi4hfpOVXJR0REY+lVW5JP1cBzzSM\nPwq8BXgzcARwryQBncB9DYf40QiHPQz494hYkepen47dBXxH0tHAFuDQkXOKzs4F25Y7OnqZOjWv\nDzd3da2mVltadhltcYZqyD1D7vXDZM3Qx8KF1c40ODjA4OBAW/to6uM2Uf+w6z3APZJWAR8HRm2s\nwEeBGZKeBARMo37W+t/T6xvTz9ca5rcuT00/74iIs0fZ/4ZRxke6l/uzwLqI6JXUQf0sdscNFWza\n9INty5s2jXKECqvVlrJ+fd635ztDNeSeIff6YbJmmMtFF1U90/b1Sde0vIddXgqWNEvS2xqGjgZ2\n9YC9+cAfRMTMiDgEOJYdLwdvO8QIYw8AJ0h6a6phb0kjnmk2eAI4QNI70za11EinA8+kdT4OdOxi\nP2ZmZmPWzHusNWBx+rjNw8DhwF/Dto+6/GHjypJ6gIMjYtnWsXRH8AvpYzrDv4Uhhs9HxHPAJ4B/\nkvQI9cvAh42wfuM2m4AzqV/2fZj6e8N7AJcDn5C0EpjF6Ge7ZmZmbWvmPdYVwAmjvLbDR10i4inq\n75EOHz82zS4ftm5vw/J5DfN3A8ePsJ+Zw5Ybt3kImDNsk9XAOxqWvzhSFjMzsyL4m5fMzMwK5MZq\nZmZWIH8J/3Zy/4LoPmBu2UW0yRmqIfcMudcPkzFDd3dPeaVMIJ+xNoiIrKf+/v7Sa3AGZ6jClHv9\nkzVDbo+MGys3VjMzswK5sZqZmRXIjdXMzKxAbqxmZmYFcmM1MzMrkBurmZlZgdxYzczMCuTGamZm\nViA3VjMzswK5sZqZmRXIjdXMzKxAbqxmZmZFKvtLmqsy1Wp9AWQ9OUM1Jmcof8q9/qpm6O7uiVZc\neultLa1fRUBEi/3Ej43bTpRdQJuWAqeWXUSbnKEacs+Qe/1QxQxDQ7k/WnNi+FKwmZlZgca1sUo6\nUNKNkn4l6f9I+qakcT9LlvQ7kq4d7+OYmZkNN95nrNcD10fELGAWMA346jgfk4h4JiI+Ot7HMTMz\nG27cGqukk4FXIuJqSO/+wmeBcyXtJWmhpFWSHpZ0QdpmtqS7JS2XdJuk7jR+vqRlklZKWiJpzzS+\nSNK3JN0rabWkeWm8R9Kqhvl7JD2Ypr7xymxmZjaeZ6xHAg81DkTEy8DTwKeAg4HeiDgauCZdIr4M\n+KOIOA5YxOtnt9dFxPERcQzwOPDJht0eEBEnAB8ELmk8XPr5LPD+iDgWOCsdw8zMbFyUdVfwicDl\n6SyWiHhB0pHAUcCdkkS96f97Wr9X0v8A3gDsA9zesK8b0z5+KWn/EY7VCfwvSUcDW4BDRyooQnR2\nLti23NHRy9SpvW1EnHhdXaup1ZaWXUZbnKEacs+Qe/1Q1Qx9LFzYfE333be6pfWrYHBwgMHBgfZ2\n0urnc5qdgFOAnw0bmwY8B1wHnDLstaOAe0fZ15PAUWn+HOCqNL8ImNew3kvpZw8wkOb7ga+n+Q7g\n1ZGOUf/MWGQ91Wq3lV6DMzhDFabc669uBlr6DOju+jnWcbsUHBE/AfaStABAUgfwjdQMbwf+JI0h\naQbwBPCmre+BSpoq6Yi0uxqwTlIncPZODjvSh6ymA8+k+Y9Tb65mZmbjYrzvCv6vwEcl/Yr6e6Ov\nAF8CrgR+DQxIWgnMj4hNwIeBSyQ9DKwE5qT9fBlYBvwc+GXD/mPY8YYvA1wOfCIdZxawoYhgZmZm\nIxnX91gj4t+A00d5+fNpalx/gPr7r8P383fA340wft6w5X3Tz6eA3jS/GnhHw2pfbD6BmZlZa/zN\nS2ZmZgVyYzUzMyuQv4R/O7l/wXQfMLfsItrkDNWQe4bc64cqZuju7im7hCz4jLVBq7dUV23q7+8v\nvQZncIYqTLnXX9UM69atLfu/6Sy4sZqZmRXIjdXMzKxAbqxmZmYFcmM1MzMrkBurmZlZgdxYzczM\nCuTGamZmViA3VjMzswK5sZqZmRXIjdXMzKxAbqxmZmYFcmM1MzMrkCKi7BoqYdq0ObF+/QNll9GW\nWq0PZyifM5Qv9/ph8mXo7u7J8kv8JRERLT36zI+N207uv2QsBU4tu4g2OUM15J4h9/phsmUYGsr9\nsZzN86VgMzOzAu2ysUp6TdKlDcufl/TlZnYu6UJJr0ia1k6RuzjGByX9+Xjt38zMrBXNnLFuBOZJ\n2m8M+z8LuBOYN4Ztd0lSR0TcEhFfH4/9m5mZtaqZxroZ+B7wuVZ2LGkm0An8T+CPG8bPkXSDpDsk\nPSnpT9NZ8ApJ90l6w9btJd0mabmkn0malcYXSbpC0v3AJWl/l6XX9pd0vaSHJa2U1JfGb0j7WSXp\n/FZymJmZtaKZxhrAd4GzW7ykexZwbUT8AnirpDc1vHYkcAZwPPXG+1JEzAYeAD6e1vke8KcRcRxw\nMXBFw/YHRsSciLiooUaAbwN3R8TRwGzg0TR+btrPccBnJM1oIYeZmVnTmrorOCLWS1oMfAZ4pcl9\nzwc+lOZvBD4CXJ6W74qI3wK/lfQ8cGsaXwX8nqR9gHcDSyRtvZWss2HfS0Y55snAx1LNAbycxi+U\ndEaaPwg4FFi2fUbR2blg23JHRy9Tp/Y2GbUaurpWU6stLbuMtjhDNeSeIff6YTJm6GPhwurnGRwc\nYHBwoK19tPJxm28BK4CrdrWipKOoN68fp77YBazh9ca6sWH1aFh+LdU0BXg+ncWOZMMo4zt8XkbS\nidQb7rsiYqOku4A9d1wv2LTpB9uWN20a5QgVVqstZf36vG/Pd4ZqyD1D7vXDZMwwl4suyiHP9jVK\n17S8h2YuBQsgIp4HrgWaeY9yPtAfETPTdBDwu5Le3ExREfEysEbSh7cVITVz+vgT4NNp/SmS9gWm\nU2/SGyW9HehrpgYzM7OxaPY91q2+Abxx61j6qMtfj7DNmcANw8ZuoP6+6/CzytG+lWEB8Ml0I9K/\nAqfvYn2AC4H3SRoAHgQOp/4J5U5JjwJfBe7fyfZmZmZt2eWl4IjYt2H+WaDWsHwLcMsI27xthLGL\nGhavbhif2TC/GFic5tcCc0fYz3nDlhu3eZb6TVHDnTbCmJmZWeH8zUtmZmYFcmM1MzMrkL+Efzu5\nf0l0HyNcPc+MM1RD7hlyrx8mW4bu7p5yS5lAPmNtEBFZT/39/aXX4AzOUIUp9/onY4YcHxk3Vm6s\nZmZmBXJjNTMzK5Abq5mZWYHcWM3MzArkxmpmZlYgN1YzM7MCubGamZkVyI3VzMysQG6sZmZmBXJj\nNTMzK5Abq5mZWYHcWM3MzIpU9pc0V2Wq1foCyHpyhmpMzlD+lHv9ztD61N3dE+MBiFb7iR8bt50o\nu4A2LQVOLbuINjlDNeSeIff6wRlaMzRUncd++lKwmZlZgSb8jFXSFuAR6k8VD+CHEfH1ia7DzMxs\nPJRxKXhDRMwey4aSOiJiS9EFmZmZFaWMS8EjXgiXtEbSfmn+nZLuSvP9kq6W9C/A1ZL2kHSVpAFJ\nD0k6Ka13jqQbJd0l6QlJX27Y99mSfiFphaQrJFXnYryZmU0qZZyx7iVpBa9fCv7biFjCjncONS4f\nDpwQEa9K+hzwWkT0SjoMuEPSoWm944Ajgf8HLJd0K/Bb4Ezg3RGxRdJ3gbOBH4xXQDMz232V0Vh/\nO8ql4J2dRd4cEa+m+d8Hvg0QEU9IWgvMSq/dGREvAEi6Lq27BXgn9UYrYE9gaPgBIkRn54Jtyx0d\nvUyd2ttKrtJ1da2mVltadhltcYZqyD1D7vWDM7Suj4UL2z/W4OAAg4MDbe2jSh+32czrl6b3HPba\nhp1s19iQY9j41uV/iIi/3NnBpWDTptdPYjdt2mmtlVSrLWX9+rxvz3eGasg9Q+71gzO0bi4XXVTE\nsbbfh3RNy3uozHuswBrqZ5YAf7ST7X9O/VIukmYBbwaeSK99QNIbJO0FnAHcC/wU+LCkN6VtZkg6\nuL0IZmZmIyvjjHXPYe+xLo2ILwF/A1wp6UXg7p1sfzlwhaQBYBNwTkRsSvcjLQOuBw4Evh8RKwAk\n/RX192KnAK8CFwC/Ho9wZma2e5vwxhoRnaOM/wtw2AjjXxm2vBE4b5Td/yYi5o2wjyXAktarNTMz\na42/ecnMzKxAVbp5qS0RsRhYXHYdZma2e5s0jbUYuX9vRB8wt+wi2uQM1ZB7htzrB2doTXd3z4Qc\npxm+FNyg1UcDVW3q7+8vvQZncIYqTLnX7wytT+vWrS27hWzjxmpmZlYgN1YzM7MCubGamZkVyI3V\nzMysQG6sZmZmBXJjNTMzK5Abq5mZWYHcWM3MzArkxmpmZlYgN1YzM7MCubGamZkVyI3VzMysQIqI\nsmuohGnT5sT69Q+UXUZbarU+nKF8zlC+3OuHyZWhu7unUl+S3wpJRERLjz7zY+O2k/svGUuBU8su\nok3OUA25Z8i9fphMGYaGcn8kZ2t8KdjMzKxAWTVWSWdIek3SrF2sd6ukfSeqLjMzs62yaqzAWcCt\nwPydrRQRfxgRL01MSWZmZq/LprFK2gd4F3AB9QaLpAMk/UzSCkkDkk5I42sk7Zfmb5C0XNIqSeeX\nFsDMzHYLOd289CHg9oh4WtKzko4B3gcsjYi/lSRg77Ru411I50bEC5L2BJZLui4inp/g2s3MbDeR\nU2OdD3wzzS8B/hi4CVgkqRO4KSIeSa833oJ2oaQz0vxBwKHAsuE7jxCdnQu2LXd09DJ1am+xCcZZ\nV9dqarWlZZfRFmeohtwz5F4/TLYMfSxcmEeWwcEBBgcH2ttJRFR+AmYAG4A1wJPAU8Da9NoBwCeB\nlcCCNLYG2A84EbgH2CON3wW8d6Rj1Gp9AZH1VKvdVnoNzuAMVZhyr3/yZSBylWqnlSmX91g/Alwd\nEYdExMyI6AHWSHov8GxEXAn8PTB72HbTgecjYqOktwN9E1u2mZntbnK5FHwmcMmwseuBRcAGSZuB\nl4GPpdci/VwK/ImkR4EngPsnoFYzM9uNZdFYI+KUEcYuAy4bZf2ZDYunjVddZmZmw+VyKdjMzCwL\nbqxmZmYFyuJS8MTJ/Yui+4C5ZRfRJmeohtwz5F4/TKYM3d09ZRcyoXzG2qDVW6qrNvX395degzM4\nQxWm3OufbBlyfWTcWLmxmpmZFciN1czMrEBurGZmZgVyYzUzMyuQG6uZmVmB3FjNzMwK5MZqZmZW\nIDdWMzOzArmxmpmZFciN1czMrEBurGZmZgVyYzUzMyuQn27TQMr76Ta1Wh8XX5z30zCcoRpyz9BK\n/d3dPbvdl8Tb+HJj3U6UXUCblgKnll1Em5yhGnLP0Hz9Q0N5/0Jt1eNLwWZmZgWqVGOVdIak1yTN\nahi7VNIqSZeMsP4HJf35xFZpZmY2uqpdCj4LuBWYD3wljX0KmBER212nldQREbcAt0xsiWZmZqOr\nzBmrpH2AdwEXUG+wSLoJqAEPSfqIpEWSrpB0P3CJpHMkXZbW3V/S9ZIelrRSUl8av0HS8nTWe345\n6czMbHdRpTPWDwG3R8TTkp6VdExEfEjSSxExG0DSacCBETEnLZ/D63ccfRu4OyLmqX57by2NnxsR\nL0jaE1gu6bqIeH5io5mZ2e6iSo11PvDNNL8kLa8Eht+yt2SU7U8GPgaQLhu/nMYvlHRGmj8IOBRY\nNnzjCNHZuWDbckdHL1On9raeokRdXaup1ZaWXUZbnKEacs/QWv19LFxYvaz33be6knW1IscMg4MD\nDA4OtLeTiCh9AmYAG4A1wJPAU8Da9NrLDestAuY1LJ8DfDvNDwGdw/Z7InAPsEdavgt470g11Gp9\nAZH1VKvdVnoNzuAMVZhaq5+ooksvva3sEto2GTKkfx+0MlXlPdaPAFdHxCERMTMieoA1kt7Twj5+\nAnwaQNIUSfsC04HnI2KjpLcDfYVXbmZm1qAqjfVM4IZhY9dRvxz8WsNY7GQfFwLvkzQAPAgcTv1T\n4p2SHgW+CtxfWMVmZmYjqMR7rBFxyghj30mzn24YO2/YOouBxWn+WeAMdnRacZWamZntXFXOWM3M\nzCYFN1YzM7MCVeJScHXk/mXcfUC+TySpc4ZqyD1D8/V3d/eMbym22/EZa4NWb6mu2tTf3196Dc7g\nDFWYWqnfj4yzormxmpmZFciNNdm8+cWyS2hb298WUgHOUA25Z8i9fnCGnLmxJlu2vFR2CW2bDP+I\nnaEacs+Qe/3gDDlzYzUzMyuQG6uZmVmBFLGzbwncfUjyH4SZme0gIlr6LKYbq5mZWYF8KdjMzKxA\nbqxmZmYFcmM1MzMrkBsrIOlUSY9L+pWkvyi7nmZIulLSUHr+7NaxGZLukPSEpNslTS+zxp2RdJCk\nn0p6VNIqSX+WxnPKsIekX0hamXJ8NY1nk2ErSVMkrZB0c1rOKoOktZIeSX8Xy9JYbhmmS1oi6Zfp\n39O7csogaVb681+Rfr4o6c8yy/DF9Gc/IOkaSV1jqX+3b6ySpgDfAf4AOBKYL+nt5VbVlEXUa270\nBeDHEXEY8FPgixNeVfM2A5+LiCOBOcAF6c89mwwRsRF4X0QcA/QCJ0s6gYwyNPgM8FjDcm4ZXgNO\niohjIuL4NJZbhm8B/xwRhwPvAB4nowwR8av05z8beCewAbiBTDJI6gE+BRwTEb3UH1Izn7HUX/aX\nZZc9UX8Mxm0Ny18A/qLsupqsvQcYaFh+HOhO8wcAj5ddYwtZbgTen2sGYG9gGXBEbhmAg4A7gZOA\nm3P8twSsAd44bCybDMC+wOAI49lkGFb3fwZ+nlMGYEaqdUZqqjeP9f+k3f6MFTgQeLph+TdpLEf7\nR8QQQESsA/YvuZ6mSHoLcDTwAPV/wNlkSJdQVwLrgLsj4jEyywB8E7gYaPzsXW4ZArhT0nJJ56ex\nnDIcAjwnaVG6lPo9SXuTV4ZGZwL/mOazyBARzwPfAH4N/BvwYkT8mDHU78Y6uVX+Q8qSasD/Bj4T\nEevZseZKZ4iI16J+Kfgg4D2STiKjDJL+CzAUEQ+z8wcSVzZDckLUL0GeRv1thfeQ0d8D9TOk2cB3\nU44N1K+e5ZQBAEmdwOnAkjSURQZJM4HPUr8S+LvAPpLOZgz1u7HWfzM5uGH5oDSWoyFJ3QCSDgCe\nLbmenZI0lXpT/X5E3JSGs8qwVUS8BPwzcCx5ZTgBOF3Sk8A/UX+f+PvAuowyEBHPpJ//l/rbCseT\n19/Db4CnI+LBtHwd9UabU4at5gIPRcRzaTmXDMcC90bEf0TEFurvD7+bMdTvxgrLgbdJ6pHUBZxF\n/dp6DsT2Zxk3A59I8+cANw3foGKuAh6LiG81jGWTQdJ/2nqHoKS9gA8AK8koQ0R8KSIOjoiZ1P/t\n/zQiPgbcQiYZJO2drnwgaR/q7++tIq+/hyHgaUmz0tApwKNklKHBfOq/pG2VS4YngD5Je0oS9b+D\nxxhD/f5KQ+oft6F+R94U4MqI+FrJJe2SpH+kfrPJG4EhoJ/6b+pLgDcDTwEfjYgXyqpxZ9Lds/dQ\n/w8w0vQl6jcAXUseGX4PWEz9l5sp1M+8F0raj0wyNJJ0IvD5iDg9pwySDqF+dhHUL6leExFfyykD\ngKR3AH8PdAJPAucCHeSVYW/qdc6MiJfTWDZ/D5Iupt5Et1D/Jfl8YBot1u/GamZmViBfCjYzMyuQ\nG6uZmVmB3FjNzMwK5MZqZmZWIDdWMzOzArmxmpmZFciN1czMrED/H7nb8uIpabezAAAAAElFTkSu\nQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='MidnightBlue', linestyle='-', linewidth=0.5)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADDCAYAAAA/djDGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFrNJREFUeJzt3X201VWdx/H3B8IUFAQnryV4lRAfIwQfEDPRdJqpyRzT\nlEzRydZqpaNmk5U1MuYay8rlKlOnVkpJDybjxYdW+VB6tREVFBDSxByhcBIcl6ikjg/4nT9+++LP\n6+Vy7rnn3HP2uZ/XWndxfvv+Hr7fA4vv2Xv/9vkpIjAzM7PaGNLoAMzMzFqJC6uZmVkNubCamZnV\nkAurmZlZDbmwmpmZ1dDbGh1As5Dk26PNzOwtIkJ92d891pKIyPpn9uzZDY/BOTiHZvjJPX7n0Dw/\n1XBhNTMzqyEX1hayevUzjQ6h35xDc8g9h9zjB+eQMxfWFrLPPgc0OoR+cw7NIfccco8fnEPOVO0Y\ncquRFH4vzMysTBLhm5fMzMwax8ttSqQ+fSgxM7M+aGtrZ82aVY0Oo+48FJwU61j9XpiZ1Y+qXsLS\nKB4KNjMza7CKCqukr0j6vaQHJS2WtF+Fx10v6Z7+hbjZa5wv6bB6XsPMzKxSm51jlTQN+BAwOSJe\nkzQG2KKC40YBewPPSdo5Ilb1N9gerjEkImbX+rxmZmbVqqTH+k7g6Yh4DSAinomINRUcdzRwI3At\nMLOrUdIcSZdLukfSY5JmSPqRpIclXVXa7whJCyTdL+kXkoan9pWSviHpfuCYdL6j0+/2k3S3pKWS\n7pU0QlK7pLvSee5PHxTMzMzqopLCeiuwk6RHJF0m6f0Vnnsm8AtgHqXCmmwbEQcCZ1MU329GxJ7A\nJEmTJG0HfBX4QETsCzyQ9u3ydETsGxHXdjVIGgZcA/xzREwGDgdeAtYCh6fzHA9cWmH8ZmZmfbbZ\noeCIeEHSFOBg4DDgGklfioirN3WMpO2BCRFxX9p+RdKeEfFw2uWm9Ody4MlS+0PAzsA4YE/gbhVr\nYIYBC0qX+EUPl90N+EtELE5x/zVdewvge5ImAxuAXTeXs5mZ1c+CBY8BMH36hKbb7uzsZO7cDgDG\njRtTVX59Xm4j6WPASRHx0V72OR24AFgHCNgGuCIi/lXSHOCmiOiQ1J5eT0rHzaEouq8AMyPihB7O\nvRKYGhHPdDvmUeA/IuJ93fafDYyIiHMkDQVeioi3zBF7uY2ZWb15uU3XSSdKmlBqmgz8aTOHzQQ+\nGBHjI2IXYF/eOhy88RI9tN0LHCTp3SmG4ZI219NcAewgaWo6ZutUSEcBT6Z9TgKGbuY8ZmZmVatk\njnVr4Mdpuc1SYA/g32DjUpd/KO+ceqE7RcTCrrZ0R/CzaZlO948r0f11RDwNnAz8XNKDFMPAu/Ww\nf/mYV4HjKIZ9l1LMDb8duBw4WdISYCLwQgU5m5mZVcXfvJR4KNjMrN48FGxmZmZ95MJqZmZWQ366\nzZv46TZmZvXS1tbe6BAGhAtrSW5j/2Zm1nw8FNxCuhY558w5NIfcc8g9fnAOOXNhNTMzqyEvt0kk\nhd8LMzMr83IbMzOzBnNhbSGtMJ/hHJpD7jnkHj84h5y5sJqZmdWQ51gTz7GamVl3nmM1MzNrMBfW\nFtIK8xnOoTnknkPu8YNzyJkLq5mZWQ15jjXxHKuZmXXnOVYzM7MG85fwl0h+uo2Z2aa0tbWzZs2q\nivdfsOAxpk+fUL+AmpQL65t4KNjMbFPWrnXnoxKeY00khQurmVlvNOger9l0c6ySdpR0vaRHJf1R\n0iWS6t5LlvROSdfW+zpmZmbd1fvmpQ6gIyImAhOBbYAL63xNIuLJiPh4va9jZmab5nWsNSbpMOCl\niLgaIK1l+RxwiqStJH1b0nJJSyWdlo6ZIqlT0iJJv5bUltpPlbRQ0hJJ8yRtmdrnSPqOpLslPSbp\n6NTeLml56fVdku5PP9PqlbOZmVk9e6x7AQ+UGyJiPbAa+DSwEzApIiYDP01DxJcCH4uI/YA5vNG7\nvS4i9o+IfYBHgE+VTrtDRBwEfAS4qHy59OdTwOERsS9wfLqGmZnV2WC8Ixgad1fwIcDlXd/IEBHP\nStoL2Bu4TcW6lyHAX9L+kyRdAGwLjABuKZ3r+nSOP0javodrDQO+L2kysAHYtR4JmZkNFl1DvF2F\ns5W2Ozs7mTu3A4Bx48b07Y1J6nZXsKQPAOdFxCGltm2AlcCdFIX1t6Xf7Q18P/U+u5/rceDIiPi9\npFnAIRHxT5LmADdFREfa7/mIGCmpPbVPkjQbGBER50gaSjE8vUUP1/BdwWZmverbXcGtsI61qe4K\nTkVzK0mfBEhF7WKKId5bgM+kNiSNBlYA7+iaA5X0Nkl7ptNtDayRNAw4oZfL9pT8KODJ9PokYGi/\nEjMzM+tFve8K/kfg45IepZgbfQk4F7gS+DOwTNISYGZEvAocA1wkaSmwBDgwnec8YCHwO+APpfN3\n/+jU00epy4GT03UmAi/UIjEzM+td7r3VavkLIhIPBZuZbY6/IKIS/hJ+MzOrC69jNTMzs37zUHBS\nDAWbmdmm9PXpNq2gmqFgP92mxB8yzMysvzwU3EJaYT7DOTSH3HPIPX5wDjlzYTUzM6shz7EmksLv\nhZmZlXm5jZmZWYO5sLaQVpjPcA7NIfccco8fnEPOXFjNzMxqyHOsiedYzcysO8+xmpmZNZgLawtp\nhfkM59Accs8h9/jBOeTMhdXMzKyGPMeaeI7VzMy68xyrmZlZg/lL+EukPn0oMTOzCg2mJ+N4KDgp\nHhvn98LMrD6U5RPEPBRsZmbWYJstrJJel/St0vbnJZ1XycklnSXpJUnb9CfIzVzjI5LOqdf5zczM\n+qKSHuvLwNGSxlRx/uOB24Cjqzh2syQNjYibIuKb9Ti/mZlZX1VSWF8DfgCc3ZcTSxoPDAP+HfhE\nqX2WpPmSbpX0uKTTUy94saQFkrbtOl7SryUtknSnpImpfY6kKyTdA1yUzndp+t32kjokLZW0RNK0\n1D4/nWe5pFP7koeZmVlfVFJYA7gMOKGPQ7rHA9dGxH3AuyW9o/S7vYCjgP0pCu/zETEFuBc4Ke3z\nA+D0iNgP+AJwRen4HSPiwIj4l1KMAN8FOiNiMjAFeCi1n5LOsx9wpqTRfcjDzMysYhUtt4mIv0r6\nMXAm8FKF554JfDS9vh44Frg8bd8RES8CL0paB/wytS8H3iNpBDAdmKc31sAMK5173iaueRhwYoo5\ngPWp/SxJR6XXY4FdgYUV5mFmZjXU9VWH06dPaLrtzs5O5s7tAGDcuGpmQCtYbiPp+YgYmXp5i4Gr\n0nFf6+WYvYH7gb+kpi2AlRFxsKRZwNSIOCPtuzJtP9P1O+ArwCMRsWMP554D3BQRHWl74/kkrQXG\nRsSrpf0PAS4AjoiIlyXdAcyOiLu6ndfLbczM6sbLbd50XoCIWAdcC1QyRzmToniNTz9jgXdJGldJ\nUBGxHlgp6ZiNQUiTKjj0t8Bn0/5DJI0ERgHrUlHdHZhWSQxmZmbVqHSOtcvFwHZdbWmpy7/1cMxx\nwPxubfMp5l27f2TZ1EeYTwKfSjci/R44cjP7A5wFHCppGUWPeQ/gZmCYpIeAC4F7ejnezMysX/zN\nS4mHgs3M6slDwWZmZlYFF1YzM7Ma8tNt3sRPtzEzq4e2tvZGhzBgXFhLchz/NzOz5uKh4BbStcg5\nZ86hOeSeQ+7xg3PImQurmZlZDXm5TSIp/F6YmVmZl9uYmZk1mAtrC2mF+Qzn0BxyzyH3+ME55MyF\n1czMrIY8x5p4jtXMzLrzHKuZmVmDubC2kFaYz3AOzSH3HHKPH5xDzlxYzczMashzrInnWM3MrDvP\nsZqZmTWYv4S/RPLTbczMctTW1s6aNasaHQbgoeCNJAX4vTAzy5Pq8oQyDwWbmZk12IAPBUvaADxI\n8VTxAK6JiG8OdBxmZmb1MOBDwZKej4iRVR47NCI21DqmdG4PBZuZZWtwDwX3GKCklZLGpNdTJd2R\nXs+WdLWk/wKulvR2SVdJWibpAUkz0n6zJF0v6Q5JKySdVzr3CZLuk7RY0hXyXUpmZlYnjbgreCtJ\ni3ljKPjrETGPt3YXy9t7AAdFxCuSzgZej4hJknYDbpW0a9pvP2Av4P+ARZJ+CbwIHAdMj4gNki4D\nTgB+Uq8Ezcxs8GpEYX0xIqb00N5bL/LGiHglvX4f8F2AiFghaRUwMf3utoh4FkDSdWnfDcBUikIr\nYEtgbb+zMDOzptT1VYrTp0/o83ZnZydz53YAMG7cmKqu30zrWF/jjaHpLbv97oVejisX5OjW3rX9\no4j4Sv/CMzOzHHQVzGq2Z8yYwYwZMzZun3/++X2+ftPMsQIrKXqWAB/r5fjfUQzlImkiMA5YkX53\nhKRtJW0FHAXcDdwOHCPpHemY0ZJ26l8KZmZmPWtEj3XLbnOsN0fEucDXgCslPQd09nL85cAVkpYB\nrwKzIuLVdD/SQqAD2BGYGxGLASR9lWIudgjwCnAa8Od6JGdmZoNby3zzkqRZwNSIOKPK473cxsws\nW4N7uY2ZmVnLapkea3+5x2pmlrPm6bE2013BTcDfG2FmlqO2tvZGh7CRC2uJe+9mZtZfnmNtIV2L\nnHPmHJpD7jnkHj84h5y5sJqZmdWQb15KJIXfCzMzK/NyGzMzswZzYW0hrTCf4RyaQ+455B4/OIec\nubCamZnVkOdYE8+xmplZd55jNTMzazAX1hbSCvMZzqE55J5D7vGDc8iZC6uZmVkNeY418RyrmZl1\n5zlWMzOzBvOX8JdIfrqNmVmttbW1s2bNqkaHMWA8FJz4eaxmZvVSn2elDgQPBZuZmTVYVoVV0lGS\nXpc0cTP7/VLSyIGKy8zMrEtWQ8GSrgGGAw9ExPk1PreHgs3M6sJDwU1J0gjgAOA04PjUtoOkOyUt\nlrRM0kGpfaWkMen1fEmLJC2XdGrDEjAzs0Ehp7uCPwrcEhGrJT0laR/gUODmiPi6ilt6h6d9yx+N\nTomIZyVtCSySdF1ErBvg2M3MbJDIqbDOBC5Jr+cBnwBuAOZIGgbcEBEPpt+Xu+1nSToqvR4L7Aos\nHIB4zcwsWbDgMaZPn7DxNdCU252dncyd2wHAuHFjqso1izlWSaOBJ4CnKHqjQ4GIiJ0l7QB8GDgd\nuDgifiJpJTAVeA9wAXBERLws6Q5gdkTc1cM1PMdqZlYXnmNtRscCV0fELhExPiLagZWS3g88FRFX\nAj8EpnQ7bhSwLhXV3YFpAxu2mZkNNrkMBR8HXNStrQOYA7wg6TVgPXBi+l3XR6Obgc9IeghYAdwz\nALGamdkglsVQ8EDwULCZWb14KNjMzMyq5MJqZmZWQ7nMsQ4QP93GzKzW2traGx3CgHJhLcl1DsDM\nzJqHh4JbSNci55w5h+aQew65xw/OIWcurGZmZjXk5TaJpPB7YWZmZV5uY2Zm1mAurC2kFeYznENz\nyD2H3OMH55AzF1YzM7Ma8hxr4jlWMzPrznOsZmZmDebC2kJaYT7DOTSH3HPIPX5wDjlzYTUzM6sh\nz7EmnmM1M7PuPMdqZmbWYP4S/hLJT7cxG2za2tpZs2ZVo8N4iwULHmP69AmNDqNfWiGHariwvomH\ngs0Gm7Vr/YHaastzrImkcGE1G4zkR0baJmU/xyrpKEmvS5pYavuWpOWSLuph/49IOmdgozQzM9u0\npuqxSroGGA48EBHnp7ZngdHdb9mVNDQiNtTw2u6xmg1KzdljbYX5yVbIIeseq6QRwAHAacDxqe0G\nYGvgAUnHSpoj6QpJ9wAXSZol6dK07/aSOiQtlbRE0rTUPl/SotTrPbUx2ZmZ2WDRND1WSZ8A3h8R\nn5F0J3BWRCyR9HxEjEz7zAG2i4gj0/YsYGpEnJF6uwsi4rsqbu/dOiLWS9o2Ip6VtCWwKF1jXQ/X\nd4/VbFBqzh6rNYdqeqzNdFfwTOCS9Hpe2l4CdE9o3iaOPww4ESANG69P7WdJOiq9HgvsCiysUcxm\n1gK6vnqva9jS24N3u7Ozk7lzOwAYN24M1WiKHquk0cATwFMU3cahFPVxZ0nrI2KbtN8c4KaI6Ejb\n5R7rWmBsRLxaOu8hwAXAERHxsqQ7gNkRcVcPMbjHajYoNWePtRXmJ1shh5znWI8Fro6IXSJifES0\nAyslHdyHc/wW+CyApCGSRgKjgHWpqO4OTKt55GZmZiXNUliPA+Z3a7uOYjj49VJbbx8rzwIOlbQM\nuB/YA7gZGCbpIeBC4J6aRWxmVke59/SgNXKoRlMMBTcDDwWbDVbNORRszSHnoWAzMytphWeZtkIO\n1XBhNTMzqyEPBSfFULCZDTbN+nQbaw65r2NtOH/IMDOz/vJQcAtphfkM59Accs8h9/jBOeTMhbWF\nLF58X6ND6Dfn0BxyzyH3+ME55MyFtYU8/fQfGx1CvzmH5pB7DrnHD84hZy6sZmZmNeTC2kJWr36m\n0SH0m3NoDrnnkHv84Bxy5uU2iZfbmJlZT/q63MaF1czMrIY8FGxmZlZDLqxmZmY15MJqZmZWQy6s\ngKS/k/SIpEclfbHR8VRC0pWS1qbnz3a1jZZ0q6QVkm6RNKqRMfZG0lhJt0t6SNJySWek9pxyeLuk\n+yQtSXlcmNqzyaGLpCGSFku6MW1nlYOkVZIeTH8XC1NbbjmMkjRP0h/Sv6cDcspB0sT0/i9Ofz4n\n6YzMcvhyeu+XSfqppC2qiX/QF1ZJQ4DvAR8E9gJmStq9sVFVZA5FzGVfAn4TEbsBtwNfHvCoKvca\ncHZE7AUcCJyW3vdscoiIl4FDI2IfYBJwmKSDyCiHkjOBh0vbueXwOjAjIvaJiP1TW245fAf4VUTs\nAbwXeISMcoiIR9P7PwWYCrwAzCeTHCS1A58G9omISRTfpT+TauKPiEH9A0wDfl3a/hLwxUbHVWHs\n7cCy0vYjQFt6vQPwSKNj7EMu1wOH55oDMBxYCOyZWw7AWOA2YAZwY47/loCVwHbd2rLJARgJ/HcP\n7dnk0C3uvwV+l1MOwOgU6+hUVG+s9v+kQd9jBXYEVpe2n0htOdo+ItYCRMQaYPsGx1MRSTsDk4F7\nKf4BZ5NDGkJdAqwBOiPiYTLLAbgE+AJQXnuXWw4B3CZpkaRTU1tOOewCPC1pThpK/YGk4eSVQ9lx\nwM/S6yxyiIh1wMXAn4H/AZ6LiN9QRfwurK2t6RcpS9oa+E/gzIj4K2+NualziIjXoxgKHgscLGkG\nGeUg6cPA2ohYCvS2CL5pc0gOimII8kMU0woHk9HfA0UPaQpwWcrjBYrRs5xyAEDSMOBIYF5qyiIH\nSeOBz1GMBL4LGCHpBKqI34W1+GSyU2l7bGrL0VpJbQCSdgCeanA8vZL0NoqiOjcibkjNWeXQJSKe\nB34F7EteORwEHCnpceDnFPPEc4E1GeVARDyZ/vxfimmF/cnr7+EJYHVE3J+2r6MotDnl0OXvgQci\n4um0nUsO+wJ3R8QzEbGBYn54OlXE78IKi4AJktolbQEcTzG2ngPx5l7GjcDJ6fUs4IbuBzSZq4CH\nI+I7pbZscpD0N113CEraCjgCWEJGOUTEuRGxU0SMp/i3f3tEnAjcRCY5SBqeRj6QNIJifm85ef09\nrAVWS5qYmj4APERGOZTMpPiQ1iWXHFYA0yRtKUkUfwcPU0X8/kpDiuU2FHfkDQGujIhvNDikzZL0\nM4qbTbYD1gKzKT6pzwPGAX8CPh4RzzYqxt6ku2fvovgPMNLPuRQ3AF1LHjm8B/gxxYebIRQ9729L\nGkMmOZRJOgT4fEQcmVMOknah6F0ExZDqTyPiGznlACDpvcAPgWHA48ApwFDyymE4RZzjI2J9asvm\n70HSFyiK6AaKD8mnAtvQx/hdWM3MzGrIQ8FmZmY15MJqZmZWQy6sZmZmNeTCamZmVkMurGZmZjXk\nwmpmZlZDLqxmZmY19P/y4HJhgtD2owAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='MidnightBlue', linestyle=':', linewidth=0.5)\n", "ax.set_axisbelow(True)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADDCAYAAAA/djDGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFopJREFUeJzt3XuwZWV55/HvD2xErtKMSJQGJNBeUMJVsYnSokxmkhEZ\nvEBLFJ2QKksdJWY0RjOSEypGTBxLjTCxgj3SMUF6bBCsiBLliGOjXLoRBEEZ24ijwlCAIDJye+aP\n/R7cHg7d53Tv03uvfb6fqlO91rvX5Xn26TrPet93rb1TVUiSpMHYZtgBSJI0TiyskiQNkIVVkqQB\nsrBKkjRAFlZJkgbIwtokKaDTP5OTk0OPwRzMYRR+uh6/OYzOT5LlzJGFdYxMTk4OO4QtZg6joes5\ndD1+MIcRsnyuO1hYJUkaIAvrGLn11juHHcIWM4fR0PUcuh4/mEOXWVjHyCGHvGDYIWwxcxgNXc+h\n6/GDOYyQybnuED/SsCdJ+V5IkqbJXHewxypJ0gA9YdgBjJLM+bpEkjRbC2VQ0B6rJEkDZGGVJGmA\nZlVYk7w3ybeTfCvJuiRHzHK/C5NcsWUhbvIcE0mOmc9zSJI0W5ucY01yJPC7wMFV9VCSxcB2s9hv\nV+C5wM+S7FtVP9jSYGc4xzZVdfqgjytJ0uaaTY/1N4A7quohgKq6s6p+Oov9TgAuAs4HVkw1JlmZ\n5KwkVyS5JcnyJP8jyY1JPtm33bFJ1ia5OslnkuzQ2jck+UCSq4FXteOd0F47IsnXk1yb5BtJdkyy\nT5LL23GubhcKkiTNi9kU1i8Beye5KcnHk7x4lsdeAXwGWE1fYW2eXFUvBN5Br/h+sKqeAxyU5KAk\nuwN/Bry0qg4HrmnbTrmjqg6vqvOnGpIsAs4D/nNVHQy8DLgfuA14WTvOScDHZhm/JElztsmh4Kq6\nL8mhwIuAY4Dzkry7qs59vH2S7AHsX1XfbOsPJHlOVd3YNrm4/Xs98JO+9huAfYElwHOArycJsAhY\n23eKz8xw2mcCP66qdS3un7dzbwf8bZKDgYeBAzaVsyRp/qxdewsAy5btP3Lrk5OTrFq1BoAlSxYz\nMTGxvKom55LfnD95KckrgddX1Ss2ss1bgTOAu+h9asXOwNlV9V+TrAQurqo1SfZpywe1/VbSK7oP\nACuq6uQZjr0BOKyq7py2z3eB/15Vvz1t+9OBHavqXUm2Be6vqsfMEfe+Nm6BPGQlSUPQ0edYB//J\nS0mWJtm/r+lg4F83sdsK4Heqar+qegZwOI8dDn70FDO0fQM4Kslvthh2SLKpnubNwJ5JDmv77NQK\n6a7AT9o2rwe23cRxJEnabLOZY90J+FR73OZa4NnAn8Ojj7r8h/6NWy9076q6cqqt3RF8d3tMZ/o1\nS01frqo7gDcA/5TkW/SGgZ85w/b9+zwInEhv2PdaenPDTwTOAt6QZD2wFLhvFjlLkrRZ/BD+xqFg\nSZpfHS03fgi/JEnDZGGVJGmA/HabPh0dppAkjRB7rJIkDZCFdYxMPeTcZeYwGrqeQ9fjB3PoMgur\nJEkD5OM2TZLyvZAkTePjNpIkDZOFdYyMw3yGOYyGrufQ9fjBHLrMwipJ0gA5x9o4xypJmoFzrJIk\nDZOFdYyMw3yGOYyGrufQ9fjBHLrMwipJ0gA5x9o4xypJmoFzrJIkDZPfbtMnc74ukaSFY66DemvX\n3sKyZfvPTzAjzB6rJEkD5Bxrk6TA90KSHs8CLRejNcea5OlJLkzy3STfS/LhJPM+/JzkN5KcP9/n\nkSRpuvkeCl4DrKmqpcBSYGfg/fN8TqrqJ1X1mvk+jyTp8fkc64AlOQa4v6rOBWjPsvwR8MYkT0ry\nN0muT3Jtkre0fQ5NMpnkqiRfSPLU1n5qkiuTrE+yOsn2rX1lko8k+XqSW5Kc0Nr3SXJ93/LlSa5u\nP0fOV86SJM1nj/VA4Jr+hqq6F7gV+ENgb+CgqjoY+HQbIv4Y8MqqOgJYya96t5+tqudX1SHATcAf\n9B12z6o6Cng5cGb/6dq/twMvq6rDgZPaOSRJ82wh3hEMw3vc5mjgrKlPZKiqu5McCDwXuDRJ6BX9\nH7ftD0pyBvBkYEfgi33HurAd4ztJ9pjhXIuAv0tyMPAwcMB8JCRJC8XUEO9U4Ryn9cnJSVatWgPA\nkiWLmZiYWF5Vk3N5f+btruAkLwXeV1VH97XtDGwAvkqvsH6577XnAn/Xep/Tj/V94Liq+naSU4Cj\nq+o/JVkJXFxVa9p291TVLkn2ae0HJTkd2LGq3pVkW3rD09vNcA7vCpakjVigz7GOzl3BrWg+Kcnv\nA7Si9iF6Q7xfBN7U2kiyG3Az8JSpOdAkT0jynHa4nYCfJlkEnLyR0870BuwK/KQtvx7YdosSkyRp\nI+b7ruD/CLwmyXfpzY3eD7wHOAf4IXBdkvXAiqp6EHgVcGaSa4H1wAvbcd4HXAl8DfhO3/GnXz/N\ndD11FvCGdp6lwH2DSEyStHFj0FvdLH5ARONQsCRt3AItF6MzFCxJWth8jlWSJG0xh4Ibv49VkjQD\nh4IlSRomC+sYGYf5DHMYDV3Poevxgzl0mYVVkqQBco61cY5VkjQD51glSRomC+sYGYf5DHMYDV3P\noevxgzl0mYVVkqQBco61cY5VkjQD51glSRomC+sYGYf5DHMYDV3Poevxgzl0mYVVkqQBco61cY5V\nkjQD51glSRqmJww7gFGSOV+XSJJmYyENCNpjlSRpgCyskiQN0CYLa5JHkvx13/ofJ3nfbA6e5LQk\n9yfZeUuC3MQ5Xp7kXfN1fEmS5mI2PdZfAickWbwZxz8JuBQ4YTP23aQk21bVxVX1wfk4viRJczWb\nwvoQ8AngHXM5cJL9gEXAXwKv7Ws/JckFSb6U5PtJ3tp6weuSrE3y5Kn9k3whyVVJvppkaWtfmeTs\nJFcAZ7bjfay9tkeSNUmuTbI+yZGt/YJ2nOuTnDqXPCRJmovZFNYCPg6cPMch3ZOA86vqm8BvJnlK\n32sHAscDz6dXeO+pqkOBbwCvb9t8AnhrVR0BvBM4u2//p1fVC6vqv/TFCPBRYLKqDgYOBW5o7W9s\nxzkCeHuS3eaQhyRJszarx22q6udJPgW8Hbh/lsdeAbyiLV8IvBo4q61fVlW/AH6R5C7g8639euB5\nSXYElgGrk0cfglnUd+zVj3POY4DXtZgLuLe1n5bk+La8F3AAcOUs85AkbaG1a29h2bL9H10GRnJ9\ncnKSVavWALBkyWImJiaWV9XkXHLd5CcvJbmnqnZpvbx1wCfbfn+xkX2eC1wN/Lg1bQdsqKoXJTkF\nOKyq3ta23dDW75x6DXgvcFNVPX2GY68ELq6qNW390eMluQ3Yq6oe7Nv+aOAM4Niq+mWSy4DTq+ry\nacetX3V8JUmD1OHnWOflk5cCUFV3AecDs5mjXEGveO3XfvYCnpZkyWyCqqp7gQ1JXvVoEMlBs9j1\ny8Cb2/bbJNkF2BW4qxXVZwFHziYGSZI2x2znWKd8CNh9qq096vLnM+xzInDBtLYL6M27Tr9uebzr\nmN8H/qDdiPRt4LhNbA9wGvCSJNfR6zE/G7gEWJTkBuD9wBUb2V+SpC3ih/A3DgVL0vzpcKnxQ/gl\nSRomC6skSQPkt9v06fBQhSRpRNhjlSRpgCysY2TqIecuM4fR0PUcuh4/mEOXWVglSRogH7dpkpTv\nhSRpGh+3kSRpmCysY2Qc5jPMYTR0PYeuxw/m0GUWVkmSBsg51sY5VknSDJxjlSRpmCysY2Qc5jPM\nYTR0PYeuxw/m0GUWVkmSBsg51sY5VknSDJxjlSRpmPx2mz6Z83WJJGkUjNKAoz1WSZIGyMIqSdIA\nbfWh4CQPA9+iNyFcwHlV9cGtHYckSfNhq98VnOSeqtplM/fdtqoeHnRM7djVq/OSpK6Zx1LWibuC\nZwwyyYYki9vyYUkua8unJzk3yf8Czk3yxCSfTHJdkmuSLG/bnZLkwiSXJbk5yfv6jn1ykm8mWZfk\n7MTblCRJ82MYdwU/Kck6fjUU/FdVtZrHdhf7158NHFVVDyR5B/BIVR2U5JnAl5Ic0LY7AjgQ+H/A\nVUk+D/wCOBFYVlUPJ/k4cDLwD/OVoCRp4RpGYf1FVR06Q/vGepEXVdUDbfm3gY8CVNXNSX4ALG2v\nXVpVdwMk+Wzb9mHgMHqFNsD2wG1bnIUkaWSsXXsLy5bt/+gysFnrk5OTrFq1BoAlSxYzMTGxvKom\n5xLLyMyxJvke8MKquiPJUcAZVXVMktOBe6vqv7Xt1gAfnUo0yeXAm+kVz+VV9cbWPgHcATwCPK2q\n3ruJuJxjlaSOco51ZhvoFUeAV25k/6/RG8olyVJgCXBze+3YJE9O8iTgeODrwFeAVyV5SttntyR7\nb1kKkiTNbBhDwdtPm2O9pKreA/wFcE6SnwGTG9n/LODsJNcBDwKnVNWD7X6kK4E1wNOBVVW1DiDJ\nn9Gbi90GeAB4C/DD+UhOkrSwjc2H8Cc5BTisqt62mfs7FCxJHbXQh4IlSRpbY9Nj3VL2WCWpu0ap\nx+q32/TxGkOStKUcCpYkaYAsrGNk6iHnLjOH0dD1HLoeP5hDl1lYJUkaIG9eapKU74UkaRoft5Ek\naZgsrGNkHOYzzGE0dD2HrscP5tBlFlZJkgbIOdbGOVZJ0gycY5UkaZgsrGNkHOYzzGE0dD2HrscP\n5tBlFlZJkgbIOdbGOVZJ0gycY5UkaZj8dps+mfN1iSRpUxbaYKA9VkmSBsjCKknSAHWqsCY5Pskj\nSZZuYrvPJ9lla8UlSdKUTt0VnOQ8YAfgmqqaGPCxC7rzXkhSV3SozMxkfO8KTrIj8ALgLcBJrW3P\nJF9Nsi7JdUmOau0bkixuyxckuSrJ9UlOHVoCkqQFoUt3Bb8C+GJV3Zrk9iSHAC8BLqmqv0oSer1Z\n+PWu5xur6u4k2wNXJflsVd21lWOXJC0QXSqsK4APt+XVwGuBzwErkywCPldV32qv93fdT0tyfFve\nCzgAuHIrxCtJ4lcfbbhs2f4jvz45OcmqVWsAWLJkMRMTE8uranIu+XZijjXJbsCPgNvp9Ua3Baqq\n9k2yJ/B7wFuBD1XVPyTZABwGPA84Azi2qn6Z5DLg9Kq6fIZzOMcqSfOgA2VmY8Z2jvXVwLlV9Yyq\n2q+q9gE2JHkxcHtVnQP8PXDotP12Be5qRfVZwJFbN2xJ0kLTlaHgE4Ezp7WtAVYC9yV5CLgXeF17\nber66BLgTUluAG4GrtgKsUqSFrBODAVvDQ4FS9L86HiZGduhYEmSOsHCKknSAHVljnWr6PhwhSRp\nBNhjlSRpgCysY2TqIecuM4fR0PUcuh4/mEOXWVglSRogH7dpkpTvhSRpGh+3kSRpmCysY2Qc5jPM\nYTR0PYeuxw/m0GUWVkmSBsg51sY5VknSDJxjlSRpmCysY2Qc5jPMYTR0PYeuxw/m0GUWVkmSBsg5\n1sY5VknSDJxjlSRpmPx2mz6Z83WJpK4b1YGqtWtvYdmy/YcdxhYZhxw2hz1WSZIGyDnWJkmB74W0\n0PgnUJvQ7TnWJMcneSTJ0r62v05yfZIzZ9j+5UnetXWjlCTp8Y1UjzXJecAOwDVVNdHa7gZ2m37L\nbpJtq+rhAZ7bHqu0AI3Qn8BfMw7zk+OQA13usSbZEXgB8BbgpNb2OWAn4Jokr06yMsnZSa4Azkxy\nSpKPtW33SLImybVJ1ic5srVfkOSq1us9dTjZSZIWipHpsSZ5LfDiqnpTkq8Cp1XV+iT3VNUubZuV\nwO5VdVxbPwU4rKre1nq7a6vqo0kC7FRV9yZ5clXdnWR74Kp2jrtmOL89VmkBGpE/gRpdc+6xjtLj\nNiuAD7fl1W19PY9NavXj7H8M8DqANmx8b2s/LcnxbXkv4ADgygHFLGkMTH303tSwpesLd31ycpJV\nq9YAsGTJYiYmJpZX1SRzMBI91iS7AT8CbqfXbdyWXn3cN8m9VbVz224lcHFVrWnr/T3W24C9qurB\nvuMeDZwBHFtVv0xyGXB6VV0+Qwz2WKUFaAT+BM5oHOYnxyEHOjzH+mrg3Kp6RlXtV1X7ABuSvGgO\nx/gy8GaAJNsk2QXYFbirFdVnAUcOPHJJkvqMSmE9EbhgWttn6Q0HP9LXtrFry9OAlyS5DrgaeDZw\nCbAoyQ3A+4ErBhaxJM2jMejpjUUOm2MkhoJHgUPB0sLkn0BtQmeHgiVJfcbhu0zHIYfNYWGVJGmA\nHApu/D5WSdIMHAqWJGmYLKxjZBzmM8xhNHQ9h67HD+bQZRbWMbJu3TeHHcIWM4fR0PUcuh4/mMOo\nSLJ8rvtYWMfIHXd8b9ghbDFzGA1dz6Hr8YM5jJDlc93BwipJ0gBZWMfIrbfeOewQtpg5jIau59D1\n+MEcuszHbZreJy9JkvTrqmpOj9xYWCVJGiCHgiVJGiALqyRJA2RhlSRpgCysQJJ/l+SmJN9N8ifD\njmc2kpyT5Lb2/bNTbbsl+VKSm5N8Mcmuw4xxY5LsleQrSW5Icn2St7X2LuXwxCTfTLK+5fH+1t6Z\nHKYk2SbJuiQXtfVO5ZDkB0m+1X4XV7a2ruWwa5LVSb7T/j+9oEs5JFna3v917d+fJXlbx3L40/be\nX5fk00m225z4F3xhTbIN8LfA7wAHAiuSPGu4Uc3KSnox93s38C9V9UzgK8CfbvWoZu8h4B1VdSDw\nQuAt7X3vTA5V9UvgJVV1CHAQcEySo+hQDn3eDtzYt961HB4BllfVIVX1/NbWtRw+AvxzVT0b+C3g\nJjqUQ1V9t73/hwKHAfcBF9CRHJLsA/whcEhVHQQ8AVjB5sRfVQv6BzgS+ELf+ruBPxl2XLOMfR/g\nur71m4CntuU9gZuGHeMccrkQeFlXcwB2AK4EntO1HIC9gEvpfcLMRV38vwRsAHaf1taZHIBdgP89\nQ3tncpgW978FvtalHIDdWqy7taJ60eb+TVrwPVbg6cCtfes/am1dtEdV3QZQVT8F9hhyPLOSZF/g\nYOAb9P4DdyaHNoS6HvgpMFlVN9KxHIAPA+8E+p+961oOBVya5Kokp7a2LuXwDOCOJCvbUOonkuxA\nt3LodyLwj225EzlU1V3Ah4AfAv8H+FlV/QubEb+FdbyN/EPKSXYC/ifw9qr6OY+NeaRzqKpHqjcU\nvBfwovaB3Z3JIcnvAbdV1bVs/HsnRzaH5qjqDUH+Lr1phRfRod8DvR7SocDHWx730Rs961IOACRZ\nBBwHrG5NncghyX7AH9EbCXwasGOSk9mM+C2svSuTvfvW92ptXXRbkqcCJNkTuH3I8WxUkifQK6qr\nqupzrblTOUypqnuAfwYOp1s5HAUcl+T7wD/RmydeBfy0QzlQVT9p//5fetMKz6dbv4cfAbdW1dVt\n/bP0Cm2Xcpjy74FrquqOtt6VHA4Hvl5Vd1bVw/Tmh5exGfFbWOEqYP8k+yTZDjiJ3th6F4Rf72Vc\nBLyhLZ8CfG76DiPmk8CNVfWRvrbO5JDk30zdIZjkScCxwHo6lENVvaeq9q6q/ej93/9KVb0OuJiO\n5JBkhzbyQZId6c3vXU+3fg+3AbcmWdqaXgrcQIdy6LOC3kXalK7kcDNwZJLtk4Te7+BGNiN+P9KQ\n3uM29O7I2wY4p6o+MOSQNinJP9K72WR34DbgdHpX6quBJcC/Aq+pqruHFePGtLtnL6f3B7Daz3vo\n3QB0Pt3I4XnAp+hd3GxDr+f9N0kW05Ec+iU5GvjjqjquSzkkeQa93kXRG1L9dFV9oEs5ACT5LeDv\ngUXA94E3AtvSrRx2oBfnflV1b2vrzO8hyTvpFdGH6V0knwrszBzjt7BKkjRADgVLkjRAFlZJkgbI\nwipJ0gBZWCVJGiALqyRJA2RhlSRpgCyskiQN0P8HX58TuOhPYaAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='MidnightBlue', linestyle=':', linewidth=0.5)\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAADRCAYAAABxaJNWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGiFJREFUeJzt3XuQXWWd7vHvkxCEhFvCiIwkBDIQBTRyNySDRJTR0RE5\n3iAyipzBKks8gHq84RyZHmoccPRY3uCMJWYkgyIZws3yhkKLh6AJJJAIBoYhKowQhpKbyEEIz/lj\nvY3bpul0d3Zn73f386nq6rXeXpffb3dX/9b7vmvtLdtEREREe0zqdAARERG9JIU1IiKijVJYIyIi\n2iiFNSIioo1SWCMiItoohTUiIqKNUlgBSa+VtF7SHZI+0ul4RkLSBZI2Slrb0jZd0vcl3S7pe5J2\n7mSMw5E0U9I1km6VtE7SaaW9phyeJ+mnktaUPD5Z2qvJYYCkSZJWS7qyrFeVg6RfSLql/C5Wlrba\ncthZ0jJJPy9/Ty+vKQdJc8vrv7p8f1jSaZXl8LHy2q+VdJGkbccS/4QvrJImAV8EXgMcACyW9OLO\nRjUiS2hibvVR4Ae2XwRcA3xsq0c1ck8BH7B9AHAEcGp53avJwfYTwCttHwTMA46WtJCKcmhxOnBb\ny3ptOTwNLLJ9kO3DS1ttOXwO+Lbt/YCXAeupKAfbd5TX/2DgEOAx4DIqyUHSbODdwEG25wHbAIsZ\nS/y2J/QXMB/4Tsv6R4GPdDquEcY+G1jbsr4eeEFZ3h1Y3+kYR5HL5cCra80BmAqsBPavLQdgJnA1\nsAi4ssa/JWADsOugtmpyAHYC/mOI9mpyGBT3XwA/rikHYHqJdXopqleO9X/ShO+xAnsAd7es31Pa\narSb7Y0Atu8DdutwPCMiaS/gQOAnNH/A1eRQhlDXAPcB/bZvo7IcgM8CHwJa34atthwMXC1plaRT\nSltNOewNPCBpSRlK/bKkqdSVQ6vjga+X5SpysP0g8BngV8B/Ag/b/gFjiD+Ftbd1/ftVStoB+Dfg\ndNu/5dkxd3UOtp92MxQ8EzhS0iIqykHS64GNtm8GNMymXZtDsdDNEOTraKYVjqSi3wNND+lg4Esl\nj8doRs9qygEASVOAY4FlpamKHCTNAd5PMxL4QmCapBMZQ/wprM2VyZ4t6zNLW402SnoBgKTdgfs7\nHM+wJG1DU1SX2r6iNFeVwwDbjwDfBg6lrhwWAsdKugv4Bs088VLgvopywPa95ft/0UwrHE5dv4d7\ngLtt31jWL6UptDXlMOAvgZtsP1DWa8nhUOB627+xvYlmfngBY4g/hRVWAftImi1pW+AEmrH1Gog/\n7mVcCbyrLJ8EXDF4hy7zVeA2259raasmB0l/MnCHoKTtgWOANVSUg+0zbe9pew7N3/41tt8BXEUl\nOUiaWkY+kDSNZn5vHXX9HjYCd0uaW5peBdxKRTm0WExzkTaglhxuB+ZL2k6SaH4HtzGG+FUmZCc0\nSa+luSNvEnCB7XM6HNJmSfo6zc0muwIbgbNortSXAbOAXwJvs/1Qp2IcTrl79jqaf4AuX2fS3AB0\nCXXk8FLgazQXN5Noet6fljSDSnJoJeko4IO2j60pB0l70/QuTDOkepHtc2rKAUDSy4CvAFOAu4CT\ngcnUlcNUmjjn2H60tFXze5D0IZoiuonmIvkUYEdGGX8Ka0RERBtlKDgiIqKNUlgjIiLaKIU1IiKi\njVJYIyIi2mibTgfQLSQ5N3JFRMQgw71xypDSY42IiGijFNaIiIg2SmHtIStW3NnpELZYcugOtedQ\ne/yQHGqWwhoREdFGeeelIjcvRUTEEHLzUkRERCflcZsWGvV1SUREjNREGRRMjzUiIqKNUlgjIiLa\naESFVdLHJf1M0i2SVks6bIT7XS7phi0LcbPn6JN09HieIyIiYqQ2O8cqaT7wOuBA20+VD63ddgT7\n7Qy8BHhY0l62f7GlwQ5xjkm2z2r3cSMiIsZqJD3WPwUesP0UgO3f2L5vBPu9CbiS5pPXFw80Sloi\n6TxJN0i6U9IiSf8i6TZJX23Z7hhJKyTdKOmb5ZPpkbRB0jmSbgTeUo73pvKzwyRdL+lmST+RNE3S\nbEnXlePcWC4UIiIixsVICuv3gT0lrZf0JUmvGOGxFwPfBJbRUliLXWwfAXyApvh+yvb+wDxJ8yTt\nCvwt8CrbhwI3lW0HPGD7UNuXDDRImgJcDPwP2wcCrwYeBzYCry7HOQH4wgjjj4iIGLXNDgXbfkzS\nwcCRwNHAxZI+avvC59pH0m7APrZ/WtZ/L2l/27eVTa4q39cB97a03wrsBcwC9geulyRgCrCi5RTf\nHOK0LwJ+bXt1ifu35dzbAl+UdCCwCdh3czlHRMT4GXirwwUL9um69f7+fpYuXQ7ArFkz6OvrW2S7\nfzT5jfqdlyS9GXin7TcOs837gLOBB2netWJH4Hzb/0vSEuAq28slzS7L88p+S2iK7u+BxbZPHOLY\nG4BDbP9m0D53AP/H9p8P2v4sYJrtD0uaDDxu+1lzxJIME+Qhq4iIDqj0Odb2v/OSpLmS9mlpOhD4\n5WZ2Wwy8xvYc23sDh/Ls4eBnTjFE20+AhZL+rMQwVdLmepq3A7tLOqTss0MppDsD95Zt3glM3sxx\nIiIixmwkc6w7AF8rj9vcDOwH/B0886jLX7VuXHqhe9peOdBW7gh+qDymM/iaxYOXbT8AvAv4hqRb\naIaBXzTE9q37PAkcTzPsezPN3PDzgPOAd0laA8wFHhtBzhEREWOSN+EvMhQcETG+Ki03eRP+iIiI\nTkphjYiIaKN8uk2LSocpIiKii6THGhER0UYprD1k4CHnmiWH7lB7DrXHD8mhZimsERERbZTHbQpJ\nzmsRERGD5HGbiIiITkph7SG9MJ+RHLpD7TnUHj8kh5qlsEZERLRR5liLzLFGRMQQMscaERHRSSms\nPaQX5jOSQ3eoPYfa44fkULMU1oiIiDbKHGuROdaIiBhC5lgjIiI6KZ9u00Kjvi6JiJg4Rjuot2LF\nnSxYsM/4BNPF0mONiIhoo8yxFpIMeS0iIp7LBC0X3TXHKmkPSZdLukPSv0v6rKRxH36W9KeSLhnv\n80RERAw23kPBy4HltucCc4EdgU+O8zmxfa/tt433eSIi4rnlOdY2k3Q08LjtCwHKsyzvB06WtL2k\nT0taJ+lmSaeWfQ6W1C9plaTvSHpBaT9F0kpJayQtk7RdaV8i6XOSrpd0p6Q3lfbZkta1LF8n6cby\nNX+8co6IiBjPHusBwE2tDbYfBe4G3g3sCcyzfSBwURki/gLwZtuHAUv4Q+/2UtuH2z4IWA/8Tcth\nd7e9EHgDcG7r6cr3+4FX2z4UOKGcIyIixtlEvCMYOve4zVHAeQPvyGD7IUkHAC8BrpYkmqL/67L9\nPElnA7sA04DvtRzr8nKMn0vabYhzTQH+WdKBwCZg3/FIKCJiohgY4h0onL203t/fz9KlywGYNWsG\nfX19i2z3j+b1Gbe7giW9CviE7aNa2nYENgA/oimsP2z52UuAfy69z8HHugs41vbPJJ0EHGX7v0ta\nAlxle3nZ7hHbO0maXdrnSToLmGb7w5Im0wxPbzvEOXJXcETEMCboc6zdc1dwKZrbS/prgFLUPkMz\nxPs94D2lDUnTgduB5w/MgUraRtL+5XA7APdJmgKcOMxph3oBdgbuLcvvBCZvUWIRERHDGO+7gv8b\n8DZJd9DMjT4OnAlcAPwKWCtpDbDY9pPAW4BzJd0MrAGOKMf5BLAS+DHw85bjD75+Gup66jzgXeU8\nc4HH2pFYREQMrwd6q2OSN4goMhQcETG8CVouumcoOCIiJrY8xxoRERFbLEPBRT6PNSIihpCh4IiI\niE5KYe0hvTCfkRy6Q+051B4/JIeapbBGRES0UeZYi8yxRkTEEDLHGhER0UkprD2kF+YzkkN3qD2H\n2uOH5FCzFNaIiIg2yhxrkTnWiIgYQuZYIyIiOimFtYf0wnxGcugOtedQe/yQHGqWwhoREdFGmWMt\nMscaERFDyBxrREREJ23T6QC6iUZ9XRIRESMxkQYE02ONiIhooxTWiIiINtpsYZX0tKR/aln/oKRP\njOTgks6Q9LikHbckyM2c4w2SPjxex4+IiBiNkfRYnwDeJGnGGI5/AnA18KYx7LtZkibbvsr2p8bj\n+BEREaM1ksL6FPBl4AOjObCkOcAU4B+At7e0nyTpMknfl3SXpPeVXvBqSSsk7TKwv6TvSFol6UeS\n5pb2JZLOl3QDcG453hfKz3aTtFzSzZLWSJpf2i8rx1kn6ZTR5BERETEaIymsBr4EnDjKId0TgEts\n/xT4M0nPb/nZAcBxwOE0hfcR2wcDPwHeWbb5MvA+24cBHwLOb9l/D9tH2P6fLTECfB7ot30gcDBw\na2k/uRznMOB0SdNHkUdERMSIjehxG9u/lfQ14HTg8REeezHwxrJ8OfBW4Lyyfq3t3wG/k/Qg8K3S\nvg54qaRpwAJgmfTMQzBTWo697DnOeTTwjhKzgUdL+xmSjivLM4F9gZUjzCMiIrbQihV3smDBPs8s\nA1253t/fz9KlywGYNWsGfX19i2z3jybXzb7zkqRHbO9Uenmrga+W/f5+mH1eAtwI/Lo0bQtssH2k\npJOAQ2yfVrbdUNZ/M/Az4OPAett7DHHsJcBVtpeX9WeOJ2kjMNP2ky3bHwWcDRxj+wlJ1wJn2b5u\n0HH9h45vRES0U8XPsY7LOy8JwPaDwCXASOYoF9MUrznlaybwQkmzRhKU7UeBDZLe8kwQ0rwR7PpD\n4L1l+0mSdgJ2Bh4sRfXFwPyRxBARETEWI51jHfAZYNeBtvKoy98Nsc/xwGWD2i6jmXcdfN3yXNcx\nfw38TbkR6WfAsZvZHuAM4JWS1tL0mPcDvgtMkXQr8EnghmH2j4iI2CJ5E/4iQ8EREeOn4lKTN+GP\niIjopBTWiIiINsqn27SoeKgiIiK6RHqsERERbZTC2kMGHnKuWXLoDrXnUHv8kBxqlsIaERHRRnnc\nppDkvBYRETFIHreJiIjopBTWHtIL8xnJoTvUnkPt8UNyqFkKa0RERBtljrXIHGtERAwhc6wRERGd\nlMLaQ3phPiM5dIfac6g9fkgONUthjYiIaKPMsRaZY42IiCFkjjUiIqKT8uk2LTTq65KIiOgG3TTg\nmB5rREREG6WwRkREtNFWHwqWtAm4hWZC2MDFtj+1teOIiIgYD1v9rmBJj9jeaYz7Tra9qd0xlWO7\nqfMREVGbcSxlVdwVPGSQkjZImlGWD5F0bVk+S9KFkv4vcKGk50n6qqS1km6StKhsd5KkyyVdK+l2\nSZ9oOfaJkn4qabWk86XcphQREeOjE3cFby9pNX8YCv5H28t4dnexdX0/YKHt30v6APC07XmSXgR8\nX9K+ZbvDgAOA/weskvQt4HfA8cAC25skfQk4EfjX8UowIiImrk4U1t/ZPniI9uF6kVfa/n1Z/nPg\n8wC2b5f0C2Bu+dnVth8CkHRp2XYTcAhNoRWwHbBxi7OIiIiusWLFnSxYsM8zy8CY1vv7+1m6dDkA\ns2bNoK+vb5Ht/tHE0jVzrJL+HTjC9gOSFgJn2z5a0lnAo7b/d9luOfD5gUQlXQe8l6Z4LrJ9cmnv\nAx4AngZeaPvjm4krc6wREZXKHOvQNtAUR4A3D7P/j2mGcpE0F5gF3F5+doykXSRtDxwHXA9cA7xF\n0vPLPtMl7bllKURERAytE0PB2w2aY/2u7TOBvwcukPQw0D/M/ucB50taCzwJnGT7yXI/0kpgObAH\nsNT2agBJf0szFzsJ+D1wKvCr8UguIiImtp55E35JJwGH2D5tjPtnKDgiolITfSg4IiKiZ/VMj3VL\npccaEVGvbuqx5tNtWuQaIyIitlSGgiMiItoohbWHDDzkXLPk0B1qz6H2+CE51CyFNSIioo1y81Ih\nyXktIiJikDxuExER0UkprD2kF+YzkkN3qD2H2uOH5FCzFNaIiIg2yhxrkTnWiIgYQuZYIyIiOimF\ntYf0wnxGcugOtedQe/yQHGqWwhoREdFGmWMtMscaERFDyBxrREREJ+XTbVpo1NclERGxORNtMDA9\n1oiIiDZKYY2IiGijqgqrpOMkPS1p7ma2+5aknbZWXBEREQOquitY0sXAVOAm231tPrahntciIqIW\nFZWZofTuXcGSpgEvB04FTihtu0v6kaTVktZKWljaN0iaUZYvk7RK0jpJp3QsgYiImBBquiv4jcD3\nbN8t6X5JBwGvBL5r+x8liaY3C3/c9TzZ9kOStgNWSbrU9oNbOfaIiJggaiqsi4HPluVlwNuBK4Al\nkqYAV9i+pfy8tet+hqTjyvJMYF9g5VaINyIi+MNbGy5YsE/Xr/f397N06XIAZs2aQV9f3yLb/aPJ\nt4o5VknTgXuA+2l6o5MB295L0u7A64H3AZ+x/a+SNgCHAC8FzgaOsf2EpGuBs2xfN8Q5MscaETEO\nKigzw+nZOda3Ahfa3tv2HNuzgQ2SXgHcb/sC4CvAwYP22xl4sBTVFwPzt27YEREx0dQyFHw8cO6g\ntuXAEuAxSU8BjwLvKD8buD76LvAeSbcCtwM3bIVYIyJiAqtiKHhryFBwRMT4qLzM9OxQcERERBVS\nWCMiItqoljnWraLy4YqIiOgC6bFGRES0UQprDxl4yLlmyaE71J5D7fFDcqhZCmtEREQb5XGbQpLz\nWkRExCB53CYiIqKTUlh7SC/MZySH7lB7DrXHD8mhZimsERERbZQ51iJzrBERMYTMsUZERHRSCmsP\n6YX5jOTQHWrPofb4ITnULIU1IiKijTLHWmSONSIihpA51oiIiE7Kp9u00KivSyKidt06ULVixZ0s\nWLBPp8PYIr2Qw1ikxxoREdFGmWMtJBnyWkRMNPkXGJtR9xyrpOMkPS1pbkvbP0laJ+ncIbZ/g6QP\nb90oIyIinltX9VglXQxMBW6y3VfaHgKmD75lV9Jk25vaeO70WCMmoC76F/hHemF+shdyoOYeq6Rp\nwMuBU4ETStsVwA7ATZLeKmmJpPMl3QCcK+kkSV8o2+4mabmkmyWtkTS/tF8maVXp9Z7SmewiImKi\n6Joeq6S3A6+w/R5JPwLOsL1G0iO2dyrbLAF2tX1sWT8JOMT2aaW3u8L25yUJ2MH2o5J2sf2QpO2A\nVeUcDw5x/vRYIyagLvkXGN1r1D3WbnrcZjHw2bK8rKyv4dlJLXuO/Y8G3gFQho0fLe1nSDquLM8E\n9gVWtinmiOgBA2+9NzBsmfWJu97f38/SpcsBmDVrBn19fYts9zMKXdFjlTQduAe4n6bbOJmmPu4l\n6VHbO5btlgBX2V5e1lt7rBuBmbafbDnuUcDZwDG2n5B0LXCW7euGiCE91ogJqAv+BQ6pF+YneyEH\nKp5jfStwoe29bc+xPRvYIOnIURzjh8B7ASRNkrQTsDPwYCmqLwbmtz3yiIiIFt1SWI8HLhvUdinN\ncPDTLW3DXVueAbxS0lrgRmA/4LvAFEm3Ap8EbmhbxBER46gHeno9kcNYdMVQcDfIUHDExJR/gbEZ\n1Q4FR0REi174LNNeyGEsUlgjIiLaKEPBRT6PNSIihpCh4IiIiE5KYe0hvTCfkRy6Q+051B4/JIea\npbBGRES0UeZYi8yxRkTEEDLHGhER0UkprD2kF+YzkkN3qD2H2uOH5FCzbvp0m45rPm0uIiLiGbY9\nquKQOdaIiIg2ylBwREREG6WwRkREtFEKa0RERBulsAKSXitpvaQ7JH2k0/GMhKQLJG0snz870DZd\n0vcl3S7pe5J27mSMw5E0U9I1km6VtE7SaaW9phyeJ+mnktaUPD5Z2qvJYYCkSZJWS7qyrFeVg6Rf\nSLql/C5WlrbacthZ0jJJPy9/Ty+vKQdJc8vrv7p8f1jSaZXl8LHy2q+VdJGkbccS/4QvrJImAV8E\nXgMcACyW9OLORjUiS2hibvVR4Ae2XwRcA3xsq0c1ck8BH7B9AHAEcGp53avJwfYTwCttHwTMA46W\ntJCKcmhxOnBby3ptOTwNLLJ9kO3DS1ttOXwO+Lbt/YCXAeupKAfbd5TX/2DgEOAx4DIqyUHSbODd\nwEG259E8NbOYscRve0J/AfOB77SsfxT4SKfjGmHss4G1LevrgReU5d2B9Z2OcRS5XA68utYcgKnA\nSmD/2nIAZgJXA4uAK2v8WwI2ALsOaqsmB2An4D+GaK8mh0Fx/wXw45pyAKaXWKeXonrlWP8nTfge\nK7AHcHfL+j2lrUa72d4IYPs+YLcOxzMikvYCDgR+QvMHXE0OZQh1DXAf0G/7NirLAfgs8CGg9dm7\n2nIwcLWkVZJOKW015bA38ICkJWUo9cuSplJXDq2OB75elqvIwfaDwGeAXwH/CTxs+weMIf4U1t7W\n9Q8pS9oB+DfgdNu/5dkxd3UOtp92MxQ8EzhS0iIqykHS64GNtm9m+PdE7docioVuhiBfRzOtcCQV\n/R5oekgHA18qeTxGM3pWUw4ASJoCHAssK01V5CBpDvB+mpHAFwLTJJ3IGOJPYW2uTPZsWZ9Z2mq0\nUdILACTtDtzf4XiGJWkbmqK61PYVpbmqHAbYfgT4NnAodeWwEDhW0l3AN2jmiZcC91WUA7bvLd//\ni2Za4XDq+j3cA9xt+8ayfilNoa0phwF/Cdxk+4GyXksOhwLX2/6N7U0088MLGEP8KaywCthH0mxJ\n2wIn0Iyt10D8cS/jSuBdZfkk4IrBO3SZrwK32f5cS1s1OUj6k4E7BCVtDxwDrKGiHGyfaXtP23No\n/vavsf0O4CoqyUHS1DLygaRpNPN766jr97ARuFvS3NL0KuBWKsqhxWKai7QBteRwOzBf0naSRPM7\nuI0xxJ+3NKR53IbmjrxJwAW2z+lwSJsl6es0N5vsCmwEzqK5Ul8GzAJ+CbzN9kOdinE45e7Z62j+\nAbp8nUlzA9Al1JHDS4Gv0VzcTKLpeX9a0gwqyaGVpKOAD9o+tqYcJO1N07swzZDqRbbPqSkHAEkv\nA74CTAHuAk4GJlNXDlNp4pxj+9HSVs3vQdKHaIroJpqL5FOAHRll/CmsERERbZSh4IiIiDZKYY2I\niGijFNaIiIg2SmGNiIhooxTWiIiINkphjYiIaKMU1oiIiDb6/8vkDD5gwQ6SAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='MidnightBlue', linestyle=':', linewidth=0.5)\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "\n", "plt.tick_params(\n", " axis='x', # changes apply to the x-axis\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " bottom='off', # ticks along the bottom edge are off\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGOpJREFUeJzt3XuwXWWd5vHvkxDkmnBpgR4CARrCTSMkgJA0chFaW0fa\nwQtEWgPdTJXVOMDgqDT2QNvU0GBrWajAaAlpoVUkTYBgKZcWEMdwCSSBCAaGJtrQQmhKEIwM12f+\nWO/h7Oyc68657LXO86k6lb3es9fa77NPkt9+33etdWSbiIiIGJ5J492BiIiIOkoBjYiI6EAKaERE\nRAdSQCMiIjqQAhoREdGBFNCIiIgOpIACkt4rabWkRyV9brz7M1SSLpe0VtKDLW3bSrpF0iOSbpY0\nbTz7OBhJ0yXdJukhSasknV7aa5ND0lsk3SNpRclxQWmvTYYekiZJWi5pSdmuY4ZfSnqg/DzuLW21\nyiFpmqRFkn5R/k69s4YZZpafwfLy528lnV63HAOZ8AVU0iTg68B7gP2B+ZL2Gd9eDdlCqn63Ohv4\nF9t7A7cBfz3mvRqe14CzbO8PHAacVt7/2uSw/TJwlO0DgVnA0ZLmUaMMLc4AHm7ZrmOGN4AjbR9o\n+5DSVrccFwM/tL0v8A5gNTXLYPvR8jOYDcwB1gHXUbMcA7I9ob+AQ4EftWyfDXxuvPs1jP7PAB5s\n2V4N7Fge7wSsHu8+DjPP9cAxdc0BbAHcC+xXtwzAdOBW4EhgSV3/PgFrgO3b2mqTA5gK/Gsf7bXJ\n0Eff/wT4ad1ztH9N+BEosDPwRMv2k6WtrnawvRbA9tPADuPcnyGTtBtwAHA31T+w2uQoU58rgKeB\nO2w/TM0yAF8BPgO03p6sbhmg6v+tkpZJOrW01SnH7sCzkhaW6c9vStqCemVodwLw3fK4zjnWkwLa\nfLW4V6OkrYB/Bs6w/Ts27HdX57D9hqsp3OnA4ZKOpEYZJL0fWGt7JaABntq1GVrMczVt+D6qJYHD\nqdHPAtgEmA1cUnKso5oZq1OGN0maAhwHLCpNtczRlxRQ+Hdg15bt6aWtrtZK2hFA0k7AM+Pcn0FJ\n2oSqeF5l+4bSXLscALZfAH4IHES9MswDjpP0OPA9qnXcq4Cna5QBANtPlT//g2pJ4BDq9bN4EnjC\n9n1l+1qqglqnDK3+FLjf9rNlu645NpACCsuAPSXNkLQpcCKwZJz7NBxi/RHDEuDk8ngBcEP7Dl3o\nCuBh2xe3tNUmh6Q/6DmTUNLmwLHACmqUwfY5tne1vQfVv4HbbH8cuJGaZACQtEWZzUDSllRrb6uo\n189iLfCEpJml6d3AQ9QoQ5v5VB/KetQ1xwZUFnInNEnvpTrrbRJwue0Lx7lLQyLpu1QnfGwPrAXO\no/rEvQjYBfgV8FHbz49XHwdTzla9k+o/OZevc6hOxLmGGuSQ9Hbg21QfZCZRjaS/JGk7apKhlaQj\ngE/bPq5uGSTtTnWmp6mmQr9j+8Ia5ngH8C1gCvA4cAowmRplgOoDDVVf97D9Ymmr1c9iICmgERER\nHcgUbkRERAdSQCMiIjqQAhoREdGBFNCIiIgObDLeHegiOZsqIiLa9XtjkYxAIyIiOpACGhER0YEU\n0GLp0sfGuwsjogk5mpABmpGjCRmgGTmSofukgEZERHQgdyLqlTciIiLa5SSiiIiIkZTLWAoN9BsQ\nIyJixNV9AjQj0IiIiA6kgEZERHRgSAVU0ucl/VzSA5KWSzp4iPtdL+mujevioK/xBUlHj+ZrRERE\ntBt0DVTSocD7gANsv1Z+GeqmQ9hvGvA24LeSdrP9y43tbB+vMcn2eSN93IiIiMEMZQT6h8Cztl8D\nsP0b208PYb/jgSVUv3l8fk+jpIWSLpV0l6THJB0p6R8lPSzpipbnHStpqaT7JH2//GZzJK2RdKGk\n+4APl+MdX753sKSfSVop6W5JW0qaIenOcpz7ygeCiIiIjTKUAnoLsKuk1ZIukfSuIR57PvB9YBEt\nBbTYxvZhwFlURfaLtvcDZkmaJWl74G+Ad9s+CLi/PLfHs7YPsn1NT4OkKcDVwH+zfQBwDPASsBY4\nphznROBrQ+x/REREvwadwrW9TtJs4HDgaOBqSWfbvrK/fSTtAOxp+56y/Yqk/Ww/XJ5yY/lzFfBU\nS/tDwG7ALsB+wM8kCZgCLG15ie/38bJ7A7+2vbz0+3fltTcFvi7pAOB1YK/BMkdExNjpucXf3Ll7\nduV2f4Z9JyJJHwI+YfvPBnjOp4Dzgeeo7uKwNXCZ7f8paSFwo+3FkmaUx7PKfgupiusrwHzbJ/Vx\n7DXAHNu/advnUeB/2/7jtuefB2xp+7OSJgMv2d5gDVfKnYgiIsZSTa4D7fxORJJmSmotwwcAvxpk\nt/nAe2zvYXt34CA2nMYdqHN3A/Mk/VHpwxaSBhs5PgLsJGlO2WerUjCnAU+V53wCmDzIcSIiIgY1\nlDXQrYBvl8tYVgL7An8Lb15C8p9bn1xGlbvavrenrZyB+3y5/KX9M4fbH9t+FjgZ+J6kB6imb/fu\n4/mt+7wKnEA1XbuSau32LcClwMmSVgAzgXVDyBwRETGg3Ey+yBRuRMTYqkn5yc3kIyIiRlIKaERE\nRAfy21iKmkwlREREl8gINCIiogMpoEXPhbN114QcTcgAzcjRhAzQjBzJ0H1SQCMiIjqQy1h65Y2I\niIh2uYwlIiJiJKWAFk2Zm29CjiZkgGbkaEIGaEaOZOg+KaAREREdyBpor7wRERHRLmugERERIykF\ntGjK3HwTcjQhAzQjRxMyQDNyJEP3SQGNiIjoQNZAe+WNiIiIdlkDjYiIGEn5bSyF+v2MERERfRnu\nBObSpY8xd+6eo9OZcZARaERERAeyBlpIWQONiBiOCVI+xmcNVNLOkq6X9Kik/yvpK5JGfdpY0h9K\numa0XyciIiau0Z7CXQwstj0TmAlsDVwwyq+J7adsf3S0XyciIoYu14EOkaSjgZdsXwngaq74vwOn\nSNpc0pckrZK0UtJpZZ/Zku6QtEzSjyTtWNpPlXSvpBWSFknarLQvlHSxpJ9JekzS8aV9hqRVLY/v\nlHRf+Tp0tDJHRMTEMZoj0P2B+1sbbL8IPAH8V2BXYJbtA4DvlKndrwEfsn0wsJDe0eq1tg+xfSCw\nGvjLlsPuZHse8AHgotaXK38+Axxj+yDgxPIaERExxpp0Bi6M32UsRwCXllEptp+XtD/wNuBWSaIq\n7r8uz58l6XxgG2BL4OaWY11fjvELSTv08VpTgG9IOgB4HdhrNAJFRExUPVOzPQWyadv9GbWzcCW9\nGzjX9hEtbVsDa4CfUBXQH7d8723AN8posv1YjwPH2f65pAXAEbb/QtJC4Ebbi8vzXrA9VdKM0j5L\n0nnAlrY/K2ky1bTyphu+Rs7CjYgYjglyHejYn4VbiuPmkv4coBSvL1NNzd4MfLK0IWlb4BHgrT1r\nlJI2kbRfOdxWwNOSpgAnDfCyfQWdBjxVHn8CmLxRwSIiIhj9s3D/C/BRSY9SrV2+BJwDXA78G/Cg\npBXAfNuvAh8GLpK0ElgBHFaOcy5wL/BT4Bctx2///NPX56FLgZPL68wE1o1EsIiIGJ4ajj4HlBsp\nFJnCjYgYnglSPnIz+YiIGF+5DjQiIiIyhdsib0RERLTLFG5ERMRISgEtmjI334QcTcgAzcjRhAzQ\njBzJ0H1SQCMiIjqQNdBeeSMiIqJd1kAjIiJGUgpo0ZS5+SbkaEIGaEaOJmSAZuRIhu6TAhoREdGB\nrIH2yhsRERHtsgYaERExklJAi6bMzTchRxMyQDNyNCEDNCNHMnSfFNCIiIgOZA20V96IiIholzXQ\niIiIkbTJeHegW6jfzxgRETHSmjD5mRFoREREB1JAIyIiOjBoAZX0hqR/aNn+tKRzh3JwSWdKeknS\n1hvTyUFe4wOSPjtax4+IiOjLUEagLwPHS9qug+OfCNwKHN/BvoOSNNn2jba/OBrHj4iI6M9QCuhr\nwDeBs4ZzYEl7AFOA/wV8rKV9gaTrJN0i6XFJnyqj2uWSlkrapmd/ST+StEzSTyTNLO0LJV0m6S7g\nonK8r5Xv7SBpsaSVklZIOrS0X1eOs0rSqcPJERER0ZehFFADlwAnDXMq9kTgGtv3AH8k6a0t39sf\n+CBwCFWBfcH2bOBu4BPlOd8EPmX7YOAzwGUt++9s+zDb/6OljwBfBe6wfQAwG3iotJ9SjnMwcIak\nbYeRIyIiYgNDOonI9u+AbwNnDOPY84FF5fH1wEdavne77d/bfhZ4DvhBaV8F7CZpS2AusEjSCuAb\nwI4t+y+ib0dTCq0rL5b2MyWtpCrQ04G9hpEjIiJGWOtt/ZYufayrt/sz6J2IJL1ge2oZtS0Hrij7\n/d0A+7wNuA/4dWnaFFhj+3BJC4A5tk8vz11Ttn/T8z3g88Bq2zv3ceyFwI22F5ftN48naS0w3far\nLc8/AjgfONb2y5JuB86zfef6x82diCIixkqNrgPdqDsRCcD2c8A1wFDWEOdTFak9ytd04D9J2mUo\nvS0jxzWSPvxmJ6RZQ9j1x8BfledPkjQVmAY8V4rnPsChQ+lDRETEQIa6Btrjy8D2PW3lEpK/7WOf\nE4Dr2tquo1oXbf/c0d/nkD8H/rKcEPRz4LhBng9wJnCUpAepRsD7AjcBUyQ9BFwA3DXA/hEREUOS\nm8kXmcKNiBg7NSo9uZl8RETESEoBjYiI6EB+G0tRo+mEiIjoAhmBRkREdCAFtBjKRbN10IQcTcgA\nzcjRhAzQjBzJ0H1SQCMiIjqQy1h65Y2IiIh2uYwlIiJiJKWAFk2Zm29CjiZkgGbkaEIGaEaOZOg+\nKaAREREdyBpor7wRERHRLmugERERIykFtGjK3HwTcjQhAzQjRxMyQDNyJEP3SQGNiIjoQNZAe+WN\niIiIdlkDjYiIGEn5bSyF+v2MERERdTTaE6wZgUZERHQgBTQiIqIDYz6FK+l14AGqhVkDV9v+4lj3\nIyIiYmOM+Vm4kl6wPbXDfSfbfn2k+1QdO2fhRkQ0yQiVt646C7fPzkhaI2m78niOpNvL4/MkXSnp\n/wBXSnqLpCskPSjpfklHluctkHS9pNslPSLp3JZjnyTpHknLJV0m5ZShiIjYOONxFu7mkpbTO4X7\n97YXseF1mK3b+wLzbL8i6SzgDduzJO0N3CJpr/K8g4H9gf8HLJP0A+D3wAnAXNuvS7oEOAn4p9EK\nGBERzTceBfT3tmf30T7QqHCJ7VfK4z8Gvgpg+xFJvwRmlu/davt5AEnXlue+DsyhKqgCNgPWbnSK\niIiohZ5bCM6du2dH2/3pputAX6N3Snmztu+tG2C/1sLrtvae7X+0/fmN615ERNRReyEc7nZ/umYN\nFFhDNVIE+NAA+/+UagoWSTOBXYBHyveOlbSNpM2BDwI/A24DPizprWWfbSXtunERIiJiohuPEehm\nbWugN9k+B/g74HJJvwXuGGD/S4HLJD0IvAossP1qOS/oXmAxsDNwle3lAJL+hmqtdBLwCnAa8G+j\nES4iIiaGxtxMXtICYI7t0zvbP5exREQ0SRMvY4mIiKi9xoxAN1ZGoBERzTLaI9BuOgt3XOVzRERE\nDEemcCMiIjqQAlr0XDhbd03I0YQM0IwcTcgAzciRDN0nBTQiIqIDOYmoV96IiIhol8tYIiIiRlIK\naNGUufkm5GhCBmhGjiZkgGbkSIbukwIaERHRgayB9sobERER7bIGGhERMZJSQIumzM03IUcTMkAz\ncjQhAzQjRzJ0nxTQiIiIDmQNtFfeiIiIaJc10IiIiJGU38ZSqN/PGBERMdKaMPmZEWhEREQHUkAj\nIiI6UKsCKumDkt6QNHOQ5/1A0tSx6ldEREw8tToLV9LVwBbA/ba/MLLHzlm4ERFjpU6lp79v1GYE\nKmlL4J3AacCJpW0nST+RtFzSg5LmlfY1krYrj6+TtEzSKkmnjluAiIholDqdhftnwM22n5D0jKQD\ngaOAm2z/vSRRjU5h/Ws6T7H9vKTNgGWSrrX93Bj3PSIiGqY2I1BgPnBNebwI+BhwL/AXks4FZtle\nV77fOuQ+U9JK4G5gOrDXGPU3IiL60Xpbv6VLH+vq7f7UYg1U0rbAk8AzVKPLyYBt7yZpJ+D9wKeA\nL9v+J0lrgDnA24HzgWNtvyzpduA823du+BpZA42IGCs1KD09ar8G+hHgStu7297D9gxgjaR3Ac/Y\nvhz4FjC7bb9pwHOleO4DHDq23Y6IiKaqyxroCcBFbW2LgYXAOkmvAS8CHy/f6/lscxPwSUkPAY8A\nd41BXyMiYgKoxRTuWMgUbkTE2KlR6an9FG5ERERXSQGNiIjoQF3WQEddjaYTIiKiC2QEGhER0YEU\n0GIoF83WQRNyNCEDNCNHEzJAM3IkQ/dJAY2IiOhALmPplTciIiLa5TKWiIiIkZQCWjRlbr4JOZqQ\nAZqRowkZoBk5kqH7pIBGRER0IGugvfJGREREu6yBRkREjKQU0KIpc/NNyNGEDNCMHE3IAM3IkQzd\nJwU0IiKiA1kD7ZU3IiIi2mUNNCIiYiTlt7EU6vczRkRMFN08Ibd06WPMnbvneHdjozQhQ6uMQCMi\nIjqQNdBCyhpoxESX/w6jD/VYA5X0QUlvSJrZ0vYPklZJuqiP539A0mfHtpcRERFdNgKVdDWwBXC/\n7S+UtueBbd3WUUmTbb8+cq+dEWjERNdF/x1uoAnrhzXN0P0jUElbAu8ETgNOLG03AFsB90v6iKSF\nki6TdBdwkaQFkr5WnruDpMWSVkpaIenQ0n6dpGVlFHvq+KSLiIim6ZoRqKSPAe+y/UlJPwHOtL1C\n0gu2p5bnLAS2t31c2V4AzLF9ehm9LrX9VUkCtrL9oqRtbD8vaTNgWXmN5zZ8/YxAIya6LvnvMLpL\n949AgfnANeXxorING3Z+UT/7Hw1cBuDKi6X9TEkrgbuB6cBeI9bjiGikpUsfW++2c9me2Nv96YoR\nqKRtgSeBZ6juCDSZqg7uJulF21uX5y0EbrS9uGy3jkDXAtNtv9py3COA84Fjbb8s6XbgPNt3btiH\njEAjJrou+O+wXzVdP1xPTTN0/Qj0I8CVtne3vYftGcAaSYcP4xg/Bv4KQNIkSVOBacBzpXjuAxw6\n4j2PiIgJqVsK6AnAdW1t11JN477R0jbQ58MzgaMkPQjcB+wL3ARMkfQQcAFw14j1OCJiDNVw5LaB\nJmRo1RVTuN0gU7gRkf8Oow9dP4UbEREDaMLv0mxChlYpoBERER3IFG6vvBEREdEuU7gREREjKQW0\naMrcfBNyNCEDNCNHEzJAM3IkQ/dJAY2IiOhA1kB75Y2IiIh2WQONiIgYSSmgRVPm5puQowkZoBk5\nmpABmpEjGbpPpnAjIiI6kBFoREREB1JAIyIiOpACGhER0YEU0IiIiA6kgAKS3itptaRHJX1uvPsz\nVJIul7S2/A7UnrZtJd0i6RFJN0uaNp59HIyk6ZJuk/SQpFWSTi/ttckh6S2S7pG0ouS4oLTXJkOP\n8svol0taUrbrmOGXkh4oP497S1utckiaJmmRpF+Uv1PvrGGGmeVnsLz8+VtJp9ctx0AmfAGVNAn4\nOvAeYH9gvqR9xrdXQ7aQqt+tzgb+xfbewG3AX495r4bnNeAs2/sDhwGnlfe/NjlsvwwcZftAYBZw\ntKR51ChDizOAh1u265jhDeBI2wfaPqS01S3HxcAPbe8LvANYTc0y2H60/AxmA3OAdcB11CzHgGxP\n6C/gUOBHLdtnA58b734No/8zgAdbtlcDO5bHOwGrx7uPw8xzPXBMXXMAWwD3AvvVLQMwHbgVOBJY\nUte/T8AaYPu2ttrkAKYC/9pHe20y9NH3PwF+Wvcc7V8TfgQK7Aw80bL9ZGmrqx1srwWw/TSwwzj3\nZ8gk7QYcANxN9Q+sNjnK1OcK4GngDtsPU7MMwFeAz7D+bS3rlgGq/t8qaZmkU0tbnXLsDjwraWGZ\n/vympC2oV4Z2JwDfLY/rnGM9KaDNV4s7ZUjaCvhn4Azbv2PDfnd1DttvuJrCnQ4cLulIapRB0vuB\ntbZXMsC9P+niDC3muZo2fB/VksDh1OhnAWwCzAYuKTnWUc2M1SnDmyRNAY4DFpWmWuboSwoo/Duw\na8v29NJWV2sl7QggaSfgmXHuz6AkbUJVPK+yfUNprl0OANsvAD8EDqJeGeYBx0l6HPge1TruVcDT\nNcoAgO2nyp//QbUkcAj1+lk8CTxh+76yfS1VQa1ThlZ/Ctxv+9myXdccG0gBhWXAnpJmSNoUOBFY\nMs59Gg6x/ohhCXByebwAuKF9hy50BfCw7Ytb2mqTQ9If9JxJKGlz4FhgBTXKYPsc27va3oPq38Bt\ntj8O3EhNMgBI2qLMZiBpS6q1t1XU62exFnhC0szS9G7gIWqUoc18qg9lPeqaYwO5Fy7VZSxUZ71N\nAi63feE4d2lIJH2X6oSP7YG1wHlUn7gXAbsAvwI+avv58erjYMrZqndS/Sfn8nUO1Yk411CDHJLe\nDnyb6oPMJKqR9JckbUdNMrSSdATwadvH1S2DpN2pzvQ01VTod2xfWMMc7wC+BUwBHgdOASZTowxQ\nfaCh6usetl8sbbX6WQwkBTQiIqIDmcKNiIjoQApoREREB1JAIyIiOpACGhER0YEU0IiIiA6kgEZE\nRHQgBTQiIqID/x8BCYSz4nKGNgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# When plotting the grid, you can send it options!\n", "ax.grid(color='MidnightBlue', linestyle=':', linewidth=0.5)\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGWpJREFUeJzt3Xm0nXV97/H3JxCGMIRBGW4CCSlEBA0hhPkiiFgVl8iy\nlaGUydIuEQXEopRyRe26DrTWogK9lKFCVSRlCizKIMPFSxpABkEQKEJopBDKEgQCBCGf+8fzC2ez\nz5idM+znOZ/XWmed/fz2fp79++yTnO/+/X7Ps49sExEREStnwlh3ICIioo5SQCMiIjqQAhoREdGB\nFNCIiIgOpIBGRER0IAU0IiKiAymggKQPS3pY0qOSvjTW/RkqSedLWiLp/pa2DSXdIOkRSddLmjyW\nfRyMpKmSbpb0oKQHJB1f2muTQ9Kaku6QdG/J8fXSXpsMK0iaIOkeSfPLdh0zLJL0i/LzuLO01SqH\npMmS5kn6Vfk3tWsNM8wsP4N7yvffSTq+bjkGMu4LqKQJwPeBDwHbA4dK2nZsezVkF1L1u9UpwE9t\nvwu4GfirUe/VynkDOMn29sDuwHHl9a9NDtvLgPfb3hGYBewraU9qlKHFCcBDLdt1zLAc2Mf2jrZ3\nKW11y3EmcK3tdwM7AA9Tswy2Hy0/gznATsBS4ApqlmNAtsf1F7Ab8G8t26cAXxrrfq1E/6cB97ds\nPwxsWm5vBjw81n1cyTxXAvvVNQcwCbgT2K5uGYCpwI3APsD8uv57Ap4ANm5rq00OYH3g13201yZD\nH33/Q+Bndc/R/jXuR6DAFGBxy/ZvSltdbWJ7CYDtZ4BNxrg/QyZpOjAbWEj1H6w2OcrU573AM8Ct\nth+iZhmA7wAnA60fT1a3DFD1/0ZJd0k6prTVKcdWwHOSLizTn+dKmkS9MrQ7GPhRuV3nHG+TAtp8\ntfisRknrAv8KnGD7ZXr3u6tz2F7uagp3KrCXpH2oUQZJHwWW2L4P0AAP7doMLfZ0NW24P9WSwF7U\n6GcBrA7MAc4qOZZSzYzVKcNbJE0EDgDmlaZa5uhLCig8BWzZsj21tNXVEkmbAkjaDHh2jPszKEmr\nUxXPi21fVZprlwPA9ovAtcBc6pVhT+AASY8DP6Zax70YeKZGGQCw/XT5/t9USwK7UK+fxW+AxbZ/\nXrYvoyqodcrQ6iPA3bafK9t1zdFLCijcBWwtaZqkNYBDgPlj3KeVId4+YpgPHFVuHwlc1b5DF7oA\neMj2mS1ttckh6R0rziSUtDbwQeBeapTB9qm2t7Q9g+r/wM22DweupiYZACRNKrMZSFqHau3tAer1\ns1gCLJY0szR9AHiQGmVocyjVm7IV6pqjF5WF3HFN0oepznqbAJxv+5tj3KUhkfQjqhM+NgaWAKdT\nveOeB2wBPAkcZPuFserjYMrZqrdR/ZJz+TqV6kScS6lBDknvBX5A9UZmAtVI+u8kbURNMrSStDfw\nBdsH1C2DpK2ozvQ01VToD21/s4Y5dgDOAyYCjwNHA6tRowxQvaGh6usM2y+Vtlr9LAaSAhoREdGB\nTOFGRER0IAU0IiKiAymgERERHUgBjYiI6MDqY92BLpKzqSIiol2/HyySEWhEREQHUkAjIiI6kAJa\nLFjw2Fh3YVg0IUcTMkAzcjQhAzQjRzJ0nxTQiIiIDuSTiHrkhYiIiHY5iSgiImI45TKWQgP9BcSI\niBh2dZ8AzQg0IiKiAymgERERHRhSAZX015J+KekXku6RtPMQ97tS0r+vWhcHfY6vStp3JJ8jIiKi\n3aBroJJ2A/YHZtt+o/wx1DWGsN9k4D3A7yRNt71oVTvbx3NMsH36cB83IiJiMEM5iWhz4DnbbwDY\n/u0Qj/0JYD6wBDgU+AaApAuBV4EdgXcCxwBHAbsAC21/qjzug8BXqYr1r4Gjbb8i6QngJ8B+wBmS\nPgJcbfvyMjL+B2Ad4DXgA8A7gIuBSaVfn7W9cIgZIiJipCx6Cp58uro9bXOYPqX3/dB3+2ju14+h\nTOHeAGwp6WFJZ0l635COXBXNnwDzyu1WG9jeHTiJqsieYXs7YJakWZI2Bk4DPmB7LnB3eewKz9me\na/vSFQ2SJgKXAJ+zPZuqwL5KVcD3K8c5BPjeEPsfERHRr0FHoLaXSpoD7AXsC1wi6RTbF/W3j6RN\ngK1t31G2X5e0ne2HykOuLt8fAJ5uaX8QmA5sAWwH3C5JwERgQctT/KSPp30X8F+27yn9frk89xrA\n9yXNBt4Ethksc0RExGCGdB2oq48rug24TdIDwBFAvwUUOAjYUNLjVJ/isB7VKPR/lfuXle/LW26v\n2F69fL/B9mH9HH9pP+19Xc35eeAZ27MkrUY1Ko2IiFglg07hSpopaeuWptnAk4PsdijwIdszbG8F\nzKX3NO5bT9FH20JgT0l/UPowSdJgI8dHgM0k7VT2WbcUzMlAmfTmCGC1QY4TERExqKGMQNcFvlfO\nqn0DeAz4C6guIQHusn3NigdLmgZsafvOFW22F0l6oZzk0/7ZE26/bfs5SUcBP5a0Zmk/DfiP/va3\n/XtJB1NN164NvEK1Dno2cJmkI4Dr6H/0GhERo2n6lIFP2OnvvtHerx/5MPlCyofJR0SMppqUn3yY\nfERExHBKAY2IiOhA/hpLUZOphIiI6BIZgUZERHQgBbRYsOCxse7CsGhCjiZkgGbkaEIGaEaOZOg+\nKaAREREdyGUsPfJCREREu1zGEhERMZxSQIumzM03IUcTMkAzcjQhAzQjRzJ0nxTQiIiIDmQNtEde\niIiIaJc10IiIiOGUAlo0ZW6+CTmakAGakaMJGaAZOZKh+6SARkREdCBroD3yQkRERLusgUZERAyn\n/DWWQv2+x4iIiL6s7ATmggWPscceW49MZ8ZARqAREREdyBpoIWUNNCJiZYyT8jE2a6CSpki6UtKj\nkv5D0nckjfi0saTNJV060s8TERHj10hP4V4OXG57JjATWA/4+gg/J7aftn3QSD9PREQMXdOuAx2x\n0aCkfYFXbV8EYNuSPg88Lul04G+ADwFvAv9k+yxJc4C/B9YBngOOsr1E0jHAXwATgceAw22/JulC\n4EVgLrAp8EXbl0uaBlxj+73l9sXApNK1z9peOFK5IyLGnUVPwZNPV7enbQ7Tp/S+f1X266t9NPfr\nx0iOQLcH7m5tsP0SsBj4c2BLYJbt2cAPy9Tu94A/sr0zcCE9o9XLbO9ie0fgYeDPWg67me09gY8B\n32p9uvL9WWA/23OBQ8pzRETEKGvSGbgwdpex7A2c7XIGk+0XJG0PvAe4UZKoivt/lcfPkvQ3wAZU\no9PrW451ZTnGryRt0sdzTQT+j6TZVKPdbUYiUEREjC8jOQJ9iGpq9S2S1qMaefZFwC9tz7G9o+0d\nbH+k3Hch8Bnbs4CvAWu17Les7RjtPg88U/adC6yx8lEiImJVNW0NdMQKqO2bgLUl/SmApNWAb1MV\nw+uBT5c2JG0IPAK8U9JupW11SduVw60LPCNpInDYAE/bVwGdDJRJb44AVlulYBEREYzwdaCSpgDn\nANtSFbdrgb8ElgNnAB8GXqc6iehsSbOo1ignUxW6f7B9vqRPA1+kWs+8A1jP9qckXUB1stDl5fle\ntL1+OXHoatuzJG0NXFae8zrgONvr9+5rrgONiFgZ4/060HyQQpECGhGxcsZJ+ciHyUdExNjKGmhE\nRERkCrdFXoiIiGiXKdyIiIjhlAJaNGVuvgk5mpABmpGjCRmgGTmSofukgEZERHQga6A98kJERES7\nrIFGREQMpxTQoilz803I0YQM0IwcTcgAzciRDN0nBTQiIqIDWQPtkRciIiLaZQ00IiJiOKWAFk2Z\nm29CjiZkgGbkaEIGaEaOZOg+KaAREREdyBpoj7wQERHRLmugERERw2n1se5At1C/7zEiImK4NWHy\nMyPQiIiIDqSARkREdGDQAippuaS/bdn+gqQvD+Xgkk6U9Kqk9Valk4M8x8ckfXGkjh8REdGXoYxA\nlwGfkLRRB8c/BLgR+EQH+w5K0mq2r7Z9xkgcPyIioj9DOYnoDeBc4CTgtKEeWNIMYCLwv4GvAT8o\n7UcCBwLrAFsDfw+sCRwGvAbsb/uFsv9ZwDuAV4A/t/2opAvL42YDt0t6AJhr+3OSNgH+EZhBdVnK\nsbYXSroCmAqsBZxp+7yh5oiIiBGy6Cl48unq9rTNYfqU3vdD3+2juV8/hjICNVUhO2wlp2IPAS61\nfQfwB5Le2XLf9lRFdBeqAvui7TnAQuCI8phzgc/a3hk4GTinZf8ptne3/ZctfQT4LnCr7dnAHODB\n0n50Oc7OwAmSNlyJHBEREb0M6TIW2y9L+gFwAvDqEI99KPDxcvtK4JPA2WX7FtuvAK9Ieh64prQ/\nALxX0jrAHsA86a0LTCa2HHteP8+5L3B46bOBl0r7iZIOLLenAtsAdw4xR0RERC8rcx3omcA9wAWD\nPVDSe6iK1E9L/VsDeIKeArqs5eFu2V5e+jQBeL6MSvuytJ/2XlcWSdqbqrDuanuZpFuopnIjIiI6\nNpQpXAHYfh64FDhmCPscCpxue0b5mgr8D0lbDKVTtl8CnpD0x291Qpo1hF1vAj5THj9B0vrAZKpi\nvEzStsBuQ+lDRETEQIYyAm0d1X0bOG5Fm6SPATvZ/krbPgcD+7e1XUG1LrpkgOO3+lPgHEmnlX5e\nAtw/wOMBTgTOlfRnVCc/HQtcB3xa0oPAI8C/D7B/RESMlulTBj5hp7/7Rnu/fuTD5AspHyYfETFa\nalR68mHyERERwykFNCIiogP5ayxFjaYTIiKiC2QEGhER0YEU0GLBgsfGugvDogk5mpABmpGjCRmg\nGTmSofukgEZERHQgl7H0yAsRERHtchlLRETEcEoBLZoyN9+EHE3IAM3I0YQM0IwcydB9UkAjIiI6\nkDXQHnkhIiKiXdZAIyIihlMKaNGUufkm5GhCBmhGjiZkgGbkSIbukwIaERHRgayB9sgLERER7bIG\nGhERMZzy11gK9fseIyIi6mikJ1gzAo2IiOhACmhEREQHRn0KV9KbwC+oFmYNXGL7jNHuR0RExKoY\n9bNwJb1oe/0O913N9pvD3afq2DkLNyKiSYapvHXVWbh9dkbSE5I2Krd3knRLuX26pIsk/T/gIklr\nSrpA0v2S7pa0T3nckZKulHSLpEckfbnl2IdJukPSPZLOkXLKUETEuLPoKfi/P6++Fj3V9/19tfdj\nLM7CXVvSPfRM4X7D9jx6X4fZuv1uYE/br0s6CVhue5akdwE3SNqmPG5nYHvgNeAuSdcArwAHA3vY\nflPSWcBhwL+MVMCIiGi+sSigr9ie00f7QKPC+bZfL7f/J/BdANuPSFoEzCz33Wj7BQBJl5XHvgns\nRFVQBawFLFnlFBERMa5103Wgb9AzpbxW231LB9ivtfC6rX3F9j/b/utV615ERESPrlkDBZ6gGikC\n/NEA+/+MagoWSTOBLYBHyn0flLSBpLWBA4HbgZuBP5b0zrLPhpK2XLUIEREx3o3FCHSttjXQ62yf\nCnwNOF/S74BbB9j/bOAcSfcDvweOtP37cl7QncDlwBTgYtv3AEg6jWqtdALwOnAc8J8jES4iIrrU\n9CnV10D3r4TGfJi8pCOBnWwf39n+uYwlIqJJmngZS0RERO01ZgS6qjICjYholpEegXbTWbhjKu8j\nIiJiZWQKNyIiogMpoMWCBY+NdReGRRNyNCEDNCNHEzJAM3IkQ/dJAY2IiOhATiLqkRciIiLa5TKW\niIiI4ZQCWjRlbr4JOZqQAZqRowkZoBk5kqH7pIBGRER0IGugPfJCREREu6yBRkREDKcU0KIpc/NN\nyNGEDNCMHE3IAM3IkQzdJwU0IiKiA1kD7ZEXIiIi2mUNNCIiYjjlr7EU6vc9RkREDLcmTH5mBBoR\nEdGBFNCIiIgO1KqASjpQ0nJJMwd53DWS1h+tfkVExPhTq7NwJV0CTALutv3V4T12zsKNiBgtdSo9\n/d5RlwIqaR3gl8D7gBtsv1vSZsBPgPWoTog61vbtkp4AdrL9W0lXAFOBtYAzbZ/X9/FTQCMiRosN\nLHoKnny6api2OUyf8vYHLXqq+t5X++jt128BrdNZuB8Hrre9WNKzknYE3g9cZ/sbkkQ1OoW3X9N5\ntO0XJK0F3CXpMtvPj3LfIyKiYeq0BnoocGm5PQ/4E+BO4FOSvgzMsr203N/6juFESfcBC6lGotuM\nUn8jIqLBajEClbQhsC/wHkkGVgNs+2RJewEfBf5Z0rdt/0vLfnuX/Xa1vUzSLVRTuREREaukLiPQ\nTwIX2d7K9gzb04AnJL0PeNb2+cB5wJy2/SYDz5fiuS2w2+h2OyIimqoWJxFJugn4lu0bWto+B5wI\nLAXeAF4CDrf9n5IeB+YCLwNXAtOAR4ANgK/Yvq33c+QkooiI0VKD0rNC/c/CHWkpoBERo6dGpScf\nJh8RETGcUkAjIiI6UIuzcEdDjaYTIiKiC2QEGhER0YEU0GLBgsfGugvDogk5mpABmpGjCRmgGTmS\nofukgEZERHQgl7H0yAsRERHtchlLRETEcEoBLZoyN9+EHE3IAM3I0YQM0IwcydB9UkAjIiI6kDXQ\nHnkhIiKiXdZAIyIihlMKaNGUufkm5GhCBmhGjiZkgGbkSIbukwIaERHRgayB9sgLERER7bIGGhER\nMZzy11gK9fseIyLGi26ekFuw4DH22GPrse7GKmlChlYZgUZERHQga6CFlDXQiPEuvw6jD/VYA5V0\noKTlkma2tP2tpAckfauPx39M0hdHt5cRERFdNgKVdAkwCbjb9ldL2wvAhm7rqKTVbL85fM+dEWjE\neNdFvw57acL6YU0z9DsC7ZqTiCStA+wKvA+4AfiqpKuAdYG7JX0D2B94DZgN3C7pAWCu7c9J2gT4\nR2AG1SUpx9peKOkKYCqwFnCm7fNGO1tE1Myip6rv06f0bn/y6er2tM37vn+E9ttiwpq16OeA+/XV\n/27sZ3t7P7qmgAIfB663vVjSs5J2tP1xSS/angMgaX9giu3dy/aR9Fy/+V3gVtufkCSqwgtwtO0X\nJK0F3CXpMtvPj260iIhVs8UWG411F1ZZDUefA+qmNdBDgUvL7XllG3oPn+f1s/++wDkArrxU2k+U\ndB+wkGokus2w9TgiIsatriigkjakKoDnS3ocOBk4qJ+HL+2nvdfqhaS9y3F3tT0buI9qKjciolYW\nL/7tWHdhleWzcEfGJ4GLbG9le4btacATkvZaiWPcBHwGQNIESesDk4HnbS+TtC2w27D3PCIixqWu\nOAtX0k3At2zf0NL2WWA74DDbk0vbBcA1ti8v20cCO9k+vpxEdC7VSURvAMcC9wJXAtOAR4ANgK/Y\nvq13H3IWbsR41wW/DqP79HsWblcU0G6QAhoR+XUYfajHBylERETfmrB+2IQMrVJAIyIiOpAp3B55\nISIiol2mcCMiIoZTCmjRlLn5JuRoQgZoRo4mZIBm5EiG7pMCGhER0YGsgfbICxEREe2yBhoRETGc\nUkCLpszNNyFHEzJAM3I0IQM0I0cydJ9M4UZERHQgI9CIiIgOpIBGRER0IAU0IiKiAymgERERHUgB\nBSR9WNLDkh6V9KWx7s9QSTpf0hJJ97e0bSjpBkmPSLpe0uSx7ONgJE2VdLOkByU9IOn40l6bHJLW\nlHSHpHtLjq+X9tpkWKH8Mfp7JM0v23XMsEjSL8rP487SVqsckiZLmifpV+Xf1K41zDCz/AzuKd9/\nJ+n4uuUYyLgvoJImAN8HPgRsDxwqadux7dWQXUjV71anAD+1/S7gZuCvRr1XK+cN4CTb2wO7A8eV\n1782OWwvA95ve0dgFrCvpD2pUYYWJwAPtWzXMcNyYB/bO9repbTVLceZwLW23w3sADxMzTLYfrT8\nDOYAOwFLgSuoWY4B2R7XX8BuwL+1bJ8CfGms+7US/Z8G3N+y/TCwabm9GfDwWPdxJfNcCexX1xzA\nJOBOYLu6ZQCmAjcC+wDz6/rvCXgC2LitrTY5gPWBX/fRXpsMffT9D4Gf1T1H+9e4H4ECU4DFLdu/\nKW11tYntJQC2nwE2GeP+DJmk6cBsYCHVf7Da5ChTn/cCzwC32n6ImmUAvgOczNs/1rJuGaDq/42S\n7pJ0TGmrU46tgOckXVimP8+VNIl6ZWh3MPCjcrvOOd4mBbT5avFJGZLWBf4VOMH2y/Tud1fnsL3c\n1RTuVGAvSftQowySPgossX0fA3z2J12cocWerqYN96daEtiLGv0sgNWBOcBZJcdSqpmxOmV4i6SJ\nwAHAvNJUyxx9SQGFp4AtW7anlra6WiJpUwBJmwHPjnF/BiVpdariebHtq0pz7XIA2H4RuBaYS70y\n7AkcIOlx4MdU67gXA8/UKAMAtp8u3/+baklgF+r1s/gNsNj2z8v2ZVQFtU4ZWn0EuNv2c2W7rjl6\nSQGFu4CtJU2TtAZwCDB/jPu0MsTbRwzzgaPK7SOBq9p36EIXAA/ZPrOlrTY5JL1jxZmEktYGPgjc\nS40y2D7V9pa2Z1D9H7jZ9uHA1dQkA4CkSWU2A0nrUK29PUC9fhZLgMWSZpamDwAPUqMMbQ6lelO2\nQl1z9JLPwqW6jIXqrLcJwPm2vznGXRoSST+iOuFjY2AJcDrVO+55wBbAk8BBtl8Yqz4OppytehvV\nLzmXr1OpTsS5lBrkkPRe4AdUb2QmUI2k/07SRtQkQytJewNfsH1A3TJI2orqTE9TTYX+0PY3a5hj\nB+A8YCLwOHA0sBo1ygDVGxqqvs6w/VJpq9XPYiApoBERER3IFG5EREQHUkAjIiI6kAIaERHRgRTQ\niIiIDqSARkREdCAFNCIiogMpoBERER34/8RAs64M8pw9AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(color='MidnightBlue', linestyle=':', linewidth=0.5)\n", "ax.yaxis.grid(color='pink', linestyle=\"-.\", linewidth=5)\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZ1JREFUeJzt3Xu0XGWZ5/HvL9xCQMKlG+g2JsBAuBogoMSmkYjaot2d\ncdECBrXxwvQ40iJqe2l6RhlnRsFOj4MKrLGFCHR7IS3EwFIEwYgXkGASiSAwCgraJMo0CEQHhPzm\nj/0eT1HJOadOpc6p2vv8PmvVOrXf8+za71OV5Kn9Prsqsk1ERESMz7R+TyAiIqKOUkAjIiK6kAIa\nERHRhRTQiIiILqSARkREdCEFNCIiogspoICkEyXdLeleSe/r93w6JekSSRsk3dEytpuk6yXdI+mr\nkmb2c45jkTRL0k2S7pS0TtJZZbw2eUjaQdJ3Ja0peXy4jNcmhyGSpklaLWlF2a5jDj+R9P3yetxW\nxmqVh6SZkpZJ+mH5M3VMDXOYW16D1eXnrySdVbc8RjPlC6ikacAngVcAhwKLJR3U31l1bCnVvFu9\nH/ia7QOBm4C/nfRZjc/TwLtsHwq8CDizPP+1ycP2k8BLbB8JzANOkHQsNcqhxTuAu1q265jDJmCh\n7SNtv7CM1S2PC4Av2z4YOBy4m5rlYPve8hrMB44CNgJXU7M8RmV7St+ABcBXWrbfD7yv3/Max/zn\nAHe0bN8N7FXu7w3c3e85jjOf5cDL6poHMAO4DTikbjkAs4AbgIXAirr+eQLuB/ZoG6tNHsAuwI+3\nMF6bHLYw9z8Bvln3PNpvU/4MFHgu8GDL9s/KWF3taXsDgO31wJ59nk/HJO0DHAHcSvUXrDZ5lKXP\nNcB6YKXtu6hZDsDHgPcArV9PVrccoJr/DZJWSTqjjNUpj32BhyUtLcufn5I0g3rl0O5U4LPlfp3z\neJYU0OarxXc1StoZ+BfgHbafYPN5D3Qetje5WsKdBRwnaSE1ykHSnwIbbK8FNErowObQ4lhXy4av\nomoJHEeNXgtgW2A+cGHJYyPVylidcvgdSdsBi4BlZaiWeWxJCij8HJjdsj2rjNXVBkl7AUjaG/hF\nn+czJknbUhXPK2x/qQzXLg8A248BXwaOpl45HAssknQf8DmqPu4VwPoa5QCA7YfKz19StQReSL1e\ni58BD9q+vWx/kaqg1imHVq8Evmf74bJd1zw2kwIKq4D9Jc2RtD3wWmBFn+c0HuLZZwwrgDeW+6cD\nX2rfYQBdCtxl+4KWsdrkIen3hq4klLQj8HJgDTXKwfY5tmfb3o/q78BNtt8AXENNcgCQNKOsZiBp\nJ6re2zrq9VpsAB6UNLcMvRS4kxrl0GYx1ZuyIXXNYzMqjdwpTdKJVFe9TQMusX1en6fUEUmfpbrg\nYw9gA/BBqnfcy4DnAT8FTrH9aL/mOJZyterNVP/IudzOoboQ50pqkIek5wOXUb2RmUZ1Jr1E0u7U\nJIdWko4H3m17Ud1ykLQv1ZWeploK/Wfb59Uwj8OBTwPbAfcBbwK2oUY5QPWGhmqu+9l+vIzV6rUY\nTQpoREREF7KEGxER0YUU0IiIiC6kgEZERHQhBTQiIqIL2/Z7AgMkV1NFRES7Eb9YJGegERERXUgB\njYiI6EIKaLFkyXUdxT2wcuVAx/UjjybkMBFxvcyjCTn0M66TPJqQw0Qct5dxTcihVQpoREREF/JN\nRMPyRERERLtcRBQREdFL+RhLodH+B8SIiOi5kRZAH1i5ktkLF465f7/ihuQMNCIiogvpgRZSeqAR\nEZOpJuVn63qgkv5O0g8kfV/Sakkv6HC/5ZJu6XSW3ZD0XyWdMJHHiIiIaDdmAZW0AHgVcITtw4GX\nAQ92sN9M4DBge0n7bN00RzzGNNsftH3TRDx+RERMviZ9DvQPgIdtPw1g+99sr+9gv5OAFVT/8/ji\noUFJSyVdJOkWST+StFDSZyTdJenSlriXS/qOpNslfaH8z+ZIul/SeZJuB15THu+k8rsXSPq2pLWS\nbpW0k6Q5km4uj3N7eUMQERGxVcbsgUraCfgWsCNwI/AF2zeP+cDS9cB/AX4JLLc9r4wvBXawfZqk\nRcA/AQts31WK4puBnwNXASfa/o2k9wLb2/7vku4HLrS9pOXxrim3u4GTba+WtDPwa2B7YJPtpyTt\nD3zO9mZL0OmBRkRMrrr3QMf8GIvtjZLmA8cBJwCfl/R+25ePeDRpT2B/298t209JOsT2XSXkmvJz\nHfBQy/idwD7A84BDgG9LErAd8J2WQ3xhC4c9EPhX26vLvJ8ox94e+KSkI4BngAPGyjkiImIsHV1E\n5MrNts8F3g78xRi7nALsJum+csa4Dy3LuMCT5eemlvtD29tSVfzrbc+3faTtw2z/VUvcxhGOu6V3\nCu8E1pcz4KOpzkgjImJANaYHKmluWfoccgTw0zF2Wwy8wvZ+tvelKlyLR4jdUtG7FThW0r8rc5gh\naawzx3uAvSUdVfbZWdI2wEzgoRLzl8A2YzxORETEmDo5A90ZuKx8jGUtcDBwLvzuIyR/1hosaQ4w\n2/ZtQ2O2fwI8Wj7+0r7q7fb7th8G3gh8TtL3qZZvD9xCfOs+vwVOpVquXQtcD+wAXAS8UdIaYC4j\nn71GRMQA6PTbgPoVNyRfpFDkIqKIiMlVk/KTL5OPiIh6aEwPNCIiIjaXJdxheSIiIqJdlnAjIiJ6\nKQW0WLLkuo7iBn1tvh95NCGHiYjrZR5NyKGfcZ3k0YQcJuK4vYxrQg6tUkAjIiK6kB7osDwRERHR\nLj3QiIiIXkoBLZqyNp8e6ODEpQc6OHHpgQ5GXBNyaJUCGhER0YX0QIfliYiIiHbpgUZERPRSCmjR\nlLX59EAHJy490MGJSw90MOKakEOrFNCIiIgupAc6LE9ERES0Sw80IiKil1JACym33HLLLbfx3Fql\nBxoREREdSQ+0kNIDjYgYjylSPjTSLyb0DFTScyUtl3SvpP8j6WOStp3IY5bj/oGkKyf6OBERMXVN\n9BLuVcBVtucCc4HnAB+e4GNi+yHbp0z0cSIiopIeaA9JOgH4je3LAVytFb8TeJOkHSUtkbRO0lpJ\nZ5Z95ktaKWmVpK9I2quMnyHpNklrJC2TNL2ML5V0gaRvS/qRpJPK+BxJ61ru3yzp9nJbMFE5R0TE\n1DFhPVBJbwf2sf3utvHVwGeAPwZOtW1JuwJPAN8AFtn+v5JOAV5h+y2SdrP9SNn/vwHrbV8oaSkw\nw/apkg4GVtg+QNIc4Brb8yTtCDxj+ylJ+wOfs/2CzeebHmhExHhM9R7ohPcjR3A8cFE5K8X2o5IO\nBQ4DbpAkqrPjfy3x80rh3BXYCfhqy2MtL4/xQ0l7buFY2wH/W9IRwDPAARORUERETC0T2QO9Czi6\ndUDSc4DZI8QL+IHt+baPtH247VeW3y0F3mZ7HvAhYHrLfk+2PUa7d1Kdsc4r89l+/KlERMRo0gPt\nIds3AjtKej2ApG2Af6Aqhl8F3lrGkLQbcA/w+0M9SknbSjqkPNzOwHpJ2wGvG+WwWyqgM4GHyv2/\nBLbZqsQiIiKY4M+BSnoucDFwEFVx+zLwN8Am4KPAicBTwD/avkjSPOATVEVvG+B/2b5E0luB9wK/\nAL4LPMf2myVdClxr+6pyvMds79LWA90f+GI55nXAmbZ32Xyu6YFGRIzHVO+B5osUihTQiIjxmSLl\noz9fpBAREVNDeqARERHRkSzhDssTERER7bKEGxER0UspoEVT1ub7kUcTcpiIuF7m0YQc+hnXSR5N\nyGEijtvLuCbk0CoFNCIiogvpgQ7LExEREe3SA42IiOilFNCiKWvz6YEOTlx6oIMTlx7oYMQ1IYdW\nKaARERFdSA90WJ6IiIholx5oREREL6WAFk1Zm08PdHDi0gMdnLj0QAcjrgk5tEoBjYiI6EJ6oMPy\nRERERLv0QCMiInpp235PYFBoxPcYERHRa6Mtfj6wciWzFy4c8zH6FTckZ6ARERFdSA+0kNIDjYiY\nLDUqPd33QCVtkvT3LdvvlvSBjo4qnS3pN5Ke09k8x0/Sn0t670Q9fkRExJZ0soT7JHCSpN27ePzX\nAjcAJ3Wx75gkbWP7GtsfnYjHj4iIydekz4E+DXwKeNd4HljSfsB2wP8ATmsZP13S1ZKul3SfpL8u\nZ7WrJX1H0q5D+0v6iqRVkr4haW4ZXyrpYkm3AOeXx/tE+d2ekq6StFbSGkkLyvjV5XHWSTpjPHlE\nRERsyZg9UEmPAX8IrAPmAX8F7GT7Q2Psdw7wjO3zJf0IeJHtX0o6Hfg74AhgBvBj4G9s/6Ok/wn8\nxPbHJX0N+I+2fyzphcBHbL9U0lJgD9uLynFOB46yfZakzwPfKfsL2Nn245J2tf2opOnAKuDFth95\n9nzTA42ImCxN6IF29DEW209Iugx4B/CbDg+6GPj35f5y4GTgorL9ddu/Bn4t6RHg2jK+Dni+pJ2A\nPwKWlUII1dnskGUjHPME4A1lzgYeL+NnS3p1uT8LOAC4rcM8IiIiNjOej7FcALyF6qxxVJIOoypS\nX5N0H1UvdHFLyJMt992yvYmqqE8DHrE93/aR5XZYyz4bRzj0Zu9pJB1PVViPsX0EsBaYPlYOERHR\nH03qgQqgLHleCXTSQ1wMfND2fuU2C/hDSc/rZFK2Hwful/Sa301CmtfBrjcCbyvx0yTtAsykKsZP\nSjoIWNDJHCIiIkbTSQFtPav7B2CPobHyEZJzt7DPqcDVbWNXU52Jtp8ljrQS/nrgLeWCoB8Ai8aI\nBzgbeImkO4DbgYOB64DtJN0JfBi4ZZT9IyKizzr9NqB+xQ3JFykUuYgoImLy1Kj05MvkIyKiHprU\nA42IiIg2WcIdliciIiLaZQk3IiKil1JAiyVLrusobtDX5vuRRxNymIi4XubRhBz6GddJHk3IYSKO\n28u4JuTQKgU0IiKiC+mBDssTERER7dIDjYiI6KUU0KIpa/PpgQ5OXHqggxOXHuhgxDUhh1YpoBER\nEV1ID3RYnoiIiGiXHmhEREQvpYAWTVmbTw90cOLSAx2cuPRAByOuCTm0SgGNiIjoQnqgw/JERERE\nu/RAIyIiemnbfk9gUGjE9xgREVFHQwusD6xcyeyFC8eM7zRuSM5AIyIiupAeaCGlBxoR0SQ9Km8j\nrk9O+hKupGeA71NNysDnbX90sucRERGxNfqxhLvR9nzbR5afHRdPSdtM5MQiIqJ5mvQ50C2eDku6\nX9Lu5f5Rkr5e7n9Q0uWSvgVcLmkHSZdKukPS9yQtLHGnS1ou6euS7pH0gZbHfp2k70paLeliKZcM\nRUTE1unHVbg7SlrN8BLuR2wvY/PPYbZuHwwca/spSe8CNtmeJ+lA4HpJB5S4FwCHAv8PWCXpWuDX\nwKnAH9l+RtKFwOuAf5qoBCMiYnB0emXteK7Ahf4U0F/bnr+F8dHOClfYfqrc/2Pg4wC275H0E2Bu\n+d0Nth8FkPTFEvsMcBRVQRUwHdiw1VlERMSUNkgfY3ma4flMb/vdxlH2ay28bhsf2v5MS9/1YNsf\n2rqpRkREXTS+BwrcT3WmCPAXo+z/TaolWCTNBZ4H3FN+93JJu0raEXg18G3gJuA1kn6/7LObpNlb\nl0JEREx1/VjCnd7WA73O9jnAh4BLJP0KWDnK/hcBF0u6A/gtcLrt35brgm4DrgKeC1xhezWApP9M\n1SudBjwFnAk8MBHJRUTEYJmoHmhjvkhB0unAUbbP6m7/fJFCRESTTPQXKQxSDzQiIqLnJqoH2pgv\nk7d9GXBZv+cRERFTQ2OWcHsgT0RERLTLEm5EREQvpYAWS5Zc11Fcr9fSex3XjzyakMNExPUyjybk\n0M+4TvJoQg4TcdxexjUhh1YpoBEREV1ID3RYnoiIiGiXHmhEREQvpYAWTVmbTw90cOLSAx2cuPRA\nByOuCTm0SgGNiIjoQnqgw/JEREREu/RAIyIieikFtGjK2nx6oIMTlx7o4MSlBzoYcU3IoVUKaERE\nRBfSAx2WJyIiItqlBxoREdFLjfnvzLaWRnyPERERvTba4ucDK1cye+HCMR+jX3FDcgYaERHRhfRA\nCyk90IiIyVKj0tOMHqikV0vaJGnuGHHXStplsuYVERFTT60KKPBa4Fpg8WhBtv/M9mOTM6WIiOil\nfA60xyTtBBwDnElVSJG0t6RvSFot6Q5Jx5bx+yXtXu5fLWmVpHWSzuhbAhER0Si16YFKOg14se23\nSvoGcDbwEmAH2x+RJGCG7Y2S7gOOtv1vkna1/aik6cCq8hiPbP746YFGREyWmpQeaEgPdDFwZbm/\nDDgNuA14s6QPAPNsbyy/b034bElrgVuBWcABkzTfiIhosFoUUEm7AScAl5Szy/cAJ9v+FnAc8HPg\nM5Je37bf8WW/Y2wfAawFpk/q5CMiYlzSA+2tk4HLbe9rez/bc4D7Jb0Y+IXtS4BPA/Pb9psJPGL7\nSUkHAQsmd9oREdFUteiBSroRON/29S1jb6fqg24EngYeB95g+4GhHijwBLAcmAPcA+wKnGv75s2P\nkR5oRMRkqUHpGTJiD7QWBXQypIBGREyeGpWeRlxEFBERU0B6oBEREQ2WJdxheSIiIqJdlnAjIiJ6\nKQW0WLLkuo7iBn1tvh95NCGHiYjrZR5NyKGfcZ3k0YQcJuK4vYxrQg6tUkAjIiK6kB7osDwRERHR\nLj3QiIiIXkoBLZqyNp8e6ODEpQc6OHHpgQ5GXBNyaJUCGhER0YX0QIfliYiIiHbpgUZERPRSCmjR\nlLX59EAHJy490MGJSw90MOKakEOrFNCIiIgupAc6LE9ERES0Sw80IiKil1JACym33HKb6rdOpAfa\nfVwTcmiVAhoREdGF9EALKT3QiKku/xzGFoy4NjFQZ6CSXi1pk6S5LWN/L2mdpPO3EP/nkt47ubOM\niIgYsAIKvBa4FljcMvYfgHm239caKGkb29fY/uhkTjAiprb0QLuPa0IOrQamgEraCTgGOJOqkCLp\nS8DOwPcknSxpqaSLJd0CnC/pdEmfKLF7SrpK0lpJayQtKONXS1pVzmLP6E92ERHRNAPTA5V0GvBi\n22+V9A3gbNtrJD1me5cSsxTYw/aisn06cJTtsyR9HviO7Y9LErCz7ccl7Wr7UUnTgVXlGI9sfvz0\nQCOmugH55zAGSy16oIuBK8v9ZQwv47ZPftkI+58AXAzgyuNl/GxJa4FbgVnAAT2bcURETFkDUUAl\n7UZVAC+RdB/wHuCUEcI3jjC+2XtHSceXxz3G9hHAWmD61s84Iqaq9EC7j2tCDq0GooACJwOX297X\n9n625wD3SzpuHI9xI/A2AEnTJO0CzAQesf2kpIOABT2feURETEkD0QOVdCNwvu3rW8b+GjgEeJ3t\nmWXsUuBa21eV7dYe6J7Ap4D9gKeB/wSsAZYDc4B7gF2Bc23fvPkc0gONmOoG4J/DGDwj9kAHooAO\nghTQiMg/h7EFtbiIKCJi4KUH2n1cE3JolQIaERHRhSzhDssTERER7bKEGxER0UspoEVT1ub7kUcT\ncpiIuF7m0YQc+hnXSR5NyGEijpse6MhSQCMiIrqQHuiwPBEREdEuPdCIiIheSgEtmrI2nx7o4MSl\nBzo4cemBDkZcE3JolSXciIiILuQMNCIiogspoBEREV1IAY2IiOhCCmhEREQXUkABSSdKulvSvZLe\n1+/5dErSJZI2SLqjZWw3SddLukfSVyXN7OccxyJplqSbJN0paZ2ks8p4bfKQtIOk70paU/L4cBmv\nTQ5Dyn9Gv1rSirJdxxx+Iun75fW4rYzVKg9JMyUtk/TD8mfqmBrmMLe8BqvLz19JOqtueYxmyhdQ\nSdOATwKvAA4FFks6qL+z6thSqnm3ej/wNdsHAjcBfzvpsxqfp4F32T4UeBFwZnn+a5OH7SeBl9g+\nEpgHnCDpWGqUQ4t3AHe1bNcxh03AQttH2n5hGatbHhcAX7Z9MHA4cDc1y8H2veU1mA8cBWwErqZm\neYzK9pS+AQuAr7Rsvx94X7/nNY75zwHuaNm+G9ir3N8buLvfcxxnPsuBl9U1D2AGcBtwSN1yAGYB\nNwALgRV1/fME3A/s0TZWmzyAXYAfb2G8NjlsYe5/Anyz7nm036b8GSjwXODBlu2flbG62tP2BgDb\n64E9+zyfjknaBzgCuJXqL1ht8ihLn2uA9cBK23dRsxyAjwHv4dlfa1m3HKCa/w2SVkk6o4zVKY99\ngYclLS3Ln5+SNIN65dDuVOCz5X6d83iWFNDmq8U3ZUjaGfgX4B22n2DzeQ90HrY3uVrCnQUcJ2kh\nNcpB0p8CG2yvZZTv/mSAc2hxrKtlw1dRtQSOo0avBbAtMB+4sOSxkWplrE45/I6k7YBFwLIyVMs8\ntiQFFH4OzG7ZnlXG6mqDpL0AJO0N/KLP8xmTpG2piucVtr9UhmuXB4Dtx4AvA0dTrxyOBRZJug/4\nHFUf9wpgfY1yAMD2Q+XnL6laAi+kXq/Fz4AHbd9etr9IVVDrlEOrVwLfs/1w2a5rHptJAYVVwP6S\n5kjaHngtsKLPcxoP8ewzhhXAG8v904Evte8wgC4F7rJ9QctYbfKQ9HtDVxJK2hF4ObCGGuVg+xzb\ns23vR/V34CbbbwCuoSY5AEiaUVYzkLQTVe9tHfV6LTYAD0qaW4ZeCtxJjXJos5jqTdmQuuaxmXwX\nLtXHWKiuepsGXGL7vD5PqSOSPkt1wccewAbgg1TvuJcBzwN+Cpxi+9F+zXEs5WrVm6n+kXO5nUN1\nIc6V1CAPSc8HLqN6IzON6kx6iaTdqUkOrSQdD7zb9qK65SBpX6orPU21FPrPts+rYR6HA58GtgPu\nA94EbEONcoDqDQ3VXPez/XgZq9VrMZoU0IiIiC5kCTciIqILKaARERFdSAGNiIjoQgpoREREF1JA\nIyIiupACGhER0YUU0IiIiC78fys1jSNsUVbKAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAADRCAYAAABCZfGuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGt9JREFUeJzt3Xu0XVV59/HvLxcIIRACGuhrSCSFcDWEgBCbIkeq9dI2\ntVQu8dJgSzt8pQJeobQD0I7Xgo2vA6sw6jBEoEUlFUJgKIJgwCKYYBISiQnVREFLYhkFgWijkKd/\nrHk8i52TtfdJzj57XX6fMdbI2vPMtdd81g5nPpnr2QtFBGZmZma7MqrXAzAzM7Nyc7JgZmZmhZws\nmJmZWSEnC2ZmZlbIyYKZmZkVcrJgZmZmhZwsAJLeJGmDpMckXdzr8XRK0iJJWyWtzbVNknSXpI2S\nvi5pYi/H2I6kKZLulfSopHWSLkjtlYlD0t6SviNpdYrj46m9MjH0kzRK0ipJy9LrKsbwI0mPpM9j\nRWqrVBySJkpaIun76e/UKRWMYUb6DFalP38u6YKqxWGZxicLkkYBnwHeCBwLzJd0VG9H1bHFZOPO\nuwT4RkQcCdwL/M2Ij2poXgA+EBHHAq8Bzk/XvzJxRMR24HURcQIwEzhd0lwqFEPOhcD63OsqxrAD\n6IuIEyLi5NRWtTiuBr4aEUcDxwMbqFgMEfFY+gxmAycC24BbqVgclkREozdgDvC13OtLgIt7Pa4h\njH8asDb3egNwcNo/BNjQ6zEOMZ6lwOurGgcwHlgBHFO1GIApwN1AH7Csqn+fgM3AQS1tlYkD2B/4\n4SDtlYlhkLH/PvCtqsfR5K3xKwvAK4Ancq9/ktqqanJEbAWIiC3A5B6Pp2OSXgnMAh4i+2VSmTjS\n8v1qYAuwPCLWU7EYgE8BHwbyj3WtWgyQjf9uSSslnZfaqhTHYcBTkhanJfzPSRpPtWJodTZwU9qv\nchyN5WSh/irxPG9JE4B/Ay6MiOfZedyljiMidkR2G2IKcKqkPioUg6Q/ALZGxBpABV1LG0PO3MiW\nvt9CdlvrVCr0WQBjgNnAZ1Mc28hWPKsUw29IGgvMA5akpkrG0XROFuCnwNTc6ympraq2SjoYQNIh\nwM96PJ62JI0hSxRujIjbUnPl4gCIiGeBrwInUa0Y5gLzJG0CvkhWd3EjsKVCMQAQEU+mP/+L7LbW\nyVTrs/gJ8EREPJxef4UseahSDHlvBr4bEU+l11WNo9GcLMBK4HBJ0yTtBZwDLOvxmIZCvPRfgsuA\nc9P+AuC21gNK6DpgfURcnWurTBySXtZf0S1pH+ANwGoqFENEXBoRUyNiOtl/A/dGxLuA26lIDACS\nxqdVKiTtS3avfB3V+iy2Ak9ImpGafg94lArF0GI+WQLar6pxNJoivAIk6U1k1cejgEURcWWPh9QR\nSTeRFaMdBGwFLif7l9QS4FDgx8BZEfFMr8bYTvrWwP1kv9AjbZeSFQneTAXikPQq4HqypG0U2QrJ\nQkkHUpEY8iSdBnwwIuZVLQZJh5FV3AfZcv6/RsSVFYzjeODzwFhgE/BuYDQVigGy5I1srNMj4rnU\nVqnPwjJOFszMzKyQb0OYmZlZIScLZmZmVsjJgpmZmRVysmBmZmaFxvR6ACXiSk8zM2tV9JCyxvDK\ngpmZmRVysmBmZmaFnCwkCxfe2VG/x5cvL3W/XsRRhxi60W8446hDDL3s10kcdYihG+cdzn51iKGp\nnCyYmZlZIT/BcYAvhJmZtXKBI15ZMDMzszb81clEzh3NzEbUrha2H1++nKl9fW2P71W/JvLKgpmZ\nmRVyzUIiuWbBzGwkVWT68bozHa4sSPpbSd+T9IikVZJe3eFxSyU9uGdDbHuOj0o6vZvnMDMz69fE\nObFtsiBpDvAWYFZEHA+8Hniig+MmAscBe0l65Z4Nc5fnGBURl0fEvd14fzMzG3llfs5CU+fETlYW\nfgt4KiJeAIiI/46ILR0cdwawDLgZmN/fKGmxpGskPSjpB5L6JH1B0npJ1+X6vUHStyU9LOnLksan\n9s2SrpT0MPC29H5npJ+9WtIDktZIekjSvpKmSbo/vc/D6YM2MzPbHc2cEyOicAP2BVYDG4DPAq9t\nd0w67i7gFGA6sDbXvhi4Ke3PA54FjkmvHwZmAgcB9wH7pPaPAH+X9jcDH2p5vzOAscAPgdmpfQJZ\nMjQO2Cu1HQ6sHHy8Ed68efPmbeS2iiC/NWVObN3afnUyIrZJmg2cCpwOfEnSJRFxw66OkTQZODwi\nvpNe/0rSMRGxPnW5Pf25Dngy1/4o8ErgUOAY4AFJSkF/O3eKLw9y2iOB/4yIVWncz6dz7wV8RtIs\n4EXgiHYxm5mZDaapc2JHBY4pu7o/Iq4A3gf8aZtDzgImSdokaTNZsPNzP9+e/tyR2+9/PYas+vSu\niJgdESdExHER8Ve5ftt2cd7BqlbfD2yJiJnAScBebcZuZmY9VOaaBWjmnNhJgeMMSYfnmmYBP25z\n2HzgjRExPSIOSwOav4u+gwXzEDBX0m+nMYyX1C772QgcIunEdMwESaOBicCTqc+fAaPbvI+Zmdmg\nmjondrKyMAG4Pn1NZA1wNHBFOvlHJf1hvrOkacDUiFjR3xYRPwKeSV8viZb3j9b9iHgKOBf4oqRH\nyJZbjhykf/6YXwNnky2vrCG7P7Q3cA1wrqTVwAx2nYGZmVkJdPoUxR71a+Sc6IcyJX4ok5nZyKrI\n9OOHMuHHPZuZWcmUvWahiZwsmJmZWSHfhhjgC2FmZq18GwKvLJiZmVkbThaShQvv7Khf2e+l9SKO\nOsTQjX7DGUcdYuhlv07iqEMM3TjvcParQwxN5WTBzMzMCrlmYYAvhJmZtXLNAl5ZMDMzszacLCR1\nuZfmmoXy9HPNQnn6uWahHP3qEENTOVkwMzOzQq5ZGOALYWZmrVyzgFcWzMzMrA0nC0ld7qW5ZqE8\n/VyzUJ5+rlkoR786xNBUThbMzMyskGsWBvhCmJlZK9cs4JUFMzMza8PJQiJ58+bNm7ehbHmuWag3\nJwtmZmZWyDULieSaBTOzoWjI9KH2XeqvqysLkl4haamkxyT9h6RPSRrTzXOm8/6WpJu7fR4zM2ue\nJs5t3b4NcQtwS0TMAGYA+wEf7/I5iYgnI+Ksbp/HzMwyDatZaNzc1rVkQdLpwC8j4gaAyO53vB94\nt6R9JC2UtE7SGknnp2NmS1ouaaWkr0k6OLWfJ2mFpNWSlkgal9oXS7pa0gOSfiDpjNQ+TdK63P79\nkh5O25xuxWxmZvXW2LktIrqyAe8DPjlI+yrgAuBmBmomDgDGAA8AB6W2s4BFaX9S7vi/B85P+4uB\nL6f9o4H/SPvTgLVpfx9gr7R/OLBy8PFGePPmzZu3zreGIL9VbW4brq3r91h24TTgmkhRRsQzko4F\njgPuliSyVY//TP1nSvp7sgu/L/D13HstTe/xfUmTBznXWOCfJc0CXgSO6EZAZmbWeLWd27pZs7Ae\nOCnfIGk/YOou+gv4XkTMjogTIuL4iHhz+tli4L0RMRP4GDAud9z2lvdo9X5gSzr2JGCvoYdiZmZF\nGlSz0Mi5rWvJQkTcA+wj6Z0AkkYDnyS7OF8H3pPakDQJ2Ai8vP++i6Qxko5JbzcB2CJpLPCOgtMO\ndkEnAk+m/T8DRu9RYGZm1lhNndu6/W2IPwHOkvQYsAH4JXApsAh4HFgraTUwPyJ+DbwNuErSGmA1\n8Jr0PpcBK4BvAd/PvX+0nK/1NcA1wLnpPDOAbcMRmJmZDZja19e2z4c+9KZhe69e9qOBc5sfypT4\noUxmZkPTkOnDD2XCj3s2M7Nh0KCahUZysmBmZmaFfBtigC+EmZm18m0IvLJgZmZmbThZSOpyL60X\ncdQhhm70G8446hBDL/t1EkcdYujGeYezXx1iaConC2ZmZlbINQsDfCHMzKyVaxbwyoKZmZm14WQh\nqcu9NNcslKefaxbK0881C+XoV4cYmsrJgpmZmRVyzcIAXwgzM2vlmgW8smBmZmZtOFlI6nIvzTUL\n5ennmoXy9HPNQjn61SGGpnKyYGZmZoVcszDAF8LMzFq5ZgGvLJiZmVkbY3o9gLKQc0czsxFTtKj9\n+PLlTO3ra/severXRF5ZMDMzs0KuWUgk1yyYmY2UCk09Xnemg5UFSTsk/WPu9QclXdbJm0u6SNIv\nJe23J4Nsc44/kvSRbr2/mZlZXhPnxU5uQ2wHzpB04G68/znA3cAZu3FsW5JGR8TtEfGJbry/mZmN\nvAo8Z6Fx82InycILwOeADwzljSVNB8YC/w94e659gaRbJd0laZOkv05Z2SpJ35Z0QP/xkr4maaWk\n+yTNSO2LJV0r6UHgqvR+/5R+NlnSLZLWSFotaU5qvzW9zzpJ5w0lDjMzsxbNmxcjonADngUmAJuB\n/YAPApd1cNylwMVp/wfAy9P+AuAxYDzwMuDnwF+mn/1/4IK0/w3gt9P+ycA9aX8xsCx3ngXAp9P+\nl3LHC9gv7R+Q/hwHrAMm7TzeCG/evHnzNjJbhdC6NWVezG8dfXUyIp6XdD1wIfDLTo4B5gN/nPaX\nAmcC16TX34yIXwC/kPQ0cEdqXwe8StK+wO8AS6TffKlxbO69l+zinKcD70pjDuC51H6RpLem/SnA\nEcCKDuMwMzN7iabNi0P56uTVwF+QZT6FJB2XTvwNSZvI7tHMz3XZntuP3OsdZM9+GAU8HRGzI+KE\ntB2XO2bbLk4dg4zlNLKLdUpEzALWkGVSZmZWQhWoWejXmHmxk2RBABHxNHAz0Mk9//nA5RExPW1T\ngP8j6dAOjiUingM2S3rbbwYhzezg0HuA96b+oyTtD0wku8DbJR0FzOlkDGZmZrvQuHmxk2Qhn5V8\nEjiovy19PeOKQY45G7i1pe1WskyqNcvZKetJ3gn8RSrK+B4wr01/gIuA10laCzwMHA3cCYyV9Cjw\nceDBguPNzKzHOn2KYq/60cB50Q9lSvxQJjOzkVOhqccPZcKPezYzs5KpUM1CYzhZMDMzs0K+DTHA\nF8LMzFr5NgReWTAzM7M2nCwkCxfe2VG/st9L60UcdYihG/2GM446xNDLfp3EUYcYunHe4exXhxia\nysmCmZmZFXLNwgBfCDMza+WaBbyyYGZmZm04WUjqci/NNQvl6eeahfL0c81COfrVIYamcrJgZmZm\nhVyzMMAXwszMWrlmAa8smJmZWRtOFpK63EtzzUJ5+rlmoTz9XLNQjn51iKGpnCyYmZlZIdcsDPCF\nMDOzVq5ZwCsLZmZm1saYXg+gLOTc0cysVvoXzh9fvpypfX1t+3far4m8smBmZmaFXLOQSK5ZMDOr\nk2Ga3rzuTA9uQ0h6EXiE7AMI4EsR8YmRHoeZmdnuaOI8NuIrC5KejYj9d/PY0RHx4nCPKXtvryyY\nmdXJMNUs7LSyUNZ5rJt6UbMw6JKOpM2SDkz7J0r6Ztq/XNINkv4duEHS3pKuk7RW0ncl9aV+CyQt\nlfRNSRslXZZ773dI+o6kVZKulVzOaGZmu61x81gvvg2xj6RVDCzf/ENELGHn5xzkXx8NzI2IX0n6\nALAjImZKOhK4S9IRqd+rgWOB/wFWSroD+AVwNvA7EfGipM8C7wD+pVsBmplZeXT6DYchfBOicfNY\nL5KFX0TE7EHai7KkZRHxq7T/u8CnASJio6QfATPSz+6OiGcAJH0l9X0ROJHsogsYB2zd4yjMzKyp\nGjePlemrky8wMJ5xLT/bVnBc/sOJlvb+11+IiNkRcUJEHB0RH9uzoZqZWVWM4P8borbzWGlqFoDN\nZJkTwJ8WHP8tsuUXJM0ADgU2pp+9QdIBkvYB3go8ANwLvE3Sy9MxkyRN3bMQzMyswRo3j/XiNsS4\nlns9d0bEpcDHgEWSfg4sLzj+GuBaSWuBXwMLIuLXqdZjBXAL8ArgxohYBSDp78juCY0CfgWcDzze\njeDMzKxculCz0Lh5rDYPZZK0ADgxIi7YveP91Ukzszqp2kOZ9nQe66Yy1SyYmZkNuxGsWait2vyP\npCLieuD6Xo/DzMxsd5R5HqvNbYhh4AthZmat/BA/fBvCzMzM2nCykCxceGdH/Yb73tdw9+tFHHWI\noRv9hjOOOsTQy36dxFGHGLpx3uHsV4cYmsrJgpmZmRVyzcIAXwgzM2vlmgW8smBmZmZtOFlI6nIv\nzTUL5ennmoXy9HPNQjn61SGGpnKyYGZmZoVcszDAF8LMzFq5ZgGvLJiZmVkbThaSutxLc81Cefq5\nZqE8/VyzUI5+dYihqZwsmJmZWSHXLAzwhTAzs1auWcArC2ZmZtZGbf4X1XtKzh3NzEZM0aL248uX\nM7Wvr+179KpfE3llwczMzAq5ZiGRXLNgZjZSKjT1eN2Ziq0sSHqrpB2SZrTpd4ek/UdqXGZm1ixN\nm48qlSwA5wB3APOLOkXEH0bEsyMzJDMzG04Vec5Co+ajyiQLkvYFTgHOJ/uQkHSIpPskrZK0VtLc\n1L5Z0oFp/1ZJKyWtk3RezwIwM7NaaOJ8VJmaBUlvB14bEe+RdB9wEfA6YO+I+AdJAsZHxDZJm4CT\nIuK/JR0QEc9IGgesTO/x9M7v75oFM7ORUpGpBwapWej2fFRGlVlZIFvquTntLwHeDqwA/lzSZcDM\niNiWfp7/cC+StAZ4CJgCHDFC4zUzs3pq3HxUiWRB0iTgdGBRytI+DJwZEf8OnAr8FPiCpHe2HHda\nOu6UiJgFrAHGjejgzcxsSMpcs9DU+agSyQJwJnBDRBwWEdMjYhqwWdJrgZ9FxCLg88DsluMmAk9H\nxHZJRwFzRnbYZmZWM42cjypRsyDpHuCqiLgr1/Y+svtE24AXgOeAd0XE4/33iIDngaXANGAjcABw\nRUTcv/M5XLNgZjZSKjD19HtJzcJIzEdlVIlkYSQ4WTAzGzkVmnr8UCaqcxvCzMwaosw1C03lZMHM\nzMwK+TbEAF8IMzNr5dsQeGXBzMzM2nCykCxceGdH/cp+L60XcdQhhm70G8446hBDL/t1EkcdYujG\neYezXx1iaConC2ZmZlbINQsDfCHMzKyVaxbwyoKZmZm14WQhqcu9NNcslKefaxbK0881C+XoV4cY\nmsrJgpmZmRVyzcIAXwgzM2vlmgW8smBmZmZtOFlI6nIvzTUL5ennmoXy9HPNQjn61SGGpnKyYGZm\nZoVcszDAF8LMzFq5ZgGvLJiZmVkbThYSyZs3b03fOuGahd3vV4cYmsrJgpmZmRVyzUIiuWbBrOn8\n69AG0eGaU72VamVB0lsl7ZA0I9f2j5LWSbpqkP5/JOkjIztKMzNruqbNV6VKFoBzgDuA+bm2vwRm\nRsTF+Y6SRkfE7RHxiZEcoJk1m2sWdr9fHWLIadR8VZpkQdK+wCnA+WQfApJuAyYA35V0pqTFkq6V\n9CBwlaQFkv4p9Z0s6RZJayStljQntd8qaWXK9s7rTXRmZlYXTZyvSlOzIOntwGsj4j2S7gMuiojV\nkp6NiP1Tn8XAQRExL71eAJwYERdI+hLw7Yj4tCQBEyLiOUkHRMQzksYBK9M5nt75/K5ZMGu6kvw6\ntHLZqWah1/NVL5RmZYFsKefmtL+EgaWd1g9qyS6OPx24FiAyz6X2iyStAR4CpgBHDNuIzcysiRo3\nX5UiWZA0ieziLZK0CfgwcNYuum/bRftO/yaQdFp631MiYhawBhi35yM2s6ZyzcLu96tDDE2dr0qR\nLABnAjdExGERMT0ipgGbJZ06hPe4B3gvgKRRkvYHJgJPR8R2SUcBc4Z95GZm1iSNnK9KUbMg6R7g\nqoi4K9f218AxwDsiYmJquw64IyJuSa/z94AmA58DpgMvAP8XWA0sBaYBG4EDgCsi4v6dx+CaBbOm\nK8GvQyufl9xaKMN81QulSBbKwMmCmfnXoQ3CD2WiPLchzMwqwTULu9+vDjE0lZMFMzMzK+TbEAN8\nIczMrJVvQ+CVBTMzM2vDyUJSl3tpvYijDjF0o99wxlGHGHrZr5M46hBDN87rmgUDJwtmZmbWhmsW\nBvhCmJlZK9cs4JUFMzMza8PJQlKXe2muWShPP9cslKefaxbK0a8OMTSVb0OYmZlZIa8smJmZWSEn\nC2ZmZlbIyYKZmZkVcrJgZmZmhZwsAJLeJGmDpMckXdzr8XRK0iJJWyWtzbVNknSXpI2Svi5pYi/H\n2I6kKZLulfSopHWSLkjtlYlD0t6SviNpdYrj46m9MjH0kzRK0ipJy9LrKsbwI0mPpM9jRWqrVByS\nJkpaIun76e/UKRWMYUb6DFalP38u6YKqxWGZxicLkkYBnwHeCBwLzJd0VG9H1bHFZOPOuwT4RkQc\nCdwL/M2Ij2poXgA+EBHHAq8Bzk/XvzJxRMR24HURcQIwEzhd0lwqFEPOhcD63OsqxrAD6IuIEyLi\n5NRWtTiuBr4aEUcDxwMbqFgMEfFY+gxmAycC24BbqVgclkREozdgDvC13OtLgIt7Pa4hjH8asDb3\negNwcNo/BNjQ6zEOMZ6lwOurGgcwHlgBHFO1GIApwN1AH7Csqn+fgM3AQS1tlYkD2B/44SDtlYlh\nkLH/PvCtqsfR5K3xKwvAK4Ancq9/ktqqanJEbAWIiC3A5B6Pp2OSXgnMAh4i+2VSmTjS8v1qYAuw\nPCLWU7EYgE8BH+aljz6vWgyQjf9uSSslnZfaqhTHYcBTkhanJfzPSRpPtWJodTZwU9qvchyN5WSh\n/irx1C1JE4B/Ay6MiOfZedyljiMidkR2G2IKcKqkPioUg6Q/ALZGxBqKn4Vf2hhy5ka29P0Wstta\np1KhzwIYA8wGPpvi2Ea24lmlGH5D0lhgHrAkNVUyjqZzsgA/BabmXk9JbVW1VdLBAJIOAX7W4/G0\nJWkMWaJwY0TclporFwdARDwLfBU4iWrFMBeYJ2kT8EWyuosbgS0VigGAiHgy/flfZLe1TqZan8VP\ngCci4uH0+itkyUOVYsh7M/DdiHgqva5qHI3mZAFWAodLmiZpL+AcYFmPxzQU4qX/ElwGnJv2FwC3\ntR5QQtcB6yPi6lxbZeKQ9LL+im5J+wBvAFZToRgi4tKImBoR08n+G7g3It4F3E5FYgCQND6tUiFp\nX7J75euo1mexFXhC0ozU9HvAo1QohhbzyRLQflWNo9H8/4Yg++okWfXxKGBRRFzZ4yF1RNJNZMVo\nBwFbgcvJ/iW1BDgU+DFwVkQ806sxtpO+NXA/2S/0SNulZEWCN1OBOCS9CrieLGkbRbZCslDSgVQk\nhjxJpwEfjIh5VYtB0mFkFfdBtpz/rxFxZQXjOB74PDAW2AS8GxhNhWKALHkjG+v0iHgutVXqs7CM\nkwUzMzMr5NsQZmZmVsjJgpmZmRVysmBmZmaFnCyYmZlZIScLZmZmVsjJgpmZmRVysmBmZmaF/hdN\njkU3CLiWLgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='on',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZ1JREFUeJzt3Xu0XGWZ5/HvL9xCQMKlG+g2JsBAuBogoMSmkYjaot2d\ncdECBrXxwvQ40iJqe2l6RhlnRsFOj4MKrLGFCHR7IS3EwFIEwYgXkGASiSAwCgraJMo0CEQHhPzm\nj/0eT1HJOadOpc6p2vv8PmvVOrXf8+za71OV5Kn9Prsqsk1ERESMz7R+TyAiIqKOUkAjIiK6kAIa\nERHRhRTQiIiILqSARkREdCEFNCIiogspoICkEyXdLeleSe/r93w6JekSSRsk3dEytpuk6yXdI+mr\nkmb2c45jkTRL0k2S7pS0TtJZZbw2eUjaQdJ3Ja0peXy4jNcmhyGSpklaLWlF2a5jDj+R9P3yetxW\nxmqVh6SZkpZJ+mH5M3VMDXOYW16D1eXnrySdVbc8RjPlC6ikacAngVcAhwKLJR3U31l1bCnVvFu9\nH/ia7QOBm4C/nfRZjc/TwLtsHwq8CDizPP+1ycP2k8BLbB8JzANOkHQsNcqhxTuAu1q265jDJmCh\n7SNtv7CM1S2PC4Av2z4YOBy4m5rlYPve8hrMB44CNgJXU7M8RmV7St+ABcBXWrbfD7yv3/Max/zn\nAHe0bN8N7FXu7w3c3e85jjOf5cDL6poHMAO4DTikbjkAs4AbgIXAirr+eQLuB/ZoG6tNHsAuwI+3\nMF6bHLYw9z8Bvln3PNpvU/4MFHgu8GDL9s/KWF3taXsDgO31wJ59nk/HJO0DHAHcSvUXrDZ5lKXP\nNcB6YKXtu6hZDsDHgPcArV9PVrccoJr/DZJWSTqjjNUpj32BhyUtLcufn5I0g3rl0O5U4LPlfp3z\neJYU0OarxXc1StoZ+BfgHbafYPN5D3Qetje5WsKdBRwnaSE1ykHSnwIbbK8FNErowObQ4lhXy4av\nomoJHEeNXgtgW2A+cGHJYyPVylidcvgdSdsBi4BlZaiWeWxJCij8HJjdsj2rjNXVBkl7AUjaG/hF\nn+czJknbUhXPK2x/qQzXLg8A248BXwaOpl45HAssknQf8DmqPu4VwPoa5QCA7YfKz19StQReSL1e\ni58BD9q+vWx/kaqg1imHVq8Evmf74bJd1zw2kwIKq4D9Jc2RtD3wWmBFn+c0HuLZZwwrgDeW+6cD\nX2rfYQBdCtxl+4KWsdrkIen3hq4klLQj8HJgDTXKwfY5tmfb3o/q78BNtt8AXENNcgCQNKOsZiBp\nJ6re2zrq9VpsAB6UNLcMvRS4kxrl0GYx1ZuyIXXNYzMqjdwpTdKJVFe9TQMusX1en6fUEUmfpbrg\nYw9gA/BBqnfcy4DnAT8FTrH9aL/mOJZyterNVP/IudzOoboQ50pqkIek5wOXUb2RmUZ1Jr1E0u7U\nJIdWko4H3m17Ud1ykLQv1ZWeploK/Wfb59Uwj8OBTwPbAfcBbwK2oUY5QPWGhmqu+9l+vIzV6rUY\nTQpoREREF7KEGxER0YUU0IiIiC6kgEZERHQhBTQiIqIL2/Z7AgMkV1NFRES7Eb9YJGegERERXUgB\njYiI6EIKaLFkyXUdxT2wcuVAx/UjjybkMBFxvcyjCTn0M66TPJqQw0Qct5dxTcihVQpoREREF/JN\nRMPyRERERLtcRBQREdFL+RhLodH+B8SIiOi5kRZAH1i5ktkLF465f7/ihuQMNCIiogvpgRZSeqAR\nEZOpJuVn63qgkv5O0g8kfV/Sakkv6HC/5ZJu6XSW3ZD0XyWdMJHHiIiIaDdmAZW0AHgVcITtw4GX\nAQ92sN9M4DBge0n7bN00RzzGNNsftH3TRDx+RERMviZ9DvQPgIdtPw1g+99sr+9gv5OAFVT/8/ji\noUFJSyVdJOkWST+StFDSZyTdJenSlriXS/qOpNslfaH8z+ZIul/SeZJuB15THu+k8rsXSPq2pLWS\nbpW0k6Q5km4uj3N7eUMQERGxVcbsgUraCfgWsCNwI/AF2zeP+cDS9cB/AX4JLLc9r4wvBXawfZqk\nRcA/AQts31WK4puBnwNXASfa/o2k9wLb2/7vku4HLrS9pOXxrim3u4GTba+WtDPwa2B7YJPtpyTt\nD3zO9mZL0OmBRkRMrrr3QMf8GIvtjZLmA8cBJwCfl/R+25ePeDRpT2B/298t209JOsT2XSXkmvJz\nHfBQy/idwD7A84BDgG9LErAd8J2WQ3xhC4c9EPhX26vLvJ8ox94e+KSkI4BngAPGyjkiImIsHV1E\n5MrNts8F3g78xRi7nALsJum+csa4Dy3LuMCT5eemlvtD29tSVfzrbc+3faTtw2z/VUvcxhGOu6V3\nCu8E1pcz4KOpzkgjImJANaYHKmluWfoccgTw0zF2Wwy8wvZ+tvelKlyLR4jdUtG7FThW0r8rc5gh\naawzx3uAvSUdVfbZWdI2wEzgoRLzl8A2YzxORETEmDo5A90ZuKx8jGUtcDBwLvzuIyR/1hosaQ4w\n2/ZtQ2O2fwI8Wj7+0r7q7fb7th8G3gh8TtL3qZZvD9xCfOs+vwVOpVquXQtcD+wAXAS8UdIaYC4j\nn71GRMQA6PTbgPoVNyRfpFDkIqKIiMlVk/KTL5OPiIh6aEwPNCIiIjaXJdxheSIiIqJdlnAjIiJ6\nKQW0WLLkuo7iBn1tvh95NCGHiYjrZR5NyKGfcZ3k0YQcJuK4vYxrQg6tUkAjIiK6kB7osDwRERHR\nLj3QiIiIXkoBLZqyNp8e6ODEpQc6OHHpgQ5GXBNyaJUCGhER0YX0QIfliYiIiHbpgUZERPRSCmjR\nlLX59EAHJy490MGJSw90MOKakEOrFNCIiIgupAc6LE9ERES0Sw80IiKil1JACym33HLLLbfx3Fql\nBxoREREdSQ+0kNIDjYgYjylSPjTSLyb0DFTScyUtl3SvpP8j6WOStp3IY5bj/oGkKyf6OBERMXVN\n9BLuVcBVtucCc4HnAB+e4GNi+yHbp0z0cSIiopIeaA9JOgH4je3LAVytFb8TeJOkHSUtkbRO0lpJ\nZ5Z95ktaKWmVpK9I2quMnyHpNklrJC2TNL2ML5V0gaRvS/qRpJPK+BxJ61ru3yzp9nJbMFE5R0TE\n1DFhPVBJbwf2sf3utvHVwGeAPwZOtW1JuwJPAN8AFtn+v5JOAV5h+y2SdrP9SNn/vwHrbV8oaSkw\nw/apkg4GVtg+QNIc4Brb8yTtCDxj+ylJ+wOfs/2CzeebHmhExHhM9R7ohPcjR3A8cFE5K8X2o5IO\nBQ4DbpAkqrPjfy3x80rh3BXYCfhqy2MtL4/xQ0l7buFY2wH/W9IRwDPAARORUERETC0T2QO9Czi6\ndUDSc4DZI8QL+IHt+baPtH247VeW3y0F3mZ7HvAhYHrLfk+2PUa7d1Kdsc4r89l+/KlERMRo0gPt\nIds3AjtKej2ApG2Af6Aqhl8F3lrGkLQbcA/w+0M9SknbSjqkPNzOwHpJ2wGvG+WwWyqgM4GHyv2/\nBLbZqsQiIiKY4M+BSnoucDFwEFVx+zLwN8Am4KPAicBTwD/avkjSPOATVEVvG+B/2b5E0luB9wK/\nAL4LPMf2myVdClxr+6pyvMds79LWA90f+GI55nXAmbZ32Xyu6YFGRIzHVO+B5osUihTQiIjxmSLl\noz9fpBAREVNDeqARERHRkSzhDssTERER7bKEGxER0UspoEVT1ub7kUcTcpiIuF7m0YQc+hnXSR5N\nyGEijtvLuCbk0CoFNCIiogvpgQ7LExEREe3SA42IiOilFNCiKWvz6YEOTlx6oIMTlx7oYMQ1IYdW\nKaARERFdSA90WJ6IiIholx5oREREL6WAFk1Zm08PdHDi0gMdnLj0QAcjrgk5tEoBjYiI6EJ6oMPy\nRERERLv0QCMiInpp235PYFBoxPcYERHRa6Mtfj6wciWzFy4c8zH6FTckZ6ARERFdSA+0kNIDjYiY\nLDUqPd33QCVtkvT3LdvvlvSBjo4qnS3pN5Ke09k8x0/Sn0t670Q9fkRExJZ0soT7JHCSpN27ePzX\nAjcAJ3Wx75gkbWP7GtsfnYjHj4iIydekz4E+DXwKeNd4HljSfsB2wP8ATmsZP13S1ZKul3SfpL8u\nZ7WrJX1H0q5D+0v6iqRVkr4haW4ZXyrpYkm3AOeXx/tE+d2ekq6StFbSGkkLyvjV5XHWSTpjPHlE\nRERsyZg9UEmPAX8IrAPmAX8F7GT7Q2Psdw7wjO3zJf0IeJHtX0o6Hfg74AhgBvBj4G9s/6Ok/wn8\nxPbHJX0N+I+2fyzphcBHbL9U0lJgD9uLynFOB46yfZakzwPfKfsL2Nn245J2tf2opOnAKuDFth95\n9nzTA42ImCxN6IF29DEW209Iugx4B/CbDg+6GPj35f5y4GTgorL9ddu/Bn4t6RHg2jK+Dni+pJ2A\nPwKWlUII1dnskGUjHPME4A1lzgYeL+NnS3p1uT8LOAC4rcM8IiIiNjOej7FcALyF6qxxVJIOoypS\nX5N0H1UvdHFLyJMt992yvYmqqE8DHrE93/aR5XZYyz4bRzj0Zu9pJB1PVViPsX0EsBaYPlYOERHR\nH03qgQqgLHleCXTSQ1wMfND2fuU2C/hDSc/rZFK2Hwful/Sa301CmtfBrjcCbyvx0yTtAsykKsZP\nSjoIWNDJHCIiIkbTSQFtPav7B2CPobHyEZJzt7DPqcDVbWNXU52Jtp8ljrQS/nrgLeWCoB8Ai8aI\nBzgbeImkO4DbgYOB64DtJN0JfBi4ZZT9IyKizzr9NqB+xQ3JFykUuYgoImLy1Kj05MvkIyKiHprU\nA42IiIg2WcIdliciIiLaZQk3IiKil1JAiyVLrusobtDX5vuRRxNymIi4XubRhBz6GddJHk3IYSKO\n28u4JuTQKgU0IiKiC+mBDssTERER7dIDjYiI6KUU0KIpa/PpgQ5OXHqggxOXHuhgxDUhh1YpoBER\nEV1ID3RYnoiIiGiXHmhEREQvpYAWTVmbTw90cOLSAx2cuPRAByOuCTm0SgGNiIjoQnqgw/JERERE\nu/RAIyIiemnbfk9gUGjE9xgREVFHQwusD6xcyeyFC8eM7zRuSM5AIyIiupAeaCGlBxoR0SQ9Km8j\nrk9O+hKupGeA71NNysDnbX90sucRERGxNfqxhLvR9nzbR5afHRdPSdtM5MQiIqJ5mvQ50C2eDku6\nX9Lu5f5Rkr5e7n9Q0uWSvgVcLmkHSZdKukPS9yQtLHGnS1ou6euS7pH0gZbHfp2k70paLeliKZcM\nRUTE1unHVbg7SlrN8BLuR2wvY/PPYbZuHwwca/spSe8CNtmeJ+lA4HpJB5S4FwCHAv8PWCXpWuDX\nwKnAH9l+RtKFwOuAf5qoBCMiYnB0emXteK7Ahf4U0F/bnr+F8dHOClfYfqrc/2Pg4wC275H0E2Bu\n+d0Nth8FkPTFEvsMcBRVQRUwHdiw1VlERMSUNkgfY3ma4flMb/vdxlH2ay28bhsf2v5MS9/1YNsf\n2rqpRkREXTS+BwrcT3WmCPAXo+z/TaolWCTNBZ4H3FN+93JJu0raEXg18G3gJuA1kn6/7LObpNlb\nl0JEREx1/VjCnd7WA73O9jnAh4BLJP0KWDnK/hcBF0u6A/gtcLrt35brgm4DrgKeC1xhezWApP9M\n1SudBjwFnAk8MBHJRUTEYJmoHmhjvkhB0unAUbbP6m7/fJFCRESTTPQXKQxSDzQiIqLnJqoH2pgv\nk7d9GXBZv+cRERFTQ2OWcHsgT0RERLTLEm5EREQvpYAWS5Zc11Fcr9fSex3XjzyakMNExPUyjybk\n0M+4TvJoQg4TcdxexjUhh1YpoBEREV1ID3RYnoiIiGiXHmhEREQvpYAWTVmbTw90cOLSAx2cuPRA\nByOuCTm0SgGNiIjoQnqgw/JEREREu/RAIyIieikFtGjK2nx6oIMTlx7o4MSlBzoYcU3IoVUKaERE\nRBfSAx2WJyIiItqlBxoREdFLjfnvzLaWRnyPERERvTba4ucDK1cye+HCMR+jX3FDcgYaERHRhfRA\nCyk90IiIyVKj0tOMHqikV0vaJGnuGHHXStplsuYVERFTT60KKPBa4Fpg8WhBtv/M9mOTM6WIiOil\nfA60xyTtBBwDnElVSJG0t6RvSFot6Q5Jx5bx+yXtXu5fLWmVpHWSzuhbAhER0Si16YFKOg14se23\nSvoGcDbwEmAH2x+RJGCG7Y2S7gOOtv1vkna1/aik6cCq8hiPbP746YFGREyWmpQeaEgPdDFwZbm/\nDDgNuA14s6QPAPNsbyy/b034bElrgVuBWcABkzTfiIhosFoUUEm7AScAl5Szy/cAJ9v+FnAc8HPg\nM5Je37bf8WW/Y2wfAawFpk/q5CMiYlzSA+2tk4HLbe9rez/bc4D7Jb0Y+IXtS4BPA/Pb9psJPGL7\nSUkHAQsmd9oREdFUteiBSroRON/29S1jb6fqg24EngYeB95g+4GhHijwBLAcmAPcA+wKnGv75s2P\nkR5oRMRkqUHpGTJiD7QWBXQypIBGREyeGpWeRlxEFBERU0B6oBEREQ2WJdxheSIiIqJdlnAjIiJ6\nKQW0WLLkuo7iBn1tvh95NCGHiYjrZR5NyKGfcZ3k0YQcJuK4vYxrQg6tUkAjIiK6kB7osDwRERHR\nLj3QiIiIXkoBLZqyNp8e6ODEpQc6OHHpgQ5GXBNyaJUCGhER0YX0QIfliYiIiHbpgUZERPRSCmjR\nlLX59EAHJy490MGJSw90MOKakEOrFNCIiIgupAc6LE9ERES0Sw80IiKil1JACym33HKb6rdOpAfa\nfVwTcmiVAhoREdGF9EALKT3QiKku/xzGFoy4NjFQZ6CSXi1pk6S5LWN/L2mdpPO3EP/nkt47ubOM\niIgYsAIKvBa4FljcMvYfgHm239caKGkb29fY/uhkTjAiprb0QLuPa0IOrQamgEraCTgGOJOqkCLp\nS8DOwPcknSxpqaSLJd0CnC/pdEmfKLF7SrpK0lpJayQtKONXS1pVzmLP6E92ERHRNAPTA5V0GvBi\n22+V9A3gbNtrJD1me5cSsxTYw/aisn06cJTtsyR9HviO7Y9LErCz7ccl7Wr7UUnTgVXlGI9sfvz0\nQCOmugH55zAGSy16oIuBK8v9ZQwv47ZPftkI+58AXAzgyuNl/GxJa4FbgVnAAT2bcURETFkDUUAl\n7UZVAC+RdB/wHuCUEcI3jjC+2XtHSceXxz3G9hHAWmD61s84Iqaq9EC7j2tCDq0GooACJwOX297X\n9n625wD3SzpuHI9xI/A2AEnTJO0CzAQesf2kpIOABT2feURETEkD0QOVdCNwvu3rW8b+GjgEeJ3t\nmWXsUuBa21eV7dYe6J7Ap4D9gKeB/wSsAZYDc4B7gF2Bc23fvPkc0gONmOoG4J/DGDwj9kAHooAO\nghTQiMg/h7EFtbiIKCJi4KUH2n1cE3JolQIaERHRhSzhDssTERER7bKEGxER0UspoEVT1ub7kUcT\ncpiIuF7m0YQc+hnXSR5NyGEijpse6MhSQCMiIrqQHuiwPBEREdEuPdCIiIheSgEtmrI2nx7o4MSl\nBzo4cemBDkZcE3JolSXciIiILuQMNCIiogspoBEREV1IAY2IiOhCCmhEREQXUkABSSdKulvSvZLe\n1+/5dErSJZI2SLqjZWw3SddLukfSVyXN7OccxyJplqSbJN0paZ2ks8p4bfKQtIOk70paU/L4cBmv\nTQ5Dyn9Gv1rSirJdxxx+Iun75fW4rYzVKg9JMyUtk/TD8mfqmBrmMLe8BqvLz19JOqtueYxmyhdQ\nSdOATwKvAA4FFks6qL+z6thSqnm3ej/wNdsHAjcBfzvpsxqfp4F32T4UeBFwZnn+a5OH7SeBl9g+\nEpgHnCDpWGqUQ4t3AHe1bNcxh03AQttH2n5hGatbHhcAX7Z9MHA4cDc1y8H2veU1mA8cBWwErqZm\neYzK9pS+AQuAr7Rsvx94X7/nNY75zwHuaNm+G9ir3N8buLvfcxxnPsuBl9U1D2AGcBtwSN1yAGYB\nNwALgRV1/fME3A/s0TZWmzyAXYAfb2G8NjlsYe5/Anyz7nm036b8GSjwXODBlu2flbG62tP2BgDb\n64E9+zyfjknaBzgCuJXqL1ht8ihLn2uA9cBK23dRsxyAjwHv4dlfa1m3HKCa/w2SVkk6o4zVKY99\ngYclLS3Ln5+SNIN65dDuVOCz5X6d83iWFNDmq8U3ZUjaGfgX4B22n2DzeQ90HrY3uVrCnQUcJ2kh\nNcpB0p8CG2yvZZTv/mSAc2hxrKtlw1dRtQSOo0avBbAtMB+4sOSxkWplrE45/I6k7YBFwLIyVMs8\ntiQFFH4OzG7ZnlXG6mqDpL0AJO0N/KLP8xmTpG2piucVtr9UhmuXB4Dtx4AvA0dTrxyOBRZJug/4\nHFUf9wpgfY1yAMD2Q+XnL6laAi+kXq/Fz4AHbd9etr9IVVDrlEOrVwLfs/1w2a5rHptJAYVVwP6S\n5kjaHngtsKLPcxoP8ewzhhXAG8v904Evte8wgC4F7rJ9QctYbfKQ9HtDVxJK2hF4ObCGGuVg+xzb\ns23vR/V34CbbbwCuoSY5AEiaUVYzkLQTVe9tHfV6LTYAD0qaW4ZeCtxJjXJos5jqTdmQuuaxmXwX\nLtXHWKiuepsGXGL7vD5PqSOSPkt1wccewAbgg1TvuJcBzwN+Cpxi+9F+zXEs5WrVm6n+kXO5nUN1\nIc6V1CAPSc8HLqN6IzON6kx6iaTdqUkOrSQdD7zb9qK65SBpX6orPU21FPrPts+rYR6HA58GtgPu\nA94EbEONcoDqDQ3VXPez/XgZq9VrMZoU0IiIiC5kCTciIqILKaARERFdSAGNiIjoQgpoREREF1JA\nIyIiupACGhER0YUU0IiIiC78fys1jSNsUVbKAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAGwCAYAAAAZqTRaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzZJREFUeJzt3X28rWVd5/HP93BAHkWy0BJBSY6ihDz4gJF5pEzTQsdK\nPJXh0ziZE5rmQzaT5sz4EDQNlTpT6tEsTU48CL4UweBEqQgECELgJIhYgjpJIhok5zd/rOvIYp99\nzt57nbXXvu97f96v13rtta593Wtdv70O67fv67v2IlWFJElamjUrvQBJkvrIBipJ0gRsoJIkTcAG\nKknSBGygkiRNwAYqSdIEbKBAkqcluS7J55O8dqXXs1hJ3p3k1iRXjY3tl+S8JNcn+XiSfVdyjQtJ\nckCSC5Jck+TqJCe18d7UkeQ+ST6T5IpWx5vbeG9q2CrJmiSXJzm73e5jDV9M8tn2fFzSxnpVR5J9\nk2xK8g/t39Tje1jDuvYcXN6+/muSk/pWx46s+gaaZA3wx8BTgUcBG5I8YmVXtWgbGa173OuAT1TV\nw4ELgN+a+aqW5rvAK6vqUcATgJe1n39v6qiqO4EnV9WRwOHAcUmOpUc1jHk5cO3Y7T7WsAVYX1VH\nVtXj2ljf6jgV+GhVHQo8GriOntVQVZ9vz8FRwNHAHcCZ9KyOHaqqVX0BjgE+Nnb7dcBrV3pdS1j/\nQcBVY7evAx7Qrj8QuG6l17jEes4CfrKvdQB7ApcAj+xbDcABwPnAeuDsvv57Am4E7j9nrDd1APcF\nvjDPeG9qmGftPwX8bd/rmHtZ9WegwIOAm8duf7mN9dX+VXUrQFXdAuy/wutZtCQPAY4ALmb0H1hv\n6mhbn1cAtwCbq+paelYD8AfAq4HxjyfrWw0wWv/5SS5N8uI21qc6Hgp8PcnGtv35J0n2pF81zHUC\n8IF2vc913IsNdPh68VmNSfYG/gp4eVV9i23X3ek6qmpLjbZwDwCemGQ9PaohyTOAW6vqSiA7mNrZ\nGsYcW6Ntw6czigSeSI+eC2AtcBTw9lbHHYx2xvpUw/ck2RU4HtjUhnpZx3xsoPBPwIFjtw9oY311\na5IHACR5IPDVFV7PgpKsZdQ8319VH27DvasDoKq+CXwUeAz9quFY4PgkNwAfZJTjvh+4pUc1AFBV\nX2lfv8YoEngc/XouvgzcXFWXtdunM2qofaph3E8Df19VX2+3+1rHNmygcCnwsCQHJdkNeC5w9gqv\naSnCvc8Yzgae366fCHx47gEd9B7g2qo6dWysN3Uk+f6t7yRMsgfwFOAKelRDVb2+qg6sqoMZ/Tdw\nQVU9DziHntQAkGTPtptBkr0YZW9X06/n4lbg5iTr2tBPANfQoxrm2MDol7Kt+lrHNtKC3FUtydMY\nvettDfDuqnrrCi9pUZJ8gNEbPu4P3Aq8gdFv3JuABwM3Ac+pqttWao0Lae9WvYjRi1y1y+sZvRHn\nNHpQR5IfAd7H6BeZNYzOpE9J8n30pIZxSZ4EvKqqju9bDUkeyuidnsVoK/QvquqtPazj0cC7gF2B\nG4AXALvQoxpg9AsNo7UeXFW3t7FePRc7YgOVJGkCbuFKkjQBG6gkSROwgUqSNAEbqCRJE1i70gvo\nEN9NJUmaa7sfLOIZqCRJE7CBNqeccu6i5n1p8+ZOz1uJOoZQw3LMm2YdQ6hhJectpo4h1LAcjzvN\neUOoYZwNVJKkCfhBCvfwByFJmssMVJKkabKBNkPZmzcD7c48M9DuzDMD7ca8IdQwzgYqSdIEzEDv\n4Q9CkjSXGagkSdNkA22GsjdvBtqdeWag3ZlnBtqNeUOoYZwNVJKkCZiB3sMfhCRpLjNQSZKmyQba\nDGVv3gy0O/PMQLszzwy0G/OGUMM4t3CbxC1cSZql7bWfL23ezIHr1y94/IzmbXcL1wba2EAlabZ6\n0n7MQCVJmiYbqCSpU/qSgdpAJUmagBloYwYqSbPVk/ZjBipJ0jTZQCVJnWIGKknSgJmBNmagkjRb\nPWk/ZqCSJE2TDVSS1ClmoJIkDZgZaGMGKkmz1ZP2YwYqSdI02UAlSZ1iBipJ0oCZgTZmoJI0Wz1p\nP2agkiRNkw1UktQpZqCSJA2YGWhjBipJs9WT9mMGKknSNNlAJUmdYgYqSdKAmYE2ZqCSNFs9aT87\nl4Em+e0kn0vy2SSXJ3nsIo87K8mnF7vKSST53STHLedjSJI014INNMkxwNOBI6rq0cBPAjcv4rh9\ngcOA3ZI8ZOeWud3HWFNVb6iqC5bj/iVJszekDPQHga9X1XcBqupfquqWRRz3bOBs4DRgw9bBJBuT\nvCPJp5P8Y5L1Sd6b5Nok7xmb95Qkn0pyWZIPJdmzjd+Y5K1JLgN+vt3fs9v3Hpvkk0muTHJxkr2S\nHJTkonY/l7VfCCRJ2ikLZqBJ9gL+DtgD+GvgQ1V10YJ3nJwH/Ffga8BZVXV4G98I3KeqfjHJ8cCf\nA8dU1bWtKb4Q+CfgDOBpVfWdJK8Bdquq/57kRuDtVXXK2P2d0y7XAb9QVZcn2Rv4NrAbsKWq7kry\nMOCDVbXNFrQZqCTNVt8z0LULHVlVdyQ5CngicBzwl0leV1V/tt1HS/YHHlZVn2m370ryyKq6tk05\np329GvjK2Pg1wEOABwOPBD6ZJMCuwKfGHuJD8zzsw4F/rqrL27q/1R57N+CPkxwB3A0cslDNkiQt\nZFFvIqqRi6rqjcCvAz+3wCHPAfZLckM7Y3wIY9u4wJ3t65ax61tvr2XU8c+rqqOq6siqOqyqXjI2\n747tPO58vyn8BnBLOwN+DKMzUklSRw0mA02yrm19bnUEcNMCh20AnlpVB1fVQxk1rg3bmTtf07sY\nODbJD7c17JlkoTPH64EHJjm6HbN3kl2AfYGvtDm/AuyywP1IkrSgxZyB7g28r/0Zy5XAocAb4Xt/\nQvIz45OTHAQcWFWXbB2rqi8Ct7U/f5m7611zr1fV14HnAx9M8llG27cPn2f++DH/DpzAaLv2SuA8\n4D7AO4DnJ7kCWMf2z14lSR1w4Pr1nZ63lR+k0PgmIkmarZ60Hz9MXpLUD4PJQCVJ0rbcwm3cwpWk\n2epJ+3ELV5KkabKBSpI6xQxUkqQBMwNtzEAlabZ60n7MQCVJmiYbqCSpU8xAJUkaMDPQxgxUkmar\nJ+3HDFSSpGmygUqSOsUMVJKkATMDbcxAJWm2etJ+zEAlSZomG6gkqVPMQCVJGjAz0MYMVJJmqyft\nxwxUkqRpsoFKkjrFDFSSpAEzA23MQCVptnrSfsxAJUmaJhuoJKlTzEAlSYNWdc/lpgs33+v2fJeT\nTz73Xrf7zgy0MQOVpKVZJe3DDFSSpGmygUqSdtpi8sNTTjl3ave1kvO2soFKkjQBM9DGDFSSlmaV\ntA8zUEmSpskGKknaaWagkiRpUcxAGzNQSVqaVdI+zEAlSZomG6gkaaeZgUqSpEUxA23MQCVpaVZJ\n+zADlSRpmmygkqSdZgYqSZIWxQy0MQOVpKVZJe3DDFSSpGmygUqSdpoZqCRJWhQz0MYMVJKWZpW0\nDzNQSZKmyQYqSdppZqCSJGlRzEAbM1BJWppV0j5WJgNN8qAkZyX5fJL/m+QPkqxdzsdsj/uDSU5b\n7seRJK1ey72FewZwRlWtA9YB+wBvXubHpKq+UlXPWe7HkSSNmIFOUZLjgO9U1Z8B1Giv+DeAFyTZ\nI8kpSa5OcmWSl7VjjkqyOcmlST6W5AFt/MVJLklyRZJNSXZv4xuTnJrkk0n+Mcmz2/hBSa4eu35R\nksva5ZjlqlmStHosWwaa5NeBh1TVq+aMXw68F/gx4ISqqiT3A74F/A1wfFX9vyTPAZ5aVS9Ksl9V\nfaMd/9+AW6rq7Uk2AntW1QlJDgXOrqpDkhwEnFNVhyfZA7i7qu5K8jDgg1X12G3XawYqSUux2jPQ\nZc8jt+NJwDvaWSlVdVuSRwGHAecnCaOz439u8w9vjfN+wF7Ax8fu66x2H/+QZP95HmtX4P8kOQK4\nGzhkOQqSJK0uy5mBXgs8ZnwgyT7AgduZH+BzVXVUVR1ZVY+uqp9u39sI/FpVHQ68Cdh97Lg759zH\nXL/B6Iz18Lae3ZZeiiRpR8xAp6iq/hrYI8kvAyTZBfh9Rs3w48CvtjGS7AdcD/zA1owyydokj2x3\ntzdwS5JdgV/awcPO10D3Bb7Srv8KsMtOFSZJEsv8d6BJHgS8E3gEo+b2UeA3gS3A7wFPA+4C/rSq\n3pHkcOCPGDW9XYD/VVXvTvKrwGuArwKfAfapqhcmeQ/wkao6oz3eN6vqvnMy0IcBp7fHPBd4WVXd\nd9u1moFK0lKs9gzUD1JobKCStDSrpH34YfKSpOVjBipJkhbFLdzGLVxJWppV0j7cwpUkaZpsoJKk\nnWYGKkmSFsUMtDEDlaSlWSXtwwxUkqRpsoFKknaaGagkSVoUM9DGDFSSlmaVtA8zUEmSpskGKkna\naWagkiRpUcxAGzNQSVqaVdI+zEAlSZomG6gkaaeZgUqSpEUxA23MQCVpaVZJ+zADlSRpmmygkqSd\nZgYqSZIWxQy0MQOVpKVZJe3DDFSSpGmygUqSdtpqzEDXLmm2JElN7rW5uX4RRzyNV796dG0I279m\noI0ZqCTNTo9ajxmoJEnTZAOVJHVKXzJQG6gkSRMwA23MQCVpdnrUesxAJUmaJhuoJKlTzEAlSRow\nM9DGDFSSZqdHrccMVJKkabKBSpI6xQxUkqQBMwNtzEAlaXZ61HrMQCVJmiYbqCSpU8xAJUkaMDPQ\nxgxUkmanR63HDFSSpGmygUqSOsUMVJKkATMDbcxAJWl2etR6zEAlSZomG6gkqVPMQCVJGjAz0MYM\nVJJmp0etZ/IMNMmWJCeP3X5Vkt9Z1KMmr0jynST7LG6dS5fkZ5O8ZrnuX5Kk+SxmC/dO4NlJvm+C\n+38ucD7w7AmOXVCSXarqnKr6veW4f0nS7A0pA/0u8CfAK5dyx0kOBnYF/gfwi2PjJyY5M8l5SW5I\n8p/bWe3lST6V5H5bj0/ysSSXJvmbJOva+MYk70zyaeBt7f7+qH1v/yRnJLkyyRVJjmnjZ7b7uTrJ\ni5dShyRJ81kwA03yTeCHgKuBw4GXAHtV1ZsWOO71wN1V9bYk/wg8oaq+luRE4LeBI4A9gS8Av1lV\nf5rkfwJfrKo/TPIJ4D9V1ReSPA54S1X9RJKNwP2r6vj2OCcCR1fVSUn+EvhUOz7A3lV1e5L7VdVt\nSXYHLgV+vKq+ce/1moFK0qwMIQNdu5ijq+pbSd4HvBz4ziIfdAPwzHb9LOAXgHe02xdW1beBbyf5\nBvCRNn418CNJ9gJ+FNjUGiGMzma32rSdxzwOeF5bcwG3t/FXJHlWu34AcAhwySLrkCRpG0v5M5ZT\ngRcxOmvcoSSHMWpSn0hyA6MsdMPYlDvHrtfY7S2Mmvoa4BtVdVRVHdkuh40dc8d2Hnqb32mSPIlR\nY318VR0BXAnsvlANkqSVMaQMNABty/M0YDEZ4gbgDVV1cLscAPxQkgcvZlFVdTtwY5Kf/94iksMX\ncehfA7/W5q9Jcl9gX0bN+M4kjwCOWcwaJEnakcU00PGzut8H7r91rP0JyRvnOeYE4Mw5Y2cyOhOd\ne5a4vZ3wXwZe1N4Q9Dng+AXmA7wCeHKSq4DLgEOBc4Fdk1wDvBn49A6OlyStsAPXr+/0vK38IIXG\nNxFJ0uz0qPX4YfKSpH4YUgYqSZLmcAu3cQtXkmanR63HLVxJkqbJBipJ6hQzUEmSBswMtDEDlaTZ\n6VHrMQOVJGmabKCSpE4xA5UkacDMQBszUEmanR61HjNQSZKmyQYqSeoUM1BJkgbMDLQxA5Wk2elR\n6zEDlSRpmmygkqROMQOVJGnAzEAbM1BJmp0etR4zUEmSpskGKknqFDNQSZIGzAy0MQOVpNnpUesx\nA5UkaZpsoJKkTjED7ZmTTz6XKha83HTh5k7PW4k6hlBD1+sYQg1dr2MINXS9jvEahsAMtDEDlaRh\nmVJ7MwOVJGmabKCSpEEzA5UkqUPMQBszUEkaFjNQSZI6yAYqSRo0M1BJkjrEDLQxA5WkYTEDlSSp\ng2ygkqRBMwOVJKlDzEAbM1BJGhYzUEmSOsgGKkkaNDNQSZI6xAy0MQOVpGExA5UkqYNsoJKkQTMD\nlSSpQ8xAGzNQSRoWM1BJkjrIBipJGjQzUEmSOsQMtDEDlaRhMQOVJKmDZt5Ak9yd5PIkV7Svr5n1\nGiRJq8dyZaBrl76UnXZHVR01yYFJdqmqu6e9IEmSlmrmGWiS26tqn3nGbwSOrqp/SXI0cEpVPTnJ\nG4AfBg4GbgJeCLwTeAzw78CrqmpzkhOB/wDsC/wQ8BdV9aZ2378EnATsCnwG+LWaU7gZqCQNy3Jn\noCtxBrpHkssZLaqAt1TVpnZ93PjtQ4Fjq+quJK8EtlTV4UkeDpyX5JA277HAo4B/Ay5N8hHg28AJ\nwI9W1d1J3g78EvDny1WgJGn4VqKBfns7W7jb7fLA2VV1V7v+Y8AfAlTV9Um+CKxr3zu/qm4DSHJ6\nm3s3cDSjhhpgd+DWna5CktQLX9q8mQPXr5/avK1WooFuz3e5501Nu8/53h07OG688dac8a2331tV\nv71zy5Mk6R4r8Wcs2zvTvJHRmSLAz+3g+L9ltAVLknXAg4Hr2/eekuR+SfYAngV8ErgA+PkkP9CO\n2S/JgTtXgiSpLxZ7VrmUs09YmTPQ3edkoOdW1euBNwHvTvKvwOYdHP8O4J1JrmL0JqITq+rfR7uz\nXAKcATwIeH9VXQ6Q5L8wykrXAHcBLwO+tBzFSZJWh8F8ElF7F+7RVXXSZMf7LlxJGpKt7W0nM1A/\niUiSpGkazBnozvIMVJKGxc/ClSSpg2ygkqRB8/8HKklSh5iBNmagkjQsZqCSJHWQDVSSNGhmoJIk\ndYgZaGMGKknDYgYqSVIH2UAlSYNmBipJUoeYgTZmoJI0LGagkiR1kA1UkjRoZqCSJHWIGWhjBipJ\nw2IGKklSB9lAJUmDZgYqSVKHmIE2ZqCSNCxmoJIkdZANVJI0aGagkiR1iBloYwYqSbPTo9ZjBipJ\n0jTZQCVJnTLtzNIMVJKkDjEDbcxAJWl2etR6zEAlSZomG6gkqVPMQCVJGjAz0MYMVJJmp0etxwxU\nkqRpsoFKkjrFDFSSpAEzA23MQCVpdnrUesxAJUmaJhuoJKlTzEAlSRowM9DGDFSSZqdHrccMVJKk\nabKBSpI6xQxUkqQBMwNtzEAlaXZ61HrMQCVJmiYbqCSpU8xAJUkaMDPQxgxUkmanR63HDFSSpGnq\nVQNN8qwkW5KsW2DeR5Lcd1brkiRNjxno8ngu8BFgw44mVdXPVNU3Z7MkSdJq1JsMNMlewOeAHwfO\nq6pDkzwQ+BCwD7AWeGlVfTLJjcDRVfUvSc4EDgB2B06tqnfNf/9moJI0Kz1pPbCDDHTtLFexk54J\nfLyqbk7y1SRHAk8Gzq2qtyQJsGebO/7UvKCqbkuyO3BpktOr6hszXrskaWD6tIW7ATitXd8E/CJw\nCfDCJL8DHF5Vd7Tvj//G8IokVwIXMzoTPWRG65UkTaAvGWgvzkCT7AccBxyWpIBdgKqqVyd5IvAM\n4L1Jfr+q/nzsuCe14x5fVXcmuZDRVq4kSTulFxlokpcAR1bVS8fGLgTeAPxdVW1J8jLgh6vqlVsz\nUODHgBdV1TOTPAK4AnhqVV207WOYgUrSrPSg9WzV+wz0BOBtc8bOADYCdyT5LnA78Lz2va1PzbnA\nrya5Brge+PQM1ipJWgV6cQY6C56BStLs7Kj1fGnzZg5cv37B+5jRPD+JSJKkafIMtPEMVJJmp0et\nxzNQSZKmyQYqSeqUvvwdqA1UkqQJmIE2ZqCSNDs9aj1moJIkTZMNVJLUKWagkiQNmBloYwYqSbPT\no9ZjBipJ0jTZQCVJnWIGKknSgJmBNmagkjQ7PWo9ZqCSJE2TDVSS1ClmoJIkDZgZaGMGKkmz06PW\nYwYqSdI02UAlSZ1iBipJ0oCZgTZmoJI0Oz1qPWagkiRNkw1UktQpZqCSJA2YGWhjBirJl0PNwwxU\nkqRpsoFK0hKsVO52yinnrsjjTnPeEGoYZwOVJGkCZqCNGagkXw41DzNQSZKmyQYqSUtgBjr5vCHU\nMM4GKknSBMxAGzNQSb4cah5moJIkTZMNVJKWwAx08nlDqGGcDVSSpAmYgTZmoJJ8OdQ8zEAlSZom\nG6gkLYEZ6OTzhlDDOBuoJEkTMANtzEAl+XKoeZiBSpI0TTZQSVoCM9DJ5w2hhnE2UEmSJmAG2piB\nSvLlUPMwA5UkaZpsoJK0BGagk88bQg3jbKCSJE3ADLQxA5Xky6HmYQYqSdI0daqBJnlWki1J1o2N\nnZzk6iRvm2f+zyZ5zWxXKWk1MwOdfN4Qahi3dkmzl99zgY8AG4DfbWP/Ediv5uw1J9mlqs4Bzpnt\nEiVJ6lAGmmQv4HPAjwPnVdWhST4MPAO4CngL8HTg34AjgE8CVwOPqapfT7I/8L+Bg4ECXlpVFyc5\nEzgA2B04tareNf/jm4FKq11HXg7VLdvNQLt0BvpM4ONVdXOSryY5sqqemeSbVXUUQJKnAw+qqie0\n2yfC9xrfHwKbq+rZSQLs3cZfUFW3JdkduDTJ6VX1jdmWJkkami5loBuA09r1Te02bNv9N23n+OOA\ndwLUyO1t/BVJrgQuZnQmesjUVixp1TEDnXzeEGoY14kz0CT7MWqAhyUpYBdGZ5bzvUHoju3czTab\nL0me1O738VV1Z5ILGW3lSpK0UzqRgSZ5CXBkVb10bOxC4HeAj1bVPm1sI3BOVZ3Rbp8IHF1VJyX5\nAPCZqjo1yRpGW7jrgRe1reBHAFcAT62qi7ZdgxmotNp14OVQ3dP5vwM9AThzztjpjLZxt4yN7eif\n9yuAJye5CrgMOBQ4F9g1yTXAm4FPT23FkqTVraq8VDH63dOLFy+r+bIYN1144YrMO/nkj63I405z\nXk9rYHuXrpyBSpLUK53IQLvADFSSL4eaR+czUEmSesUGKklL4N+BTj5vCDWMs4FKkjQBM9DGDFSS\nL4eahxmoJEnTZAOVpCUwA5183hBqGGcDlSRpAmagjRmoJF8ONQ8zUEmSpskGKklLYAY6+bwh1DDO\nBipJ0gTMQBszUEm+HGoeZqCSJE2TDVSSlsAMdPJ5Q6hhnA1UkqQJmIE2ZqCSfDnUPMxAJUmaJhuo\nJC2BGejk84ZQwzgbqCRJEzADbcxAJflyqHmYgUqSNE02UElaAjPQyecNoYZxNlBJkiZgBnoPfxCS\npLnMQCVJmiYbaDOUvfmVqGMINSzHvGnWMYQaVnLeYuoYQg3L8bhmoNtnA5UkaQJmoPfwByFJmssM\nVJKkabKBNkPZmzcD7c48M9DuzDMD7ca8IdQwzgYqSdIEzEDv4Q9CkjSXGagkSdNkA22GsjdvBtqd\neWag3ZlnBtqNeUOoYZwNVJKkCZiB3sMfhCRpLjNQSZKmyQbaDGVv3gy0O/PMQLszzwy0G/OGUMM4\nt3AlSZqAZ6CSJE3ABipJ0gRsoJIkTcAGKknSBGygQJKnJbkuyeeTvHal17NYSd6d5NYkV42N7Zfk\nvCTXJ/l4kn1Xco0LSXJAkguSXJPk6iQntfHe1JHkPkk+k+SKVseb23hvatgqyZoklyc5u93uYw1f\nTPLZ9nxc0sZ6VUeSfZNsSvIP7d/U43tYw7r2HFzevv5rkpP6VseOrPoGmmQN8MfAU4FHARuSPGJl\nV7VoGxmte9zrgE9U1cOBC4Dfmvmqlua7wCur6lHAE4CXtZ9/b+qoqjuBJ1fVkcDhwHFJjqVHNYx5\nOXDt2O0+1rAFWF9VR1bV49pY3+o4FfhoVR0KPBq4jp7VUFWfb8/BUcDRwB3AmfSsjh2qqlV9AY4B\nPjZ2+3XAa1d6XUtY/0HAVWO3rwMe0K4/ELhupde4xHrOAn6yr3UAewKXAI/sWw3AAcD5wHrg7L7+\newJuBO4/Z6w3dQD3Bb4wz3hvaphn7T8F/G3f65h7WfVnoMCDgJvHbn+5jfXV/lV1K0BV3QLsv8Lr\nWbQkDwGOAC5m9B9Yb+poW59XALcAm6vqWnpWA/AHwKu598da9q0GGK3//CSXJnlxG+tTHQ8Fvp5k\nY9v+/JMke9KvGuY6AfhAu97nOu7FBjp8vfikjCR7A38FvLyqvsW26+50HVW1pUZbuAcAT0yynh7V\nkOQZwK1VdSU7+OxPOlzDmGNrtG34dEaRwBPp0XMBrAWOAt7e6riD0c5Yn2r4niS7AscDm9pQL+uY\njw0U/gk4cOz2AW2sr25N8gCAJA8EvrrC61lQkrWMmuf7q+rDbbh3dQBU1TeBjwKPoV81HAscn+QG\n4IOMctz3A7f0qAYAquor7evXGEUCj6Nfz8WXgZur6rJ2+3RGDbVPNYz7aeDvq+rr7XZf69iGDRQu\nBR6W5KAkuwHPBc5e4TUtRbj3GcPZwPPb9ROBD889oIPeA1xbVaeOjfWmjiTfv/WdhEn2AJ4CXEGP\naqiq11fVgVV1MKP/Bi6oqucB59CTGgCS7Nl2M0iyF6Ps7Wr69VzcCtycZF0b+gngGnpUwxwbGP1S\ntlVf69iGn4XL6M9YGL3rbQ3w7qp66wovaVGSfIDRGz7uD9wKvIHRb9ybgAcDNwHPqarbVmqNC2nv\nVr2I0YtctcvrGb0R5zR6UEeSHwHex+gXmTWMzqRPSfJ99KSGcUmeBLyqqo7vWw1JHsronZ7FaCv0\nL6rqrT2s49HAu4BdgRuAFwC70KMaYPQLDaO1HlxVt7exXj0XO2IDlSRpAm7hSpI0ARuoJEkTsIFK\nkjQBG6gkSROwgUqSNAEbqCRJE7CBSpI0gf8P28ds+FxFSnwAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,7))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=1)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAGwCAYAAAAZqTRaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYZHV95/H3h4siqIgmSCKCEh1FFLl5C2sciUZjEuIm\nXsDEoInJs1kTNRovMbtqsrteltn4YKLuuiJRE00gXARXCSYwwRgRFBAE0SQgoJExPPGCaFDhu3/U\nb+xjTc9Md1Hdfc7p9+t56pmq09+qOt9TM/3t8/tU16SqkCRJy7PLWu+AJElD5ACVJGkGDlBJkmbg\nAJUkaQYOUEmSZuAAlSRpBg5QIMlTk1yT5PNJXrnW+7NUSU5OsiXJFZ1t+yQ5L8nnkvx1kr3Xch93\nJsn+Sc5PclWSK5O8qG0fTB9J7prkE0kua328vm0fTA9bJdklyaVJzm63h9jDF5J8ur0eF7dtg+oj\nyd5JTkvy2fZ36jED7GFDew0ubX9+PcmLhtbHjqz7AZpkF+BPgKcAhwDHJ3no2u7Vkp3CZL+7XgX8\nTVU9BDgf+L1V36vl+R7w0qo6BHgc8MJ2/AfTR1XdBjyxqg4HDgWOSXI0A+qh48XA1Z3bQ+zhDmBj\nVR1eVY9u24bWx0nAh6rqYOCRwDUMrIeq+nx7DY4AjgRuBc5kYH3sUFWt6wvwWODDnduvAl651vu1\njP0/ELiic/sa4L7t+n7ANWu9j8vs5yzgSUPtA9gTuBh42NB6APYHPgJsBM4e6t8n4DrgPlPbBtMH\ncE/gnxfZPpgeFtn3nwI+OvQ+pi/r/gwUuB9wY+f2F9u2odq3qrYAVNVNwL5rvD9LluQBwGHARUz+\ngQ2mj7b0eRlwE7C5qq5mYD0AbwZeDnQ/nmxoPcBk/z+S5JIkL2jbhtTHA4Gbk5zSlj/fkWRPhtXD\ntGcD72vXh9zHD3CAjt8gPqsxyd2BvwJeXFXfZNv97nUfVXVHTZZw9wcen2QjA+ohyc8AW6rqciA7\nKO1tDx1H12TZ8GlMIoHHM6DXAtgNOAJ4a+vjViYrY0Pq4fuS7A4cC5zWNg2yj8U4QOFLwAGd2/u3\nbUO1Jcl9AZLsB3xljfdnp5LsxmR4vreqPtA2D64PgKr6BvAh4CiG1cPRwLFJrgXezyTHfS9w04B6\nAKCqvtz+/FcmkcCjGdZr8UXgxqr6ZLt9OpOBOqQeun4a+FRV3dxuD7WPbThA4RLgQUkOTHIX4Djg\n7DXep+UIP3jGcDbwvHb9BOAD03fooXcBV1fVSZ1tg+kjyQ9tfSdhkrsBTwYuY0A9VNWrq+qAqjqI\nyb+B86vqucA5DKQHgCR7ttUMkuzFJHu7kmG9FluAG5NsaJt+EriKAfUw5XgmP5RtNdQ+tpEW5K5r\nSZ7K5F1vuwAnV9Ub13iXliTJ+5i84eM+wBbgtUx+4j4NuD9wPfCsqvraWu3jzrR3q17I5Jtctcur\nmbwR51QG0EeSRwDvZvKDzC5MzqQ3Jbk3A+mhK8kTgJdV1bFD6yHJA5m807OYLIX+eVW9cYB9PBJ4\nJ7A7cC3wfGBXBtQDTH6gYbKvB1XVLW3boF6LHXGASpI0A5dwJUmagQNUkqQZOEAlSZqBA1SSpBns\nttY70CO+m0qSNG27HyziGagkSTNwgDabNp27pLobNm/udd1a9DGGHlaibp59jKGHtaxbSh9j6GEl\nnneedWPoocsBKknSDPwghQUeCEnSNDNQSZLmyQHajGVt3gy0P3VmoP2pMwPtR90YeuhygEqSNAMz\n0AUeCEnSNDNQSZLmyQHajGVt3gy0P3VmoP2pMwPtR90YeuhygEqSNAMz0AUeCEnSNDNQSZLmyQHa\njGVt3gy0P3VmoP2pMwPtR90YeuhygEqSNAMz0CYxA5Wk1TSQ8WMGKknSPDlAJUm9YgYqSdKImYE2\nZqCStLoGMn7MQCVJmicHqCSpV8xAJUkaMTPQxgxUklbXQMaPGagkSfPkAJUk9YoZqCRJI2YG2piB\nStLqGsj4uXMZaJLfT/KZJJ9OcmmSRy3xfmcl+fhS93IWSf4gyTEr+RySJE3b6QBN8ljgacBhVfVI\n4EnAjUu4397Aw4G7JHnAndvN7T7HLlX12qo6fyUeX5K0+saUgf4IcHNVfQ+gqv6tqm5awv1+ATgb\nOBU4fuvGJKckeVuSjyf5pyQbk/xpkquTvKtT9+Qk/5Dkk0n+Msmebft1Sd6Y5JPAM9rj/UL72qOS\nfCzJ5UkuSrJXkgOTXNge55PtBwJJku6UnWagSfYC/h64G/C3wF9W1YU7feDkPOC/Av8KnFVVh7bt\npwB3rarnJDkW+DPgsVV1dRuKvwp8CTgDeGpVfTvJK4C7VNV/T3Id8Naq2tR5vHPa5RrgmVV1aZK7\nA98C7gLcUVXfSfIg4P1Vtc0StBmoJK2uoWegu+3snlV1a5IjgMcDxwB/keRVVfWe7T5bsi/woKr6\nRLv9nSQPq6qrW8k57c8rgS93tl8FPAC4P/Aw4GNJAuwO/EPnKf5ykad9CPAvVXVp2+9vtue+C/An\nSQ4DbgcevLOeJUnamSW9iagmLqyq1wG/DfziTu7yLGCfJNe2M8YH0FnGBW5rf97Rub719m5MJv55\nVXVEVR1eVQ+vqt/o1N26nedd7CeF3wFuamfARzE5I5Uk9dRoMtAkG9rS51aHAdfv5G7HA0+pqoOq\n6oFMBtfx26ldbOhdBByd5MfaPuyZZGdnjp8D9ktyZLvP3ZPsCuwNfLnV/Aqw604eR5KknVrKGejd\ngXe3X2O5HDgYeB18/1dIfrZbnORA4ICqunjrtqr6AvC19usv06veNX29qm4Gnge8P8mnmSzfPmSR\n+u59vgs8m8ly7eXAecBdgbcBz0tyGbCB7Z+9SpJ64ICNG3tdt5UfpND4JiJJWl0DGT9+mLwkaRhG\nk4FKkqRtuYTbuIQrSatrIOPHJVxJkubJASpJ6hUzUEmSRswMtDEDlaTVNZDxYwYqSdI8OUAlSb1i\nBipJ0oiZgTZmoJK0ugYyfmb//0DXi4G8kJKknnAJt9m06dwl1fV9bX4t+hhDDytRN88+xtDDWtYt\npY8x9LASzzvPujH00OUAlSRpBmagCzwQkqRp/h6oJEnz5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5\nQCVJmoEZ6AIPhCRpmhmoJEnz5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5QCVJmoEZ6AIPhCRpmhmo\nJEnz5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5QCVJmoEZ6AIPhCRpmhmoJEnz5ABtxrI2bwbanzoz\n0P7UmYH2o24MPXQ5QCVJmoEZ6AIPhCRpmhmoJEnz5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5QCVJ\nmoEZ6AIPhCRpmhmoJEnz5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5QCVJmoEZ6AIPhCRpmhmoJEnz\n5ABtxrI2bwbanzoz0P7UmYH2o24MPXQ5QCVJmoEZ6AIPhCRpmhmoJEnz5ABtEi9evHjxspxLlxmo\nJElaEjPQJjEDlaTlWCfjI9v7gmegkiTNwAEqSbrTzEAlSdKSmIE2ZqCStDzrZHyYgUqSNE8OUEnS\nnWYGKkmSlsQMtDEDlaTlWSfjwwxUkqR5WtEBmuR+Sc5K8vkk/5jkzUl2W8nnbM/7I0lOXennkSRN\nmIHO3xnAGVW1AdgA3AN4/Qo/J1X15ap61ko/jyRp/VqxDDTJMcBrqmpjZ9s9gGuBA4D/BjwFuB34\nv1X11iRHAH8E7AXcDDyvqrYkeQHwG8DuwD8Bz62qf09yCvAN4CjgvsArquqMJAcCH6yqR7Tr7wX2\nbLvxW1V10bb7awYqScthBrpyDgE+1d1QVbcANwK/zmSIHlpVhwF/3pZ2/xj4xap6FHAKC2erp1fV\no6vqcOAa4Nc6D7tfVR0N/Bzwpu7TtT+/Ajypqo4CjmvPIUnSnbJWbyJ6AvB/qp3+VtXXgIcADwc+\nkuQy4PeBH231hya5MMkVwHOYDOetzmqP8Vlg30Wea3fgne2+pwEHr0A/krSurccMdCXf0HM18Izu\nhraEewBw3SL1AT7TziannQIcW1WfSXICkwG81W1TjzHtd4CbqurQJLsC315GD5IkLWpFfw80ycXA\nW6rqz9rwejvwdeAfgScDx1XV7Un2Ab4JXAX8SlVd1JZ0N1TV1Um+Ajys3ff/AV+sql9tGeg5VXVG\ne75bquoeLfc8pw3NPwJurKo3J3k+8M6q2nXbfTUDlaTlMANdWf8ReFaSzzPJLr8NvBo4GbgBuKIt\n1x5fVd9lcsb6piSXA5cBj2uP8xrgYuCjwGc7jz/98i32cr4NeF57ng3ArfNoTJK0vvlJRI1noJK0\nPN3xccPmzRywceMO6zdtOpff/d2n7vRxl/JYq1jnJxFJkjRPnoE2noFK0vKsk/HhGagkSfPkAJUk\n3Wnr8fdAHaCSJM3ADLQxA5Wk5Vkn48MMVJKkeXKASpLuNDNQSZK0JGagjRmoJC3POhkfZqCSJM2T\nA7Q58cRzqWKnl+sv2NzrurXoYww99L2PMfTQ9z7G0MNq71+XGagkSVoSM9AFHghJ0jQzUEmS5skB\n2oxlbX4t+hhDDytRN88+xtDDWtYtpY8x9LASzzvPujH00OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZ\ny9q8GWh/6sxA+1NnBtqPujH00OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZy9q8GWh/6sxA+1NnBtqP\nujH00OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZy9q8GWh/6sxA+1NnBtqPujH00OUAlSRpBmagCzwQ\nkqRpZqCSJM2TA7QZy9q8GWh/6sxA+1NnBtqPujH00OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZy9q8\nGWh/6sxA+1NnBtqPujH00OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZy9q8GWh/6sxA+1NnBtqPujH0\n0OUAlSRpBmagCzwQkqRpZqCSJM2TA7QZy9q8GWh/6sxA+1NnBtqPujH00OUSbpO4hCtJq2VHo+eG\nzZs5YOPGnT7GKtVtdwnXAdo4QCVp9Qxo9JiBSpI0Tw5QSVKvDCUDdYBKkjQDM9DGDFSSVs+ARo8Z\nqCRJ8+QAlST1ihmoJEkjZgbamIFK0uoZ0OgxA5UkaZ4coJKkXhlNBprkjiQndm6/LMlrlvLgSV6S\n5NtJ7rGsvVqGJD+X5BUr9fiSJC1mpxlokm8D/wI8qqr+LcnLgL2q6g93+uDJRcBXgNOr6t3z2OGp\nx9+1qm6fz2OZgUrSalkvGej3gHcAL13WMyYHAbsD/wN4Tmf7CUnOTHJekmuT/FY7q700yT8kudfW\n+yf5cJJLkvxdkg1t+ylJ3p7k48Cb2uP9cfvavknOSHJ5ksuSPLZtP7M9zpVJXrCcPiRJWsxSBmgB\nbwV+aZlLsccBp1bVJ4AfS/LDna8dAjwdeDSTAfuNqjoCuAj4lVbzDuC3qupRwMuBt3fuf7+qelxV\n/W5nHwHeAmyuqsOAI4Cr2vbnt8d5FPDiJPssow9J0ioaSga621KKquqbSd4NvBj49hIf+3jg59v1\ns4BnAm9rty+oqm8B30ryVeCDbfuVwCOS7AX8OHBakq2nz7t3Hvu07TznMcBz2z4XcEvb/pIkT2/X\n9wceDFy8xD4kSdrGkgZocxJwKfCunRUmeTiTIfU3bf7dBbiOhQF6W6e8OrfvaPu0C/DVdla6mFu3\ns32bVfUkT2AyWB9TVbcluQDYY2c9SJLWxlL+8+u1rNtqKUu4AaiqrwKnAkvJEI8HXltVB7XL/sCP\nJrn/Unaqqm4BrkvyjO/vRHLoEu76t8B/bvW7JLknsDeTYXxbkocCj13KPkiStCNLzUC3+l/AfbZu\na79C8rpF7vNs4MypbWcyyUWnzxK3916sXwZ+rb0h6DPAsTupB3gJ8MQkVwCfBA4GzgV2T3IV8Hrg\n4zu4vyRpjQ0lA/Wj/Bp/jUWSVs+ORs8NmzcvaTl1leq2+2ssDtDGASpJq2dAo8fPwpUkaZ4coJKk\nXhlKBuoAlSRpBmagjRmoJK2eAY0eM1BJkubJASpJ6hUzUEmSRswMtDEDlaTVM6DRYwYqSdI8OUAl\nSb1iBjowJ554LlXs9HL9BZt7XbcWfYyhh773MYYe+t7HGHroex/dHsbADHSBB0KSNM0MVJKkeXKA\nNps2nbukur6vza9FH2PoYSXq5tnHGHpYy7ql9DGGHlbieedZN4YeuhygkiTNwAx0gQdCkjTNDFSS\npHlygDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlo\nf+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTN\nwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHly\ngDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rM\nQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAy0\nScxAJWlM5jTezEAlSZonB6gkadTMQCVJ6hEz0MYMVJLGxQxUkqQecoBKkkbNDFSSpB4xA23MQCVp\nXMxAJUnqIQeoJGnUzEAlSeqRVc9Ak9wOfJrJunIBf1FV/3NVd2IRZqCSNC4rnYGuxQD9RlXdc8b7\n7lpVt897nyaP7QCVpDEZ45uIFt2ZJNcluXe7fmSSC9r11yZ5T5K/B96T5K5J3pXkiiSfSrKx1Z2Q\n5KwkFyT5XJLXdB77l5J8IsmlSd6eZLsHRJI0LiuVge62/F250+6W5FIWlnDfUFWntetd3dsHA0dX\n1XeSvBS4o6oOTfIQ4LwkD251jwIOAf4duCTJB4FvAc8Gfryqbk/yVuCXgD9bqQYlSeO3FgP0W1V1\nxCLbd3RWeHZVfadd/w/AWwCq6nNJvgBsaF/7SFV9DSDJ6a32duBIJgM1wB7AljvdhSRpEA7YuHGu\ndVutxQDdnu+xsKS8x9TXbt3B/bqDt6a2b739p1X1+3du9yRJWtCbDBS4jsmZIsAv7uD+H2WyBEuS\nDcD9gc+1rz05yb2S3A14OvAx4HzgGUl+uN1nnyQH3LkWJElDMaYMdI+pDPTcqno18IfAyUm+Dmze\nwf3fBrw9yRXAd4ETquq77X1BFwNnAPcD3ltVlwIk+S9MstJdgO8ALwRuWInmJEnrw2g+CzfJCcCR\nVfWi2e7vr7FI0piM8ddYJEkavNEM0Kp696xnn5Kk8fKzcCVJ6pHRZKB3lhmoJI2LGagkST3kAJUk\njZoZqCRJPWIG2piBStK4mIFKktRDDlBJ0qiZgUqS1CNmoAs8EJKkaWagkiTNkwO02bTp3CXVzXst\nfd51a9HHGHpYibp59jGGHtaybil9jKGHlXjeedaNoYcuB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW\n5s1A+1NnBtqfOjPQftSNoYcuB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW5s1A+1NnBtqfOjPQftSN\noYcuB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW5s1A+1NnBtqfOjPQftSNoYcuB6gkSTMwA13ggZAk\nTTMDlSRpnhygzVjW5s1A+1NnBtqfOjPQftSNoYcuB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW5s1A\n+1NnBtqfOjPQftSNoYcuB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW5s1A+1NnBtqfOjPQftSNoYcu\nB6gkSTMwA13ggZAkTTMDlSRpnhygzVjW5s1A+1NnBtqfOjPQftSNoYcuB6gkSTMwA13ggZAkTdtu\nBrrbau5Fn2W7h0iSNG9jOHdzCVeS1CtmoJIkjZgZaJOYgUrSahnQ6PH3QCVJmicHqCSpV8xAJUka\nMTPQxgxUklbPgEaPGagkSfPkAJUk9YoZqCRJI2YG2piBStLqGdDoGUcGmuTpSe5IsmEndR9Mcs/V\n2i9J0vozqAEKHAd8EDh+R0VV9bNV9Y3V2SVJ0jyZgc5Zkr2AxwAvZDJISbJfkr9LcmmSK5Ic3bZf\nl+Te7fqZSS5JcmWSF6xZA5KkURlMBprkOcBPVNV/SvJ3wEuAJwJ3rao3JAmwZ1XdmuRa4Kiq+rck\n96qqryXZA7ikPcZXt318M1BJWi0DGT0wkgz0eODUdv004DnAxcCvJnkNcGhV3dq+3m34JUkuBy4C\n9gcevEr7K0kasUEM0CT7AMcAJ7ezy5cDz6yqvwceD3wJ+NMkvzx1vye0+z2mqg4DLgf2WNWdlyQt\nixnofD0TeE9VPbCqDqqqA4HrkvwE8JWqOhl4J3DE1P32Br5aVbcleSjw2NXdbUnSWA0iA03yt8Cb\nquq8zrbfZpKD3gp8D7gFeG5V3bA1AwW+CZwFHAh8DrgX8LqqunDb5zADlaTVMoDRs9V2M9BBDNDV\n4ACVpNUzoNEzijcRSZLWATNQSZJGzCXcxiVcSVo9Axo9LuFKkjRPDlBJUq+YgUqSNGJmoI0ZqCSt\nngGNHjNQSZLmyQEqSeoVM1BJkkbMDLQxA5Wk1TOg0bPdDHS31dyLPhvQiylJ6gGXcJtNm85dUl3f\n1+bXoo8x9LASdfPsYww9rGXdUvoYQw8r8bzzrBtDD10OUEmSZmAGusADIUma5u+BSpI0Tw7QZixr\n82ag/akzA+1PnRloP+rG0EOXA1SSpBmYgS7wQEiSppmBSpI0Tw7QZixr82ag/akzA+1PnRloP+rG\n0EOXA1SSpBmYgS7wQEiSppmBSpI0Tw7QZixr82ag/akzA+1PnRloP+rG0EOXA1SSpBmYgS7wQEiS\nppmBSpI0Tw7QZixr82ag/akzA+1PnRloP+rG0EOXA1SSpBmYgS7wQEiSppmBSpI0Tw7QZixr82ag\n/akzA+1PnRloP+rG0EOXA1SSpBmYgS7wQEiSppmBSpI0Tw7QZixr82ag/akzA+1PnRloP+rG0EOX\nA1SSpBmYgS7wQEiSppmBSpI0Tw7QZixr82ag/akzA+1PnRloP+rG0EOXA1SSpBmYgS7wQEiSppmB\nSpI0Tw7QJvHixct6vyyFGejsdWPoocsBKknSDMxAm8QMVFrv/HaoRWx3bcIzUEmSZuAAlaRlMAOd\nvW4MPXQ5QCVJmoEZaGMGKslvh1qEGagkSfPkAJWkZTADnb1uDD10OUAlSZqBGWhjBirJb4dahBmo\nJEnz1KsBmuTpSe5IsqGz7cQkVyZ50yL1P5fkFau7l5LWMzPQ2evG0EPXbsuqXnnHAR8Ejgf+oG37\ndWCfmlprTrJrVZ0DnLO6uyhJUo8y0CR7AZ8BfgI4r6oOTvIB4GeAK4A3AE8D/h04DPgYcCVwVFX9\ndpJ9gf8NHMTk//b8zaq6KMmZwP7AHsBJVfXOxZ/fDFRa73ry7VD9st0MtE9noD8P/HVV3ZjkK0kO\nr6qfT/KNqjoCIMnTgPtV1ePa7RNY+I+w3wJsrqpfSBLg7m3786vqa0n2AC5JcnpVfXV1W5MkjU2f\nMtDjgVPb9dPabdh2+p+2nfsfA7wdoCZuadtfkuRy4CImZ6IPntseS1p3zEBnrxtDD129OANNsg+T\nAfjwJAXsyuTMcrE3CN26nYfZZvElyRPa4z6mqm5LcgGTpVxJku6UXmSgSX4DOLyqfrOz7QLgNcCH\nquoebdspwDlVdUa7fQJwZFW9KMn7gE9U1UlJdmGyhLsR+LW2FPxQ4DLgKVV14bb7YAYqrXc9+Hao\n/un974E+GzhzatvpTJZx7+hs29Ff75cAT0xyBfBJ4GDgXGD3JFcBrwc+Prc9liStb1XlpYrJz55e\nvHhZz5eluP6CC9ak7sQTP7wmzzvPuoH2wPYufTkDlSRpUHqRgfaBGagkvx1qEb3PQCVJGhQHqCQt\ng78HOnvdGHrocoBKkjQDM9DGDFSS3w61CDNQSZLmyQEqSctgBjp73Rh66HKASpI0AzPQxgxUkt8O\ntQgzUEmS5skBKknLYAY6e90YeuhygDYnnnjukj5u+voLNve6bi36GEMPfe9jDD30vY/rL9i81t+G\nNDBmoAs8EJKkaWagkiTNkwO0Gcva/Fr0MYYeVqJunn2MoYe1rFtKH2PoYSWe1wx0+xygkiTNwAx0\ngQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZj\nWZs3A+1PnRlof+rMQPtRN4YeuhygkiTNwAx0gQdCkjTNDFSSpHlygDZjWZs3A+1PnRlof+rMQPtR\nN4YeulzClSRpBp6BSpI0AweoJEkzcIBKkjQDB6gkSTNwgAJJnprkmiSfT/LKtd6fpUpycpItSa7o\nbNsnyXlJPpfkr5PsvZb7uDNJ9k9yfpKrklyZ5EVt+2D6SHLXJJ9Iclnr4/Vt+2B62CrJLkkuTXJ2\nuz3EHr6Q5NPt9bi4bRtUH0n2TnJaks+2v1OPGWAPG9prcGn78+tJXjS0PnZk3Q/QJLsAfwI8BTgE\nOD7JQ9d2r5bsFCb73fUq4G+q6iHA+cDvrfpeLc/3gJdW1SHA44AXtuM/mD6q6jbgiVV1OHAocEyS\noxlQDx0vBq7u3B5iD3cAG6vq8Kp6dNs2tD5OAj5UVQcDjwSuYWA9VNXn22twBHAkcCtwJgPrY4eq\nal1fgMcCH+7cfhXwyrXer2Xs/4HAFZ3b1wD3bdf3A65Z631cZj9nAU8aah/AnsDFwMOG1gOwP/AR\nYCNw9lD/PgHXAfeZ2jaYPoB7Av+8yPbB9LDIvv8U8NGh9zF9WfdnoMD9gBs7t7/Ytg3VvlW1BaCq\nbgL2XeP9WbIkDwAOAy5i8g9sMH20pc/LgJuAzVV1NQPrAXgz8HJ+8GMth9YDTPb/I0kuSfKCtm1I\nfTwQuDnJKW358x1J9mRYPUx7NvC+dn3IffwAB+j4DeKTMpLcHfgr4MVV9U223e9e91FVd9RkCXd/\n4PFJNjKP6QnpAAAB6klEQVSgHpL8DLClqi5nB5/9SY976Di6JsuGT2MSCTyeAb0WwG7AEcBbWx+3\nMlkZG1IP35dkd+BY4LS2aZB9LMYBCl8CDujc3r9tG6otSe4LkGQ/4CtrvD87lWQ3JsPzvVX1gbZ5\ncH0AVNU3gA8BRzGsHo4Gjk1yLfB+Jjnue4GbBtQDAFX15fbnvzKJBB7NsF6LLwI3VtUn2+3TmQzU\nIfXQ9dPAp6rq5nZ7qH1swwEKlwAPSnJgkrsAxwFnr/E+LUf4wTOGs4HntesnAB+YvkMPvQu4uqpO\n6mwbTB9JfmjrOwmT3A14MnAZA+qhql5dVQdU1UFM/g2cX1XPBc5hID0AJNmzrWaQZC8m2duVDOu1\n2ALcmGRD2/STwFUMqIcpxzP5oWyrofaxDT8Ll8mvsTB519suwMlV9cY13qUlSfI+Jm/4uA+wBXgt\nk5+4TwPuD1wPPKuqvrZW+7gz7d2qFzL5Jlft8momb8Q5lQH0keQRwLuZ/CCzC5Mz6U1J7s1AeuhK\n8gTgZVV17NB6SPJAJu/0LCZLoX9eVW8cYB+PBN4J7A5cCzwf2JUB9QCTH2iY7OtBVXVL2zao12JH\nHKCSJM3AJVxJkmbgAJUkaQYOUEmSZuAAlSRpBg5QSZJm4ACVJGkGDlBJkmbw/wFvxOXjQX9zIQAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,7))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=0.5)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGh9JREFUeJzt3XmUXGWZx/HvL4uEsIRFASUkkJEgizEJyGIGaBAVUaOD\nCETU4IgrIyBuiDOgzhkEE8cTBZzjiBEYUYlsgQMhIGlREBJIYgIxcIQQUEmQI2vEKOSZP+7b9qV6\nq65Ud917+/c5p07Xffu5t96nqpOn7/tU11VEYGZmZv0zrNUTMDMzKyMXUDMzswa4gJqZmTXABdTM\nzKwBLqBmZmYNcAE1MzNrgAsoIOloSaslPSjpi62eT70kXSJpvaQVubHtJS2U9ICkmyWNaeUc+yJp\nrKTbJN0vaaWk09J4afKQtIWkuyUtS3mcl8ZLk0MHScMkLZU0P22XMYdHJP0mvR6L01ip8pA0RtI8\nSb9NP1MHlTCHiek1WJq+PiPptLLl0ZshX0AlDQMuBN4G7AvMkPS61s6qbnPJ5p13FnBrROwF3AZ8\nadBn1T8vAmdGxL7AIcCp6fkvTR4RsRE4IiKmAJOAIyVNo0Q55JwOrMptlzGHTUBbREyJiAPTWNny\nmAPcGBF7A28AVlOyHCLiwfQaTAX2BzYA11CyPHoVEUP6BhwM3JTbPgv4Yqvn1Y/5jwdW5LZXAzun\n+7sAq1s9x37mcy1wVFnzAEYDi4F9ypYDMBa4BWgD5pf15wlYA+xYM1aaPIBtgYe6GS9NDt3M/a3A\nL8ueR+1tyJ+BArsCj+W2f5/GymqniFgPEBHrgJ1aPJ+6SdodmAzcRfYPrDR5pKXPZcA6oD0iVlGy\nHIBvAZ8H8h9PVrYcIJv/LZKWSDoljZUpjz2AJyXNTcuf35M0mnLlUOsE4Ip0v8x5vIwLaPWV4rMa\nJW0N/Aw4PSKep+u8C51HRGyKbAl3LHCopDZKlIOkdwDrI2I5oF5CC5tDzrTIlg2PIWsJHEqJXgtg\nBDAVuCjlsYFsZaxMOfyDpJHAdGBeGiplHt1xAYU/AONy22PTWFmtl7QzgKRdgCdaPJ8+SRpBVjwv\nj4jr0nDp8gCIiGeBG4EDKFcO04Dpkh4GfkzWx70cWFeiHACIiMfT1z+RtQQOpFyvxe+BxyLinrR9\nFVlBLVMOeW8H7o2IJ9N2WfPowgUUlgCvlTRe0iuAE4H5LZ5Tf4iXnzHMB05O92cC19XuUEA/AFZF\nxJzcWGnykPTKjncSStoSeAuwjBLlEBFnR8S4iJhA9m/gtoj4IHA9JckBQNLotJqBpK3Iem8rKddr\nsR54TNLENPRm4H5KlEONGWS/lHUoax5dKDVyhzRJR5O9620YcElEnN/iKdVF0hVkb/jYEVgPnEv2\nG/c8YDdgLXB8RDzdqjn2Jb1b9Xay/+Qi3c4meyPOlZQgD0mvBy4l+0VmGNmZ9GxJO1CSHPIkHQ58\nNiKmly0HSXuQvdMzyJZCfxQR55cwjzcA3wdGAg8DHwaGU6IcIPuFhmyuEyLiuTRWqteiNy6gZmZm\nDfASrpmZWQNcQM3MzBrgAmpmZtYAF1AzM7MGjGj1BArE76YyM7NaPX6wiM9AzczMGuACamZm1gAX\n0GT27AV1xT3a3l7ouFbkUYUcBiKumXlUIYdWxtWTRxVyGIjHbWZcFXLIcwE1MzNrgD+JqJOfCDMz\nq+U3EZmZmTWT/4wlUW9XQDQzs6braQH00fZ2xrW19bl/q+I6+AzUzMysAXX1QCV9meyabi+l28cj\nYkkd+10L7BwRh2zuRHt5jK8Cv4iI2zbvOO6BmpkNppK8BafH9ck+l3AlHQwcA0yOiBfTtdxeUcd+\nY4D9gGck7R4Rj9Q/3/pIGhYR5zb7uGZmZn2pZwn31cCTEfEiQET8OSLW1bHfsWRXHr+S7OwVAElz\nJV0s6deSfiepTdIPJa2S9INc3Fsk3SnpHkk/TRdmRdIaSedLugc4Lh3v2PS9N0q6Q9JySXdJ2krS\neEm3p+Pck34hMDOzgqrS34EuBMZJWi3pIkmH1XnsGcBPgXnkCmiyXVrWPZOsyH4jIvYBJkmaJGlH\n4N+BN0fEAcC9KbbDkxFxQERc2TEgaSTwE+DTETEZOAp4AVgPHJWOcyLwnTrnb2Zm1qM+l3AjYoOk\nqcChwJHATySdFRGX9bSPpJ2A10bE3Wn7b5L2iYhVKeT69HUl8Hhu/H5gd2A3YB/gDkkCRgJ35h7i\np9087F7AHyNiaZr38+mxXwFcKGkyWf92z75yNjOz1qn3nbCtiutQ15+xRPZOo9uB2yWtBD4E9FhA\ngeOB7SU9TNaA3YbsLPQ/0vc3pq+bcvc7tkekrwsj4qQejr+hh/Humr2fAdZFxCRJw8nOSs3MzDZL\nn0u4kiZKem1uaDKwto/dZgBvi4gJEbEHcABdl3H/8RDdjN0FTJP0T2kOoyX1deb4ALCLpP3TPlun\ngjkGeDzFfAgY3sdxzMysharUA90auFTSfZKWA3sDX4HsT0gkvTMfLGk8MC4iFneMpXfgPi3pjXT9\nyLyovR8RTwInAz+W9Buy5du9uonP7/N34ASy5drlZL3bLYCLgZMlLQMm0vPZq5mZWd38WbiJ/w7U\nzGxwlaT8+LNwzczMmskFNJk1awER9Hlbu6i90HGtyKMKORQ9jyrkUPQ8qpBD0fOozaEnVeqBmpmZ\nWQ33QDv5iTAzs1rugZqZmTWTC2gye/aCuuKKvjbfijyqkMNAxDUzjyrk0Mq4evKoQg4D8bjNjKtC\nDnkuoGZmZg1wD7STnwgzM6vlHqiZmVkzuYAmVVmbdw+0OHHugRYnzj3QYsRVIYc8F1AzM7MGuAfa\nyU+EmZnVcg/UzMysmVxAk6qszbsHWpw490CLE+ceaDHiqpBDnguomZlZA9wD7eQnwszMarkHamZm\n1kwuoElV1ubdAy1OnHugxYlzD7QYcVXIIc9LuInkJVwzs/7Il49H29sZ19bWa/zs2Qv43OeO7vO4\n9RxrEON6XMId0AIqaVfgImCfNIkbgM9HxIsD9qDZ474amBMRx9e/jwuomVl/DJHzr5b1QK8Gro6I\nicBEYBvgvAF+TCLi8f4UTzMzs/4asAIq6UjghYi4DCCyU93PAB+WtKWk2ZJWSlou6dS0z1RJ7ZKW\nSLpJ0s5p/BRJiyUtkzRP0qg0PlfSHEl3SPqdpGPT+HhJK3P3b5d0T7odPFA5m5kNVUOxBzqQZ6D7\nAvfmByLiOeAx4KPAOGBSREwGfiRpBPAd4L0R8UZgLp1nq1dFxIERMQVYDXwkd9hdImIa8C7ggvzD\npa9PAEdFxAHAiekxzMzMNsuA9UAlfRrYPSI+WzO+FFgDXBwRP8+N7wvcCTxEtuY8DPhjRLxd0uHA\nfwLbAVsBN0fEpyTNBRZGxI/TMZ6JiDGSxgPXR8QkSdsCFwKTgZeAPSNi667zdQ/UzKw/hnoPdMQA\nPugq4LiXzULahuzMc0038QLuS2eTteYC0yPiPkkzgcNz39tYc4xanwHWpWI6HHihHzmYmZl1a8CW\ncNPZ5ZaSPgCQitc3yYrhzcAn0hiStgceAF7V0aOUNELSPulwWwPrJI0ETurlYbsroGOAx9P9DwHD\nNysxMzPrwj3Q5vsX4HhJD5L1Ll8AzgYuAR4FVkhaBsyIiL+TnbFeIGk5sAw4JB3nHGAx8Evgt7nj\n1y4gdLegcDFwcnqcicCGZiRmZmZDmz9IIXEP1Mysf4ZI+fBn4ZqZmTWTC2gya9YCIujztnZRe6Hj\nWpFHFXIoeh5VyKHoeVQhh8GeX557oGZmZlYX90A7+YkwM7Na7oGamZk1kwtoUpW1eV8PtDhxvh5o\nceJ8PdBixFUhhzwXUDMzswa4B9rJT4SZmdVyD9TMzKyZXECTqqzNuwdanDj3QIsT5x5oMeKqkEOe\nC6iZmVkD3APt5CfCzMxquQdqZmbWTC6gSVXW5t0DLU6ce6DFiXMPtBhxVcghzwXUzMysAe6BdvIT\nYWZmtdwDNTMzayYX0KQqa/PugRYnzj3Q4sS5B1qMuCrkkOcl3ETyEq6Z2WDprfQ82t7OuLa2Po8x\nSHE9LuG6gCYuoGZmg6dEpafxHqikTZJm5bY/K+mcuh5VOkPSC5K2qW+e/SfpXZK+MFDHNzMz6049\nPdCNwLGSdmjg+CcCtwDHNrBvnyQNj4jrI+IbA3F8MzMbfGXpgdZTQF8Evgec2Z8DS5oAjAT+C3h/\nbnympGskLZT0sKR/S2e1SyXdKWm7jv0l3SRpiaRfSJqYxudK+q6kXwMXpON9J31vJ0lXS1ouaZmk\ng9P4Nek4KyWd0p88zMzMutNnD1TSs8BrgJXAJOBjwFYR8bU+9jsbeCkiLpD0O+CQiPiTpJnAl4HJ\nwGjgIeBzEfG/kv4beCQivi3pVuDjEfGQpAOBr0fEmyXNBXaMiOnpcWYC+0fEaZJ+AtyZ9hewdUQ8\nJ2m7iHha0ihgCXBYRDz18vm6B2pmNliq0AMdUc/eEfG8pEuB04EX6nzQGcC70/1rgfcBF6ftRRHx\nF+Avkp4CbkjjK4HXS9oKeBMwLxVCyM5mO8zr4TGPBD6Y5hzAc2n8DEnvSffHAnsCi+vMw8zMrIv+\n/B3oHOAjZGeNvZK0H1mRulXSw2S90Bm5kI25+5Hb3kRW1IcBT0XE1IiYkm775fbZ0MNDd/mdRtLh\nZIX1oIiYDCwHRvWVg5mZtUaVeqACSEueVwL19BBnAOdGxIR0Gwu8RtJu9UwqIp4D1kg67h+TkCbV\nsevPgU+l+GGStgXGkBXjjZJeBxxczxzMzMx6U08BzZ/VfRPYsWMs/QnJV7rZ5wTgmpqxa8jORGvP\nEntaCf8A8JH0hqD7gOl9xAOcARwhaQVwD7A3sAAYKel+4Dzg173sb2ZmLVbPhx60Mq6DP0gh8ZuI\nzMwGT4lKjz9M3szMyqFKPdAhYdasBUTQ523tovZCx7UijyrkUPQ8qpBD0fOoQg5FzyOfQxV4CbeT\nnwgzM6vlJVwzM7NmcgFNqnKdOl8PtDhxvh5oceJ8PdBixFUhhzwXUDMzswa4B9rJT4SZmdVyD9TM\nzKyZXECTqqzNuwdanDj3QIsT5x5oMeKqkEOeC6iZmVkD3APt5CfCzMxquQdqZmbWTC6gSVXW5t0D\nLU6ce6DFiXMPtBhxVcghzwXUzMysAe6BdvITYWZmtdwDNTMzayYX0KQqa/PugRYnzj3Q4sS5B1qM\nuCrkkOcCamZm1gD3QBPJPVAzsyppUnnrsQc6oimH7wdJLwG/IZtUAD+JiG8M9jzMzMw2RyuWcDdE\nxNSImJK+1l08JQ0fyImZmVn1VKkH2u3psKQ1knZI9/eXtCjdP1fSZZJ+BVwmaQtJP5C0QtK9ktpS\n3ExJ10paJOkBSefkjn2SpLslLZX0XUk9npKbmZnVY9CXcIEtJS2lcwn36xExj65/h5nf3huYFhF/\nk3QmsCkiJknaC1goac8U90ZgX+CvwBJJNwB/AU4A3hQRL0m6CDgJ+L+BStDMzIpjXFtbU+M6tKKA\n/iUipnYz3ttZ4fyI+Fu6/8/AtwEi4gFJjwAT0/duiYinASRdlWJfAvYnK6gCRgHrNzsLMzMb0or0\nZywv0jmfUTXf29DLfvnCGzXjHds/zPVd946Ir23eVM3MrCwq3wMF1pCdKQK8t5f9f0m2BIukicBu\nwAPpe2+RtJ2kLYH3AHcAtwHHSXpV2md7SeM2LwUzMxvqWrGEO6qmB7ogIs4GvgZcIukZoL2X/S8G\nvitpBfB3YGZE/D29L2gxcDWwK3B5RCwFkPTvZL3SYcDfgFOBRwciOTMzK5aB6oFW5oMUJM0E9o+I\n0xrb3x+kYGZWJQP9QQpF6oGamZk1XZV6oAMiIi5t9OwTYNasBUTQ523tovZCx7UijyrkUPQ8qpBD\n0fOoQg5Fz2OwcxholVnCbQI/EWZmVstLuGZmZs3kAppU5Tp1vh5oceJ8PdDixPl6oMWIq0IOeS6g\nZmZmDXAPtJOfCDMzq+UeqJmZWTO5gCZVWZt3D7Q4ce6BFifOPdBixFUhhzwXUDMzswa4B9rJT4SZ\nmdVyD9TMzKyZXECTqqzNuwdanDj3QIsT5x5oMeKqkEOeC6iZmVkD3APt5CfCzMxquQdqZmbWTC6g\nSVXW5t0DLU6ce6DFiXMPtBhxVcghzwXUzMysAe6BJpJ7oGZmg6VEpacaPVBJ75G0SdLEPuJukLTt\nYM3LzMyGnlIVUOBE4AZgRm9BEfHOiHh2cKZkZmbN5B5ok0naCjgIOJWskCJpF0m/kLRU0gpJ09L4\nGkk7pPvXSFoiaaWkU1qWgJmZVUppeqCS3g8cFhGfkPQL4AzgCGCLiPi6JAGjI2KDpIeBAyLiz5K2\ni4inJY0ClqRjPNX1+O6BmpkNlpKUHqhID3QGcGW6Pw94P7AY+FdJ5wCTImJD+n4+4TMkLQfuAsYC\new7SfM3MrMJKUUAlbQ8cCVySzi4/D7wvIn4FHAr8AfihpA/U7Hd42u+giJgMLAdGDerkzcysX9wD\nba73AZdFxB4RMSEixgNrJB0GPBERlwDfB6bW7DcGeCoiNkp6HXDw4E7bzMyqqhQ9UEk/By6IiIW5\nsU+T9UE3AC8CzwEfjIhHO3qgwPPAtcB44AFgO+ArEXF718dwD9TMbLCUoPR06LEHWooCOhhcQM3M\nBk+JSk8l3kRkZmZDgHugJTNr1gIi6PO2dlF7oeNakUcVcih6HlXIoeh5VCGHoueRz6EKvITbyU+E\nmZnV8hKumZlZM7mAJlW5Tp2vB1qcOF8PtDhxvh5oMeKqkEOeC6iZmVkD3APt5CfCzMxquQdqZmbW\nTC6gSVXW5t0DLU6ce6DFiXMPtBhxVcghzwXUzMysAe6BdvITYWZmtdwDNTMzayYX0KQqa/PugRYn\nzj3Q4sS5B1qMuCrkkOcCamZm1gD3QDv5iTAzs1rugZqZmTWTC2hSlbV590CLE+ceaHHi3AMtRlwV\ncshzATUzM2uAe6CJ5B6o2VDn/w6tG+6BmpmZNVOhCqik90jaJGlibmyWpJWSLugm/l2SvjC4szSz\nocw90MbjqpBD3oh+RQ+8E4EbgBnAV9PYR4Hto2atWdLwiLgeuH5wp2hmZlagHqikrYD7gMOAhRGx\nt6TrgHcAK4CvA8cAfwUmA3cAK4EDIuLTknYC/geYQPY3nZ+MiLskXQOMBUYBcyLi+90/vnugZkNd\nQf47tGLpsQdapDPQdwM3R8Rjkp6QNCUi3i3p2YiYCiDpGGDXiDgkbc+k8wMQvg20R8SxkgRsncY/\nHBFPSxoFLJF0VUQ8NbipmZlZ1RSpBzoDuDLdn5e2oWv1n9fD/kcC3wWIzHNp/AxJy4G7yM5E92za\njM1syHEPtPG4KuSQV4gzUEnbkxXA/SQFMJzszLK7Nwht6OEwXRZfJB2ejntQRGyUtIhsKdfMzGyz\nFKIHKuljwJSI+GRubBFwDnBjRGyTxuYC10fE1Wl7JrB/RJwm6Qrg7oiYI2kY2RJuG/CRtBT8OmAZ\n8LaIuL3rHNwDNRvqCvDfoRVP4f8O9ATgmpqxq8iWcTflxnr78T4DOELSCuAeYG9gATBS0v3AecCv\nmzZjMzMb2iLCtwiy3z198823oXyrx9pFi1oSN2vWTS153GbGlTQHeroV5QzUzMysVArRAy0IPxFm\nZlar8D1QMzOzUnEBTary90m+Hmhx4nw90OLE+XqgxYirQg55LqBmZmYNcA+0k58IMzOr5R6omZlZ\nM7mAJlVZm3cPtDhx7oEWJ8490GLEVSGHPC/hmpmZNcBnoGZmZg1wATUzM2uAC6iZmVkDXEDNzMwa\n4AIKSDpa0mpJD0r6YqvnUy9Jl0hany7h1jG2vaSFkh6QdLOkMa2cY18kjZV0m6T7Ja2UdFoaL00e\nkraQdLekZSmP89J4aXLoIGmYpKWS5qftMubwiKTfpNdjcRorVR6SxkiaJ+m36WfqoBLmMDG9BkvT\n12cknVa2PHoz5Atouvj2hcDbgH2BGeni22Uwl2zeeWcBt0bEXsBtwJcGfVb98yJwZkTsCxwCnJqe\n/9LkEREbgSMiYgowCThS0jRKlEPO6cCq3HYZc9gEtEXElIg4MI2VLY85wI0RsTfwBmA1JcshIh5M\nr8FUYH9gA9l1n0uVR696u9bZULgBBwM35bbPAr7Y6nn1Y/7jgRW57dXAzun+LsDqVs+xn/lcCxxV\n1jyA0cBiYJ+y5QCMBW4B2oD5Zf15AtYAO9aMlSYPYFvgoW7GS5NDN3N/K/DLsudRexvyZ6DArsBj\nue3fp7Gy2iki1gNExDpgpxbPp26SdgcmA3eR/QMrTR5p6XMZsA5oj4hVlCwH4FvA53n5x1qWLQfI\n5n+LpCWSTkljZcpjD+BJSXPT8uf3JI2mXDnUOgG4It0vcx4v4wJafaX4pAxJWwM/A06PiOfpOu9C\n5xERmyJbwh0LHCqpjRLlIOkdwPqIWE4vn/1JgXPImRbZsuExZC2BQynRawGMAKYCF6U8NpCtjJUp\nh3+QNBKYDsxLQ6XMozsuoPAHYFxue2waK6v1knYGkLQL8ESL59MnSSPIiuflEXFdGi5dHgAR8Sxw\nI3AA5cphGjBd0sPAj8n6uJcD60qUAwAR8Xj6+ieylsCBlOu1+D3wWETck7avIiuoZcoh7+3AvRHx\nZNouax5duIDCEuC1ksZLegVwIjC/xXPqD/HyM4b5wMnp/kzgutodCugHwKqImJMbK00ekl7Z8U5C\nSVsCbwGWUaIcIuLsiBgXERPI/g3cFhEfBK6nJDkASBqdVjOQtBVZ720l5Xot1gOPSZqYht4M3E+J\ncqgxg+yXsg5lzaMLfxYu2Z+xkL3rbRhwSUSc3+Ip1UXSFWRv+NgRWA+cS/Yb9zxgN2AtcHxEPN2q\nOfYlvVv1drL/5CLdziZ7I86VlCAPSa8HLiX7RWYY2Zn0bEk7UJIc8iQdDnw2IqaXLQdJe5C90zPI\nlkJ/FBHnlzCPNwDfB0YCDwMfBoZTohwg+4WGbK4TIuK5NFaq16I3LqBmZmYN8BKumZlZA1xAzczM\nGuACamZm1gAXUDMzswa4gJqZmTXABdTMzKwBLqBmZmYN+H+HcpyphP+BNwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAADRCAYAAAB8duMRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGktJREFUeJzt3X+UXHV5x/H3Jz80BDAGKtASgqQShGBMwu+myBKwWqxI\nqQIRFVDsaUsLiFIpbcnSniK46emJCLQeMQIVlZRfgYMLKFlRJCSQhITEwGmJECwJ5RQEIg1Cnv5x\nv8teNvtjdrKzc++dz+ucOTv3u8+9831mNnn2fp/ZuYoIzMzMbGhGNXsCZmZmZeQCamZmVgcXUDMz\nszq4gJqZmdXBBdTMzKwOLqBmZmZ1cAEFJH1Y0npJT0j6crPnUytJ10raLGl1bmyipHskPS7pbkkT\nmjnHwUiaJOk+SWslrZF0bhovTR6S3i7pIUkrUx6XpfHS5NBN0ihJKyQtTttlzOEXkh5Nr8eyNFaq\nPCRNkLRI0s/Tz9QRJcxhanoNVqSvv5J0btnyGEjLF1BJo4CvAx8CpgFzJb23ubOq2UKyeeddBPww\nIg4A7gP+ZsRnNTSvAxdExDTgKOCc9PyXJo+I2AocGxEzgenAHEmzKVEOOecB63LbZcxhG9AWETMj\n4vA0VrY8FgB3RcSBwPuB9ZQsh4h4Ir0Gs4BDgC3ArZQsjwFFREvfgCOBH+S2LwK+3Ox5DWH++wKr\nc9vrgT3T/b2A9c2e4xDzuQ04vqx5AOOBZcBBZcsBmATcC7QBi8v68wRsAHbvNVaaPIB3AP/Vx3hp\ncuhj7n8A/KTsefS+tfwZKLA3sDG3/UwaK6s9ImIzQERsAvZo8nxqJundwAxgKdk/sNLkkZY+VwKb\ngK6IWEfJcgD+BbgQyH88WdlygGz+90paLunsNFamPPYDnpe0MC1/fkPSeMqVQ2+nAjem+2XO4y1c\nQKuvFJ/VKGkX4D+A8yLiFbafd6HziIhtkS3hTgKOltRGiXKQ9BFgc0SsAjRAaGFzyJkd2bLhCWQt\ngaMp0WsBjAFmAVelPLaQrYyVKYc3SRoLnAgsSkOlzKMvLqDwS2BybntSGiurzZL2BJC0F/Bck+cz\nKEljyIrnDRFxexouXR4AEfEScBdwKOXKYTZwoqQnge+S9XFvADaVKAcAIuLZ9PV/yFoCh1Ou1+IZ\nYGNEPJy2byYrqGXKIe8PgUci4vm0XdY8tuMCCsuB90jaV9LbgNOAxU2e01CIt54xLAbOTPfPAG7v\nvUMBfQtYFxELcmOlyUPSb3W/k1DSTsAHgZWUKIeIuDgiJkfEFLJ/A/dFxKeBOyhJDgCSxqfVDCTt\nTNZ7W0O5XovNwEZJU9PQccBaSpRDL3PJfinrVtY8tqPUyG1pkj5M9q63UcC1EXF5k6dUE0k3kr3h\nY3dgMzCP7DfuRcA+wFPAKRHxYrPmOJj0btX7yf6Ti3S7mOyNODdRgjwkvQ+4juwXmVFkZ9LzJe1G\nSXLIk3QM8MWIOLFsOUjaj+ydnkG2FPqdiLi8hHm8H/gmMBZ4EjgLGE2JcoDsFxqyuU6JiJfTWKle\ni4G4gJqZmdXBS7hmZmZ1cAE1MzOrgwuomZlZHVxAzczM6jCm2RMoEL+bysys0drbs1t59PvBIj4D\nNTMzq4MLqJmZWR1cQJP58ztrinu6q6vQcc3Iowo5NCJuOPOoQg7NjKsljyrk0IjHHc64KuSQ5wJq\nZmZWB38SUQ8/EWZmjeY3EZmZmbU2F9BE8s0333zzrdG39kt77vfHPVAzM7MKq6mASvpbSY9JelTS\nCkmH1bjfbZIe3LEpDvoYl0qa08jHMDOzkTO5ra3Qcd0G/SQiSUcCJwAzIuL1dC23t9Ww3wTgYOBX\nkt4dEb8Y0sxqIGlURMwb7uOamZkNppYz0N8Gno+I1wEi4n8jYlMN+51MduXxm8iuSA6ApIWSrpb0\noKT/lNQm6duS1kn6Vi7ug5J+JulhSd9PF2ZF0gZJl0t6GPh4Ot7J6XuHSXpA0ipJSyXtLGlfSfen\n4zycfiEwM7OCqlIP9B5gsqT1kq6S9IEajz0X+D6wiFwBTd4ZEUcBF5AV2a9GxEHAdEnTJe0O/B1w\nXEQcCjySYrs9HxGHRsRN3QOSxgLfA/4qImYAxwOvApuB49NxTgOurHH+ZmZm/Rp0CTcitkiaBRwN\nzAG+J+miiLi+v30k7QG8JyIeStuvSTooItalkDvS1zXAs7nxtcC7gX2Ag4AHJAkYC/ws9xDf7+Nh\nDwD+OyJWpHm/kh77bcDXJc0A3gD2HyxnMzNrnsr0QAEi+7SF+4H7Ja0BPgP0W0CBU4CJkp4EBOxK\ndhb69+n7W9PXbbn73dtj0td7IuL0fo6/pZ/xvt4Y/QVgU0RMlzSa7KzUzMxshwy6hCtpqqT35IZm\nAE8Nsttc4EMRMSUi9gMOZftl3Dcfoo+xpcBsSb+b5jBe0mBnjo8De0k6JO2zSyqYE4BnU8xngNGD\nHMfMzJqoSj3QXYDr0p+xrAIOBNrhzT8h+aN8sKR9gckRsax7LL0D98X05y+9PzIvet+PiOeBM4Hv\nSnqUbPn2gD7i8/v8BjiVbLl2FVnv9u3A1cCZklYCU+n/7NXMzKxm/izcRPJn4ZqZNdo82rk0Owej\nJOWn389M8icRmZmZ1cEFNOno6CSCQW9PLekqdFwz8qhCDkXPowo5FD2PKuRQ9Dw6Ojppn9ez3Z8q\n9UDNzMysF/dAe/iJMDNrNF8P1MzMrLW5gCbz53fWFFf0tflm5FGFHBoRN5x5VCGHZsbVkkcVcmjE\n4w5nXBVyyHMBNTMzq4N7oD38RJiZNZp7oGZmZq3NBTSpytq8e6DFiXMPtDhx7oEWI64KOeS5gJqZ\nmdXBPdAefiLMzBrNPVAzM7PW5gKaVGVt3j3Q4sS5B1qcOPdAixFXhRzyXEDNzMzq4B5oDz8RZmaN\n5h6omZlZa3MBTaqyNu8eaHHi3AMtTpx7oMWIq0IOeV7CTSQv4ZqZDUW+fDzd1cXktrYB4+fP7+RL\nrywddAm3lmONYFy/S7gNLaCS9gauAg5Kk7gTuDAiXm/Yg2aP+9vAgog4pfZ9XEDNzIairvLhHmjN\nbgFuiYipwFRgV+CyBj8mEfHsUIqnmZnZUDWsgEqaA7waEdcDRHaq+wXgLEk7SZovaY2kVZLOSfvM\nktQlabmkH0jaM42fLWmZpJWSFkkal8YXSlog6QFJ/ynp5DS+r6Q1ufv3S3o43Y5sVM5mZq2qFXug\njTwDnQY8kh+IiJeBjcDngcnA9IiYAXxH0hjgSuBPIuIwYCE9Z6s3R8ThETETWA98LnfYvSJiNvBR\n4Ir8w6WvzwHHR8ShwGnpMczMzHbImCY97jHA1emslIh4UdI04GDgXkkiK+7/neKnS/pH4J3AzsDd\nuWPdlo7xc0l79PFYY4F/kzQDeAPYvxEJmZm1slrepPOlL30Y2pcOy7GaGdetkQV0HfDx/ICkXcnO\nPDf0ES/gsXQ22dtC4MSIeEzSGWQFuNvWXsfo7QvApoiYLmk08OoQcjAzM+tTw5ZwI+JHwE6SPgWQ\nitc/kxXDu4E/S2NImgg8Dryru0cpaYykg9LhdgE2SRoLnD7Aw/ZVQCcAz6b7nwFG71BiZma2HfdA\nh98fA6dIeoKsd/kqcDFwLfA0sFrSSmBuRPyG7Iz1CkmrgJXAUek4lwDLgJ8AP88dv/ebqPt6U/XV\nwJnpcaYCW4YjMTMza23+IIXEfwdqZjY0/jtQMzMzGzIX0KSjo5MIBr09taSr0HHNyKMKORQ9jyrk\nUPQ8qpDDSM8vzz1QMzMzq4l7oD38RJiZNZp7oGZmZq3NBTSpytq8rwdanDhfD7Q4cb4eaDHiqpBD\nnguomZlZHdwD7eEnwsys0dwDNTMza20uoElV1ubdAy1OnHugxYlzD7QYcVXIIc8F1MzMrA7ugfbw\nE2Fm1mjugZqZmbU2F9CkKmvz7oEWJ8490OLEuQdajLgq5JDnAmpmZlYH90B7+IkwM2s090DNzMxa\nmwtoUpW1efdAixPnHmhx4twDLUZcFXLI8xJuInkJ18ys0ebRzqW0b3dB7rynu7qY3NY26LFGKK7f\nJVwX0MQF1Mys8WopoAVTfw9U0jZJHbntL0q6pKZHlc6X9KqkXWub59BJ+qikv27U8c3MzPpSSw90\nK3CypN3qOP5pwL3AyXXsOyhJoyPijoj4aiOOb2ZmI68sPdBaCujrwDeAC4ZyYElTgLHAPwGfzI2f\nIelWSfdIelLSX6az2hWSfibpnd37S/qBpOWSfixpahpfKOkaSQ8CV6TjXZm+t4ekWyStkrRS0pFp\n/NZ0nDWSzh5KHmZmZn2ppYAGcBVw+hCXYk8DboqIh4DflfSu3PemAScBh5MV2JciYhawFPhMivkG\n8JcRcRhwIXBNbv+9I+KoiPhSbo4AXwO6ImIGMAtYm8bPSsc5DDhP0sQh5GFmZiOoljf8NDOu25ha\ngiLiFUnXAecBr9Z47LnAx9L924BPAFen7SUR8Wvg15JeAO5M42uA90naGfg9YJGk7gbu2NyxF/Xz\nmHOAT6c5B/ByGj9f0knp/iRgf2BZjXmYmZltZyh/B7oA+BwwfrBASQeTFakfSnqS7Gx0bi5ka+5+\n5La3kRX1UcALETErImam28G5fbb089Dbva9L0jFkhfWIdGa6Chg3WA5mZtYcVeqBCiAiXgBuAmrp\nIc4F5kXElHSbBPyOpH1qmVREvAxskPTxNychTa9h1x8Bf5HiR0l6BzCBrBhvlfRe4Mha5mBmZjaQ\nWnug3f4Z2L17LP0JSXsf+5wK3Npr7FayM9HeZ4n9/TXQp4DPpTcEPQacOEg8wPnAsZJWAw8DBwKd\nwFhJa4HLgAcH2N/MzJqsLD1Qf5BC4g9SMDNrvJb6IAUzM7ORVKUeaEvo6OgkgkFvTy3pKnRcM/Ko\nQg5Fz6MKORQ9jyrkUPQ8Ojo6aZ+X3a8CL+H28BNhZtZovh6omZlZa3MBTapynTpfD7Q4cb4eaHHi\nfD3QYsRVIYc8F1AzM7M6uAfaw0+EmVmjuQdqZmbW2lxAk6qszbsHWpw490CLE+ceaDHiqpBDnguo\nmZlZHdwD7eEnwsys0dwDNTMza20uoElV1ubdAy1OnHugxYlzD7QYcVXIIc8F1MzMrA7ugfbwE2Fm\n1mjugZqZmbU2F9CkKmvz7oEWJ8490OLEuQdajLgq5JDnAmpmZlYH90ATyT1QM7NGm0c7l9I+Io81\nTOWt3x7omGE5/BBIegN4lGxSAXwvIr460vMwMzPbEc1Ywt0SEbMiYmb6WnPxlDS6kRMzM7PqqVIP\ntM/TYUkbJO2W7h8iaUm6P0/S9ZJ+Clwv6e2SviVptaRHJLWluDMk3SZpiaTHJV2SO/bpkh6StELS\nNZL6PSU3MzOrxYgv4QI7SVpBzxLuVyJiEdv/HWZ++0BgdkS8JukCYFtETJd0AHCPpP1T3GHANOD/\ngOWS7gR+DZwK/F5EvCHpKuB04N8blaCZmRXH5La2YY3r1owC+uuImNXH+EBnhYsj4rV0//eBrwFE\nxOOSfgFMTd+7NyJeBJB0c4p9AziErKAKGAds3uEszMyspRXpz1hep2c+43p9b8sA++ULb/Qa797+\ndq7vemBE/MOOTdXMzMqi8j1QYAPZmSLAnwyw/0/IlmCRNBXYB3g8fe+Dkt4paSfgJOAB4D7g45Le\nlfaZKGnyjqVgZmatrhlLuON69UA7I+Ji4B+AayX9CugaYP+rgWskrQZ+A5wREb9J7wtaBtwC7A3c\nEBErACT9HVmvdBTwGnAO8HQjkjMzs2KpTA80Isb2M/5T4IA+xi/ttb0V+Gw/h38mIk7u4xiLgEVD\nn62ZmVnfitQDNTMzG3ZV6oE2RERcFxHn1rt/R0cnEQx6e2pJV6HjmpFHFXIoeh5VyKHoeVQhh6Ln\n0dHRSfu8kXvMRvNn4fbwE2Fm1mi+HqiZmVlrcwFNqnKdOl8PtDhxvh5oceJ8PdBixFUhhzwXUDMz\nszq4B9rDT4SZWaO5B2pmZtbaXECTqqzNuwdanDj3QIsT5x5oMeKqkEOeC6iZmVkd3APt4SfCzKzR\n3AM1MzNrbS6gSVXW5t0DLU6ce6DFiXMPtBhxVcghzwXUzMysDu6B9vATYWbWaO6BmpmZtTYX0KQq\na/PugRYnzj3Q4sS5B1qMuCrkkOcCamZmVgf3QBPJPVAzs0abRzuX0j4iF7weJtXogUo6SdI2SVMH\nibtT0jtGal5mZtZ6SlVAgdOAO4G5AwVFxB9FxEsjMyUzMxtO7oEOM0k7A0cA55AVUiTtJenHklZI\nWi1pdhrfIGm3dP9WScslrZF0dtMSMDOzShnT7AkMwceAuyNio6TnJM0EjgU6I+IrkgSMT7H51fWz\nIuJFSeOA5ZJujogXRnjuZmZWo8ltbYWO61aaM1CyZdub0v1FwCeBZcBnJV0CTI+ILen7+abv+ZJW\nAUuBScD+IzRfMzOrsFIUUEkTgTnAtZKeBC4EPhERPwWOBn4JfFvSp3rtd0za74iImAGsAsaN6OTN\nzGxI3AMdXp8Aro+I/SJiSkTsC2yQ9AHguYi4FvgmMKvXfhOAFyJiq6T3AkeO7LTNzKyqytIDPRW4\notfYLcBCYIuk14GXgU+n73X3QDuBP5O0FngceHAE5mpmZjugLD3QUhTQiDiuj7ErgSv7iZ+S2zyh\nUfMyM7PWVZYlXDMzaxHugZZMR0cnEQx6e2pJV6HjmpFHFXIoeh5VyKHoeVQhh6Ln0dHRSfu87H4V\n+LNwe/iJMDNrNF8P1MzMrLW5gCZVuU6drwdanDhfD7Q4cb4eaDHiqpBDnguomZlZHdwD7eEnwsys\n0dwDNTMza20uoElV1ubdAy1OnHugxYlzD7QYcVXIIc8F1MzMrA7ugfbwE2Fm1mjugZqZmbU2F9Ck\nKmvz7oEWJ8490OLEuQdajLgq5JDnAmpmZlYH90B7+IkwM2s090DNzMxamwtoUpW1efdAixPnHmhx\n4twDLUZcFXLIcwE1MzOrg3ugieQeqFmr83+HI8A9UDMzs9ZWqAIq6SRJ2yRNzY11SFoj6Yo+4j8q\n6a9HdpZm1srcA60/rgo55I0ZUnTjnQbcCcwFLk1jnwcmRq+1ZkmjI+IO4I6RnaKZmVmBeqCSdgYe\nAz4A3BMRB0q6HfgIsBr4CnAC8H/ADOABYA1waET8laQ9gH8FppD9TeefR8RSSbcCk4BxwIKI+Gbf\nj+8eqFmrK8h/h9VWoR5okc5APwbcHREbJT0naWZEfEzSSxExC0DSCcDeEXFU2j6Dng9A+BrQFREn\nSxKwSxo/KyJelDQOWC7p5oh4YWRTMzOzqilSD3QucFO6vyhtw/bVf1E/+88BrgGIzMtp/HxJq4Cl\nZGei+w/bjM2s5bgHWn9cFXLIK8QZqKSJZAXwYEkBjCY7s+zrDUJb+jnMdosvko5Jxz0iIrZKWkK2\nlGtmZrZDCtEDlfSnwMyI+PPc2BLgEuCuiNg1jS0E7oiIW9L2GcAhEXGupBuBhyJigaRRZEu4bcDn\n0lLwe4GVwIci4v7t5+AeqFmrK8B/h9VXoR5oUZZwTwVu7TV2M9ky7rbc2EA/3ucDx0paDTwMHAh0\nAmMlrQUuAx4cthmbmVlLK0QBjYjjIuKeXmNfj4i/iIgJubHPdp99pu3rIuLcdP+5iDgpIqZHxKyI\neCgiXouIEyJiWkScHBFz+jr7NDOrlXug9cdVIYe8QhRQMzOzsilED7Qg/ESYmTWae6BmZmatzQU0\nqcravK8HWpw4Xw+0OHG+Hmgx4qqQQ54LqJmZWR3cA+3hJ8LMrNHcAzUzM2ttLqBJVdbm3QMtTpx7\noMWJcw+0GHFVyCHPS7hmZmZ18BmomZlZHVxAzczM6uACamZmVgcXUDMzszq4gAKSPixpvaQnJH25\n2fOplaRrJW1Ol3DrHpso6R5Jj0u6W9KEgY7RbJImSbpP0lpJaySdm8ZLk4ekt0t6SNLKlMdlabw0\nOXSTNErSCkmL03YZc/iFpEfT67EsjZUqD0kTJC2S9PP0M3VECXOYml6DFenrrySdW7Y8BtLyBTRd\nfPvrwIeAacDcdPHtMlhINu+8i4AfRsQBwH3A34z4rIbmdeCCiJgGHAWck57/0uQREVuBYyNiJjAd\nmCNpNiXKIec8YF1uu4w5bAPaImJmRByexsqWxwLgrog4EHg/sJ6S5RART6TXYBZwCLCF7LrPpcpj\nQBHR0jfgSOAHue2LgC83e15DmP++wOrc9npgz3R/L2B9s+c4xHxuA44vax7AeGAZcFDZcgAmAfcC\nbcDisv48ARuA3XuNlSYP4B3Af/UxXpoc+pj7HwA/KXsevW8tfwYK7A1szG0/k8bKao+I2AwQEZuA\nPZo8n5pJejcwA1hK9g+sNHmkpc+VwCagKyLWUbIcgH8BLuStH2tZthwgm/+9kpZLOjuNlSmP/YDn\nJS1My5/fkDSecuXQ26nAjel+mfN4CxfQ6ivFJ2VI2gX4D+C8iHiF7edd6DwiYltkS7iTgKMltVGi\nHCR9BNgcEasY4LM/KXAOObMjWzY8gawlcDQlei2AMcAs4KqUxxaylbEy5fAmSWOBE4FFaaiUefTF\nBRR+CUzObU9KY2W1WdKeAJL2Ap5r8nwGJWkMWfG8ISJuT8OlywMgIl4C7gIOpVw5zAZOlPQk8F2y\nPu4NwKYS5QBARDybvv4PWUvgcMr1WjwDbIyIh9P2zWQFtUw55P0h8EhEPJ+2y5rHdlxAYTnwHkn7\nSnobcBqwuMlzGgrx1jOGxcCZ6f4ZwO29dyigbwHrImJBbqw0eUj6re53EkraCfggsJIS5RARF0fE\n5IiYQvZv4L6I+DRwByXJAUDS+LSagaSdyXpvayjXa7EZ2Chpaho6DlhLiXLoZS7ZL2XdyprHdvxZ\nuGR/xkL2rrdRwLURcXmTp1QTSTeSveFjd2AzMI/sN+5FwD7AU8ApEfFis+Y4mPRu1fvJ/pOLdLuY\n7I04N1GCPCS9D7iO7BeZUWRn0vMl7UZJcsiTdAzwxYg4sWw5SNqP7J2eQbYU+p2IuLyEebwf+CYw\nFngSOAsYTYlygOwXGrK5TomIl9NYqV6LgbiAmpmZ1cFLuGZmZnVwATUzM6uDC6iZmVkdXEDNzMzq\n4AJqZmZWBxdQMzOzOriAmpmZ1eH/AeWYGGGDIPQrAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "70.04150000000001" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['life_expectancy'].median()" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0, 79)" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAADRCAYAAAA69j1KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//HXm0GcFcuhxAES1FBEnPWac5kWmjlA5lTe\nx60sMdveykoOv3uzjF1dNPV3vSqplQM5m6EWzoqigCCO5RCUot5QERUZPveP9T2czeEczjrC5uy1\neD8fj/M4a3/3Gr7vvYHz4fv97nUUEZiZmZlZx7p1dQfMzMzMisKFk5mZmVlOLpzMzMzMcnLhZGZm\nZpaTCyczMzOznFw4mZmZmeXkwgmQdKikZyQ9J+m7Xd2fvCRdJmm2pGk1bb0l3SnpWUl3SNqgK/vY\nEUl9JE2QNEPSdEmnp/bC5JDUS9IjkqakHOem9sJkaCapm6TJkm5Jj4uY4SVJT6T349HUVqgckjaQ\nNE7S0+nP1B4FzDAgvQeT0/e3JJ1etBxmra32hZOkbsCvgM8AA4Hhkrbr2l7lNpas37W+B/wpIrYF\nJgDfX+W96pyFwJkRMRDYCzgtvf6FyRER84EDImJnYBBwoKR9KFCGGiOAp2oeFzHDYmD/iNg5InZP\nbUXLMQa4PSK2B3YCnqFgGSLiufQeDAF2AeYBN1KwHGatrfaFE7A78HxEvBwRC4BrgCO6uE+5RMQD\nwJxWzUcAV6TtK4AjV2mnOikiXo2IqWn7HeBpoA/Fy/Fu2uxF9vdqDgXLIKkPcBhwaU1zoTIkYtl/\n2wqTQ9L6wL4RMRYgIhZGxFsUKEMbDgb+GhEzKXYOMxdOwObAzJrHs1JbUW0SEbMhK0qATbq4P7lJ\n2hoYDEwENi1SjjTFNQV4FbgnIp6iYBmAXwJnAbW/TqBoGSDr/12SJkk6NbUVKUdf4A1JY9M01yWS\n1qZYGVo7Dvhd2i5yDjMXTquBQvxOHUnrAr8HRqSRp9b9bugcEbE4TdX1AfaVtD8FyiDpcGB2Gv3T\ncnZt2Aw19knTQ4eRTf3uS4HeC6AHMAS4MOWYRza9VaQMS0jqCQwFxqWmQuYwa+bCCf4ObFnzuE9q\nK6rZkjYFkLQZ8FoX96dDknqQFU1XRcTNqblwOQAi4m3gdmBXipVhH2CopBeAq8nWaV0FvFqgDABE\nxCvp++vATWTT8UV6L2YBMyPisfT4erJCqkgZan0WeDwi3kiPi5rDDHDhBDAJ2EbSVpLWAIYBt3Rx\nnzpDLD1CcAtwcto+Cbi59QEN6HLgqYgYU9NWmBySPtr8ySBJawGHAFMoUIaIODsitoyIfmR/ByZE\nxAnArRQkA4CktdPoJZLWAT4NTKdY78VsYKakAanpIGAGBcrQynCyYrxZUXOYAaAIj5JKOpTsUyzd\ngMsi4qdd3KVcJP0O2B/4CDAbGEn2P+xxwBbAy8CxEfFmV/WxI+nTZ/eR/XCL9HU28ChwHQXIIWlH\nskWuzYuSr4qIqqSNKEiGWpL2A74TEUOLlkFSX7JPbgXZlNdvI+KnBcyxE9ki/Z7AC8ApQHcKlAGy\nQpasr/0iYm5qK9R7YdaaCyczMzOznDxVZ2ZmZpaTCyczMzOznFw4mZmZmeXkwsnMzMwspx5d3YEG\n4lXyZmb11tSUfRXH8m4Ia6shjziZmZmZ5eTCyczMzCwnF05JtTq+q7uwUpQhRxkyQDlylCEDlCOH\nM5g1BhdOZmZmZjn5zuEt/EKYmdWbF4dbwXnEyczMzCwn344gkf9PYWZWdyOBUaOybU94WBF5xMnM\nzMwsp1yFk6QfSHpS0hOSJkvaLedxN0l6eMW62OE1Rkk6sJ7XMDMzM4McU3WS9gQOAwZHxEJJGwFr\n5DhuA2AH4C1JW0fESyva2Tau0S0iRq7s85qZmZm1Jc+I08eANyJiIUBE/DMiXs1x3FHALcB1wPDm\nRkljJV0k6WFJf5G0v6RfS3pK0uU1+x0i6SFJj0m6VtLaqf1FST+V9BhwdDrfUem53SQ9KGmqpImS\n1pG0laT70nkeS4WgmZmZWaflKZzuBLaU9IykCyV9Kue5hwPXAuOoKZySDSNiL+BMsuLqZxHxSWCQ\npEGSPgL8EDgoInYFHk/7NnsjInaNiOuaGyT1BK4BvhURg4GDgfeA2cDB6TzDgAty9t/MzMxsKR1O\n1UXEPElDgH2BA4FrJH0vIq5s7xhJmwDbRMQj6fEHkj4ZEU+lXW5N36cDr9S0zwC2BrYAPgk8KElA\nT+Chmktc28ZltwX+ERGTU7/fSddeA/iVpMHAIqB/R5nNzMzM2pLrdgSR3SXzPuA+SdOBE4F2Cyfg\nWKC3pBfIbh62Htmo04/S8/PT98U1282Pe6Tvd0bE8e2cf1477W3dVODbwKsRMUhSd7JRKDMzM7NO\n63CqTtIASdvUNA0GXu7gsOHAZyKiX0T0BXZl2em6JZdoo20isI+kT6Q+rC2po5GiZ4HNJO2Sjlk3\nFUobAK+kfU4EundwHjMzM7M25VnjtC5wRbodwVRge6AJltwK4HO1O0vaCtgyIh5tbkufqHsz3cag\n9S3PovV2RLwBnAxcLekJsmm6bdvYv/aYBcBxZNNyU8nWZvUCLgJOljQFGED7o1VmZmZmy+XfVZdI\n/l11Zmb1NpImRmX/9y7KncP9eyVsKb5zuJmZmVlOLpyS0aPHE0Hhv8qQowwZypKjDBnKkqMsGZpG\ntjw2KyIXTmZmZmY5eY1TC78QZmb11tSUfRWH1zjZUjziZGZmZpaTC6ekWh3f1V1YKcqQowwZoBw5\nypABypHDGcwagwsnMzMzs5y8xqmFXwgzs3rzGicrOI84mZmZmeXkwikpy9x7GXKUIQOUI0cZMkA5\ncjiDWWNw4WRmZmaWk9c4tfALYWZWb17jZAXnESczMzOznFw4JWWZey9DjjJkgHLkKEMGKEcOZzBr\nDC6czMzMzHLyGqcWfiHMzOrNa5ys4DziZGZmZpaTC6ekLHPvZchRhgxQjhxlyADlyOEMZo3BU3WJ\n5Kk6M7PO6OyPj2p1PJV3JnqqzgqtriNOkjaXdJOk5yQ9L+mXknrU85rpuh+TdF29r2NmZvlVKod2\ndRfMVli9p+puAG6IiAHAAGA94Nw6X5OIeCUijq33dczMzGz1UrfCSdKBwHsRcSVAZHOC3wZOkbSW\npKqk6ZKmSjotHTNE0j2SJkn6o6RNU/upkh6VNEXSOElrpvaxksZIelDSXyQdldq3kjS9Zvs+SY+l\nrz3rldnMzNrnNU5WBvUccRoIPF7bEBFzgZnAvwJbAoMiYjDw2zSFdwHwxYjYDRhLy+jU9RGxe0Ts\nDDwDfLXmtJtFxD7A54Hzai+Xvr8GHBwRuwLD0jXMzMzMOq3u643asR9wURqFIiLelDQQ2AG4S5LI\nirp/pP0HSfoPYENgHeCOmnPdlM7xtKRN2rhWT+C/JQ0GFgH96xHIzMyWr1I5FJomdnU3zFZIPQun\np4CjaxskrUc20vRiG/sLeDKNHrU2FhgaEU9KOoms8Go2v9U5Wvs28GpEDJLUHXivExnMzMzMlqjb\nVF1E/BlYS9KXAVLR8nOyIugO4GupDUm9gWeBjZvXIEnqIemT6XTrAq9K6gkcv5zLtlU4bQC8krZP\nBLqvUDAzM/tQvMbJyqDen6r7AnCspOfI1ia9B5wNXAb8DZgmaQowPCIWkI1QnSdpKjAF2Cud5xzg\nUeB+4Oma87e+i0hbdxW5CDg5XWcAMG9lBDMzM7PVj2+AmfgGmGZmnfOhfnz4d9VZwflXrpiZmZnl\n5MIpGT16PBEU/qsMOcqQoSw5ypChLDkaMUNneY2TlYELJzMzM7OcvMaphV8IM7N68xonKziPOJmZ\nmZnl5MIpKcvcexlylCEDlCNHGTJAOXI4g1ljcOFkZmZmlpPXOLXwC2FmVm9e42QF5xEnMzMzs5xc\nOCVlmXsvQ44yZIBy5ChDBihHDmcwawwunMzMzMxy8hqnFn4hzMzqzWucrOA84mRmZmaWkwunpCxz\n72XIUYYMUI4cZcgA5cjhDGaNwYWTmZmZWU5e49TCL4SZWb15jZMVnEeczMzMzHJy4ZSUZe69DDnK\nkAHKkaMMGaAcOZzBrDF4qi6RPFVnZlZvI2liFE0U6EePp+psKR5xMjMzM8upw8JJ0mJJo2sef0fS\nOXlOLukMSe9JWm9FOtnBNT4v6d/rdX4zMzOzZnlGnOYDR0na6EOcfxhwF3DUhzi2Q5K6R8StEfGz\nepzfzMzMrFaewmkhcAlwZmdOLKkf0BP4MfClmvaTJN0o6U5JL0j6ZhrFmizpIUkbNh8v6Y+SJkm6\nV9KA1D5W0sWSHgbOS+e7ID23iaQbJE2VNEXSnqn9xnSe6ZJO7UwOMzMzs2Z5CqcALgSO7+SU2zDg\nuoh4BPiEpI1rnhsIHAnsTlZYvR0RQ4CJwIlpn0uAb0bEbsBZwMU1x28eEXtFRKWmjwDnA/dExGBg\nCDAjtZ+SzrMbMEJS707kMDMzMwOgR56dIuIdSVcAI4D3cp57OHBE2r4JOAa4KD2+OyLeBd6VNAe4\nLbVPB3aUtA6wNzBOUvMnGnrWnHtcO9c8EDgh9TmAuan9DElHpu0+QH/g0Zw5zMzMzICchVMyBpgM\nXN7RjpJ2ICtO/pTqnjWAF2kpnObX7B41jxenPnUD5qRRqLbMa6d9mQ+4StqPrKDaIyLmS7obWLOj\nDGZmZmat5ZmqE0BEzAGuA/KsERoOjIyIfumrD/BxSVvk6VREzAVelHT0kk5Ig3Ic+mfgG2n/bpLW\nBzYgK8LmS9oO2DNPH8zMzMxay7vGqdnPgY80t6VbATS1ccxxwI2t2m4kW/fUelSovdugfRn4alro\n/SQwtIP9Ac4ADpA0DXgM2B4YD/SUNAM4F3h4OcebmZmZtct3Dk9853Azs/rzncOt6HzncDMzM7Oc\nXDglo0ePJ4LCf5UhRxkylCVHGTKUJUdZMjSNzLbNispTdS38QpiZ1VtTU/ZVHJ6qs6V4xMnMzMws\nJxdOSbU6vqu7sFKUIUcZMkA5cpQhA5QjhzOYNQYXTmZmZmY5eY1TC78QZmb15jVOVnAecTIzMzPL\nyYVTUpa59zLkKEMGKEeOMmSAcuRwBrPG4MLJzMzMLCevcWrhF8LMrN68xskKziNOZmZmZjm5cErK\nMvdehhxlyADlyFGGDFCOHM5g1hhcOJmZmZnl5DVOLfxCmJnVm9c4WcF5xMnMzMwsJxdOSVnm3suQ\nowwZoBw5ypABypHDGcwagwsnMzMzs5y8ximRvMbJzKzeRtLEKJpWybVW0o83r3GypfRY1ReUtAh4\nguwPYwDXRMTPVnU/zMzMzDprlRdOwLyIGPJhDpTUPSIWrewOmZmZmeXRFWuc2hz2lPSipI3S9i6S\n7k7bIyVdKekB4EpJvSRdLmmapMcl7Z/2O0nSTZLulvSspHNqzn28pEckTZZ0sSQPvZqZmVmndcWI\n01qSJtMyVfeTiBjHsvdRqn28PbBPRHwg6UxgcUQMkrQtcKek/mm/3YCBwPvAJEm3Ae8CxwF7R8Qi\nSRcCxwO/qVdAMzMzK6euKJzebWeqbnmjQLdExAdp+1+A8wEi4llJLwED0nN3RcSbAJKuT/suAnYh\nK6QErAnMXuEUZmZmttrpisKpPQtpmTpcs9Vz85ZzXG3BFa3amx//OiJ+sGLdMzMzs9Vdw6xxAl4k\nGxkC+OJyjr+fbKoNSQOALYBn03OHSNpQ0lrAkcCDwATgaEkbp2N6S9pyxSKYmZnZ6qgrRpzWbLXG\naXxEnA38P+AySW8B9yzn+IuAiyVNAxYAJ0XEgrTe+1HgBmBz4KqImAwg6Ydka6G6AR8ApwF/q0c4\nMzMzK69VXjhFRM922h8Atm2jfVSrx/OBr7Rz+lkRcVQb5xgHjOt8b83MzMxa+FeumJmZmeVUmsIp\nIq6IiNM/7PGjR48ngsJ/lSFHGTKUJUcZMpQlR1kyNI1cddczqwf/rroWfiHMzOqtqSn7Kg7fMNmW\nUpoRJzMzM7N6c+GUVKvju7oLK0UZcpQhA5QjRxkyQDlyOINZY3DhZGZmZpaT1zi18AthZlZvXuNk\nBecRJzMzM7OcXDglZZl7L0OOMmSAcuQoQwYoRw5nMGsMLpzMzMzMcvIapxZ+IczM6s1rnKzgPOJk\nZmZmlpMLp6Qsc+9lyFGGDFCOHGXIAOXI4QxmjcGFk5mZmVlOXuPUwi+EmVm9eY2TFZxHnMzMzMxy\ncuGUlGXuvQw5ypABypGjDBmgHDmcwawxuHAyMzMzy8lrnBLJa5zMzOptJE2MookC/ejxGidbSqFG\nnCQdKWmxpAEd7HebpPVXVb/MzMxs9VCowgkYBtwGDF/eThHxuYh4e9V0yczMzFYXhSmcJK0D7AGc\nRlZAIWkzSfdKmixpmqR9UvuLkjZK2zdKmiRpuqRTuyyAmZmZFV6Pru5AJxwB3BERMyW9Jmln4ABg\nfET8RJKAtdO+tbPnp0TEm5LWBCZJuj4i5qzivpuZmVkJFGbEiWx67rq0PQ74EvAo8BVJ5wCDImJe\ner52Md8ZkqYCE4E+QP9V1F8zMzMrmUKMOEnqDRwI7CApgO5ARMRZkvYFDgd+LennEfGbmuP2S8ft\nERHzJd0NrNkFEczMzKwEijLidAxwZUT0jYh+EbEV8KKkTwGvRcRlwKXAkFbHbQDMSUXTdsCeq7bb\nZmZmViaFGHECjgPOa9V2AzAWmCdpITAXOCE917zGaTzwNUkzgGeBh1dBX83MzKykClE4RcRBbbRd\nAFzQzv79ah4eVq9+mZmZ2eqlKFN1ZmZmZl3OhVMyevR4Iij8VxlylCFDWXKUIUNZcpQlQ9PIbNus\nqPy76lr4hTAzq7empuyrOPy76mwpHnEyMzMzy8mFU1Ktju/qLqwUZchRhgxQjhxlyADlyOEMZo3B\nhZOZmZlZTl7j1MIvhJlZvXmNkxWcR5zMzMzMcnLhlJRl7r0MOcqQAcqRowwZoBw5nMGsMbhwMjMz\nM8vJa5xa+IUwM6s3r3GygvOIk5mZmVlOLpySssy9lyFHGTJAOXKUIQOUI4czmDUGF05mZmZmOXmN\nUwu/EGZm9eY1TlZwHnEyMzMzy8mFU1KWufcy5ChDBihHjjJkgHLkcAazxuDCyczMulS1WzduP/HE\nJY8XL1rEhRtvzI1Dh3bqPNcecACzJ08G4IbPfY75b7+94n2TTqpK56ftf6tKX07b21alKVXp8arU\nd4UvVEdV6fsN0Id10+s1OX1/vSr9Ij23RlW6pio9X5UerkpbdnV/l8drnBLJa5zMVnf+53AVaGON\n05j11qN3//586eGH6dGrFy+OH8/9Z5/Nen368IVbbsl96msPOID9f/5zNh0yZKV1tyqdDOxSiTi9\nVft3ge6ViHNX2sXqpCrNrUSs19X9qFWVHgNGVCIerEpfB3asRHyjKh0HfKESMWwV9aNbJWJxZ47p\nUa/OmJmZ5dXvsMN44Q9/YMBRR/H01Vez3fDh/P3++wFY8O67/Plb3+J/Z8xg8YIF7DVyJNsMHcrC\n999n/Cmn8Pq0aWy07bYsfP/9Jee7pG9fTnj8cdbaaCNu+sIXmDtrFovef58hI0Yw6NRTgaxg22XE\nCP562230XHttjrz5ZtbeeON2+1iVRgLvAE8BZwALq9JBlYiDqtLxwOlAT+AR4BuVViMTVWkI8Atg\nHeAN4OT0/WGgUom4ryr9BFhYifhRVXoRuA74LPAu8KVKxAtV6aPA/we2SKf+diXioaq0DnABsCuw\nGBgF7A6sVZUmAzMqESdUpRuBPsCawJhKxKWpf3OBMcDn0vWOqES8XpU2SdfrR/ZBqq+nPv2zEjEm\nHfufwOxKxAUdvNVUpQHAxpWIB1PTEcDItP174FdtHDOqvetVpQpwLLAGcGMlYlTaZ3k5/xs4CDit\nKn0eGAosAO6sRPz78vrfUFN1ko6UtFjZi9rcNlrSdEnntbH/5yUtN6CZWRmUYX1Qexkkse2wYTxz\n9dUsnD+fN6ZN42N77LHk+Yk//jFbHXQQx0+cyLETJnDvWWex4L33mHrxxfRcZx1OmTGDvUeNYvZj\njy11zmaHjh3LCZMm8eVJk5g8Zgzvz5kDwIJ58/j43ntz0tSpbL7vvkz7n//JEyMqEX8kKyR+mYqm\n7YDjgL0rEUPIipbjl8ou9SArar5YidgNGAucW4lYRFZAXVyVDgI+DTTVHDqnEjEIuJCsqCF9/0Ul\nYg/gaODS1P4j4M1KxKBKxGBgQiXi+8C7lYghlYgT0n6npD7sBoyoSr1T+zrAQ+nY+4F/Te3nA/ek\n9iHADOBy4MSUTcAw4Dd5XsD0Wl1b83hzYCZAej3erEobtTqmzetVpUOA/pWI3YGdgV2r0r/kyPlw\nJWJn4BmyEa6BKd9/dtT5RhtxGgbcBgwnq5Qhe+N6R6vKXVL3iLgVuHXVdtHMzFa2jXfYgbdeeoln\nrr6afocfvtS86Ut33slfb72VSaNHA7Dogw+Y+7e/Meu++xgyYkR2/I47svFOOy05pvZHxuP/9V/8\n5aabAJg7axZznn+ej+2+Oz169aLfYYcBsOkuu/C3P/3pw3b/ILKCYlL6ob4mMLvVPtsCOwB3pX26\nAa8AVCKeqkq/Ifv5t0cqHppdk75fTTZaBXAwsH21pTpcN402HUxWlJDO+1Y7/T2jKh2ZtvsA/YFH\ngfmViNtT++PpfAAHAiekcwYwF5hbld6oSjsBmwGTKxFz2nuBWhkGfHk5zy9zC4hKxMttXa8qfRo4\nJI2oiawo6g88sJycC4EbUvtbwHtV6VLgD2TvwXI1TOGk7E3fA/gUcCcwStLNwLrA48qGLw8D3gcG\nAw9Kmg7sGhHfUhtDiRExUa2G6iIN1ZmZFUmlcmhXd2GFVSqHQtPEdp/fZuhQ7j3rLI675x7ee+ON\nliciOOL66+ndv//yL9DGIrWZ997LzAkTOP6RR+jRqxfXHnDAkim9bj17LtmvW/fuLF64sHOBWgi4\nohLxgw72ebISsU87z+8IzAE2bdUebWx3IyuwFtTuWJXaW6Wnmn32IyuE9qhEzK9Kd5P9fIRsqqrZ\nIlpqhPbOeylwClkhc3k7+yylKg0iWxs2paZ5Ftm04z+qUndg/UrEP3NeT8BPKhFLDRd2kPP95mnU\nSsSiqrQ7WfF7DPDNtN2uRpqqOwK4IyJmAq9J2jkijgDejYghETEu7bd5ROwVEZX0uPkNPR+4J5Ye\nSgQ4JWqG6tQyVGdmZg2geXRoh698hb1GjuSjAwcu9fzWn/kMk88/f8nj16ZOBaDPpz7F07/9LQCv\nP/kkr0+btsy557/1Fr1696ZHr1787zPP8MrElsJtJX446s/A0VVpY4Cq1LuNT4Y9C2xclfZM+/So\nSp9M20cBvckGDn5VldavOa55BGkY2VoogDuAEc07pFEYgLuA02raN0ybH6SCBGADsum/+WmKcc+a\na7V3s88/A99I5+xW07+bgEPJ1lTdUXPdp9s5D2QzSle3arsVOCltHwNMaOfYtq53B/CVNOJGVfp4\neh9y5UzHbViJGA+cCQxaTt+BxiqchpMtggMYlx7Dsm/kONp2IHAxQGTmpvYzJE0FJtIyVGdmVihl\nX+MEsN7mmzPkm99c5vm9fvQjFi9YwK8HDeLXO+7Ig+ecA8Dgr3+dBe+8w9iBA3moqYlNd911mXP2\nPfRQFi9YwNiBA3ng7LP52F57LbPPiqpEPA38ELizKj1BNmuyWat9FpCtRzqvmv1MmgLsVZU+ApwL\nfLUS8ReydVBjag7tnc75LeDbqW0E2VqeJ6rSk8C/pfYfAxtVpelVaQqwf2q/BJhela4C/gj0rEoz\n0nWbizFof2TpDOCAqjQNeAzYvibT3cB1zSM4Kc/yHMOyhdNlwEer0vPpWt9r68C2rleJuAv4HfBw\n6t84spmq8Tlzrgfcll7j+2h5jdvVELcjSKNAs4DXyAJ1J6t/tpY0N9LHKCWNBW6NiBvS45OAXSLi\ndEmzgT5RM3SpbKjuP4BDImK+sqG6kRFx37J98O0IzFZ3DfDPYbuq1fGFn66rVsdTeWeif+VKTulT\ndbu0M23V5apSN7K1UEdXIv6a2g4H+lYilvlkXD2u1xUaZcTpGODKiOgbEf0iYivgRUn7duIcS4YS\nJXVTNpS4ATAnFU2th+rMzAqj6EUTlCPDKtawpXxV2h54HrirtoipRPyhTkVTm9frCo2yOPw4oPXt\nBq4nm66rvTHV8v4QnQFcIumrZCvmv042VPc1ZUN1z7L0UJ2ZmVnDqkT06+o+tCdNT36irNdbnoaY\nqmsEnqozs0b+59BTdV2my6bqrDE1ylSdmZmZWcPziFMLvxBmZvXWxu+qa3AecbKleMTJzMzMLCcX\nTkkZ7pEC5chRhgxQjhxlyADlyOEMZo3BhZOZmZlZTl7j1MIvhJlZvXmNkxWcR5zMzMzMcnLhlJRl\n7r0MOcqQAcqRowwZoBw5nMGsMXiqzszMzCwnjziZmZmZ5eTCyczMzCwnF05mZmZmOblwMjMzM8vJ\nhRMg6VBJz0h6TtJ3u7o/eUm6TNJsSdNq2npLulPSs5LukLRBV/axI5L6SJogaYak6ZJOT+2FySGp\nl6RHJE1JOc5N7YXJ0ExSN0mTJd2SHhcxw0uSnkjvx6OprVA5JG0gaZykp9OfqT0KmGFAeg8mp+9v\nSTq9aDnMWlvtCydJ3YBfAZ8BBgLDJW3Xtb3KbSxZv2t9D/hTRGwLTAC+v8p71TkLgTMjYiCwF3Ba\nev0LkyMi5gMHRMTOwCDgQEn7UKAMNUYAT9U8LmKGxcD+EbFzROye2oqWYwxwe0RsD+wEPEPBMkTE\nc+k9GALsAswDbqRgOcxaW+0LJ2B34PmIeDkiFgDXAEd0cZ9yiYgHgDmtmo8ArkjbVwBHrtJOdVJE\nvBoRU9P2O8DTQB+Kl+PdtNmL7O/VHAqWQVIf4DDg0prmQmVIxLL/thUmh6T1gX0jYixARCyMiLco\nUIY2HAz8NSJmUuwcZi6cgM2BmTWPZ6W2otokImZDVpQAm3Rxf3KTtDUwGJgIbFqkHGmKawrwKnBP\nRDxFwTIAvwTOYulfP1S0DJD1/y5JkySdmtqKlKMv8IaksWma6xJJa1OsDK0dB/wubRc5h5kLp9VA\nIe5wKmlyHsu1AAACAklEQVRd4PfAiDTy1LrfDZ0jIhanqbo+wL6S9qdAGSQdDsxOo3/L+91cDZuh\nxj5peugwsqnffSnQewH0AIYAF6Yc88imt4qUYQlJPYGhwLjUVMgcZs1cOMHfgS1rHvdJbUU1W9Km\nAJI2A17r4v50SFIPsqLpqoi4OTUXLgdARLwN3A7sSrEy7AMMlfQCcDXZOq2rgFcLlAGAiHglfX8d\nuIlsOr5I78UsYGZEPJYeX09WSBUpQ63PAo9HxBvpcVFzmAEunAAmAdtI2krSGsAw4JYu7lNniKVH\nCG4BTk7bJwE3tz6gAV0OPBURY2raCpND0kebPxkkaS3gEGAKBcoQEWdHxJYR0Y/s78CEiDgBuJWC\nZACQtHYavUTSOsCngekU672YDcyUNCA1HQTMoEAZWhlOVow3K2oOM8C/qw7IbkdA9imWbsBlEfHT\nLu5SLpJ+B+wPfASYDYwk+x/2OGAL4GXg2Ih4s6v62JH06bP7yH64Rfo6G3gUuI4C5JC0I9ki1+ZF\nyVdFRFXSRhQkQy1J+wHfiYihRcsgqS/ZJ7eCbMrrtxHx0wLm2IlskX5P4AXgFKA7BcoAWSFL1td+\nETE3tRXqvTBrzYWTmZmZWU6eqjMzMzPLyYWTmZmZWU4unMzMzMxycuFkZmZmlpMLJzMzM7OcXDiZ\nmZmZ5eTCyczMzCyn/wN451GDobaX/gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "# Get rid of this line, and the minor grid lines disappear\n", "#ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "# Use ax.annotate to add text\n", "ax.annotate(s=\"Median life expectancy, 70 years\", xy=(71,0), color='darkred')\n", "\n", "ax.set_xlim((0,79))" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(30, 79)" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAADRCAYAAAA0X0MlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVOWZ9/HvjyWoaBTiGrdIIkZRZFHRGOJuXBI0jgvE\nuJA41yRjFDXFTOJMpHknZqOyqFHfOCa4xiguRI1BDa5RUbRBNiUmouIbQYmoCIIs9/vHeZouoLsp\numy669Tvc1111TlPneU5d1fTN89z1ylFBGZmZmbVrlN7d8DMzMzso+CkxszMzHLBSY2ZmZnlgpMa\nMzMzywUnNWZmZpYLTmrMzMwsF2oyqZHUTdLTkqZIminph6m9h6QHJM2WdL+kLdu7rx2VpE6S6iXd\nndYduzJJekXS8+n990xqc/zKJGlLSeMkvZB+fwc5fuWR1Du97+rT87uSznf8LC9qMqmJiGXAYRHR\nH+gLHC7pYOC7wJ8jYg/gIeB77djNjm4EMKtk3bEr3yrg0IjoHxEHpDbHr3yXAfdFxJ7AvsCLOH5l\niYi/pvfdAGAgsBi4C8fPcqImkxqAiFiSFruRxWEhcAJwfWq/HjixHbrW4UnaCTgOuLak2bErn1j3\nd8/xK4OkjwODI2IsQESsiIh3cfxa40jg7xExF8fPcqJmk5o0fTIFmAc8EhGzgO0iYj5ARMwDtm3P\nPnZgvwBGAqW3o3bsyhfAg5ImSzontTl+5dkNWCBpbJpCuUbSZjh+rXEa8Lu07PhZLtRsUhMRq9L0\n007AYEmHsuYfaZpYr3mSjgfmR8RUshGH5jh2zTs4Df8fB5wraTB+75WrCzAAuDLFcDHZ1InjtwEk\ndQWGAONSk+NnuVCzSU2DiHgPuA/YD5gvaTsASdsDb7Zn3zqog4Ehkl4GbiGrR7oRmOfYlSci3kjP\nbwHjgQPwe69crwNzI+LZtH4HWZLj+G2YY4HnImJBWnf8LBdqMqmRtHVDdb+kTYGjgCnA3cDZabOz\ngD+0Swc7sIi4OCJ2iYhewFDgoYg4A7gHx269JG0mafO03B04GpiO33tlSVMkcyX1Tk1HADNx/DbU\nMLL/lDRw/CwXVIvf0i1pH7JiuIaCzRsjoiipJ3AbsDPwKnBqRLzTfj3t2CQdAnwnIoY4duWRtBvZ\np02CbCrl5oj4seNXPkn7khWpdwVeBoYDnXH8ypJqkF4FekXEotTm95/lQk0mNWZmZpY/NTn9ZGZm\nZvnjpMbMzMxywUmNmZmZ5YKTGjMzM8uFLu3dgQ7EFdNmVpvq6rKHNaWlm4xaB+ORGjMzM8sFJzVm\nZmaWC05qkmJxQnt3oao5fpVx/FrPsauM42d54qTGzMzMcsF3FG7kQJhZbXKhcEtcKFxFPFJjZmZm\nueCPdCdyLm5mNWoUMHr0mm0exLdq5JEaMzMzy4WykhpJ/yVphqTnJdVL2r/M/cZLeqqyLq73HKMl\nHd6W5zAzM7OOb73TT5IOBI4D+kXECkk9gY+Vsd+WwN7Au5I+FRGvVNrZJs7RKSJGfdTHNTMzs+pT\nzkjNDsCCiFgBEBFvR8S8MvY7CbgbuA0Y1tAoaaykqyQ9Jelvkg6VdJ2kWZJ+W7LdUZKelPSspFsl\nbZba50j6saRngZPT8U5Kr+0v6QlJUyVNktRd0q6SHkvHeTYlaWZmZpYz5SQ1DwC7SHpR0pWSvlDm\nsYcBtwLjKElqkq0i4iDgIrLE56cRsRfQV1JfSZ8A/hs4IiL2A55L2zZYEBH7RcRtDQ2SugK/B86L\niH7AkcAHwHzgyHScocAVZfbfzMzMqsh6p58iYrGkAcBg4HDg95K+GxE3NLePpG2Bz0TE02n9Q0l7\nRcSstMk96Xk68EZJ+0zgU8DOwF7AE5IEdAWeLDnFrU2cdg/gHxFRn/r9fjr3x4BfSeoHrAR2X981\nm5mZWfUp6yPdkd2h7zHgMUnTgTOBZpMa4FSgh6SXyW5ctAXZaM330+vL0vOqkuWG9S7p+YGIOL2Z\n4y9upr2pD2ZfCMyLiL6SOpON3piZmVnOrHf6SVJvSZ8paeoHvLqe3YYBX4yIXhGxG7Af605BrT5F\nE22TgIMlfTr1YTNJ6xthmQ1sL2lg2mfzlMRsCbyRtjkT6Lye45iZmVkVKqemZnPg+vSR7qnAnkAd\nrP449ZdKN5a0K7BLRDzT0JY++fRO+ij42rd0irWXI2IBcDZwi6Tnyaae9mhi+9J9lgOnkU01TSWr\nBeoGXAWcLWkK0JvmR3nMzMysivm7nxLJ3/1kZrVpFHWMzv6vupr/NKzm+81XEd9R2MzMzHLBSU0y\nZswEIvCjlQ/Hz/Fz7KrzMWbMBOpGrdtuVo2c1JiZmVkuuKamkQNhZrWpri57WFNcU1NFPFJjZmZm\nueCkJikWJ7R3F6qa41cZx6/1HLvKOH6WJ05qzMzMLBdcU9PIgTCz2uSampa4pqaKeKTGzMzMcsFJ\nTeJ55co4fpVx/FrPsauM42d54qTGzMzMcsE1NY0cCDOrTa6paYlraqqIR2rMzMwsF5zUJJ5Xrozj\nVxnHr/Ucu8o4fpYnTmrMzMwsF1xT08iBMLPa5Jqalrimpop4pMbMzMxywUlN4nnlyjh+lXH8Ws+x\nq4zjZ3ni6adE8vSTmXV8H/U/2cXiBArvT/L0U/M8/VRF2nSkRtKOksZL+quklyT9QlKXtjxnOu8O\nkm5r6/OYmVW7QuGY9u6C2Uemraef7gTujIjeQG9gC+CHbXxOIuKNiDi1rc9jZmZmHUebJTWSDgc+\niIgbACKb57oQGC5pU0lFSdMlTZV0btpngKRHJE2W9CdJ26X2cyQ9I2mKpHGSNkntYyVdJukJSX+T\ndFJq31XS9JLlxyQ9mx4HttU1m5lVG9fUWJ605UhNH+C50oaIWATMBf4V2AXoGxH9gJvTtNQVwL9E\nxP7AWBpHde6IiAMioj/wIvCNksNuHxEHA18GflJ6uvT8JnBkROwHDE3nMDMzs5xp8/qWZhwCXJVG\nb4iIdyT1AfYGHpQksoTrH2n7vpL+B9gK6A7cX3Ks8ekYL0jatolzdQV+LakfsBLYvS0uyMysGhUK\nx0DdpPbuhtlHoi2TmlnAyaUNkrYgG6GZ08T2AmakUZe1jQWGRMQMSWeRJUUNlq11jLVdCMyLiL6S\nOgMfbMA1mJmZWZVos+mniJgIbCrpawApofgZWYJyP/DN1IakHsBsYJuGmhdJXSTtlQ63OTBPUlfg\n9BZO21RSsyXwRlo+E+hc0YWZmeWIa2osT9r6009fAU6V9FeyWpgPgIuB3wCvAdMkTQGGRcRyspGd\nn0iaCkwBDkrHuQR4BngceKHk+GvfsaGpOzhcBZydztMbWPxRXJiZmZl1LL75XuKb75lZNWiTf7L9\n3U8t8c33qoi/JsHMzMxywUlNMmbMBCLwo5UPx8/xc+w2zuOj5poayxMnNWZmZpYLrqlp5ECYWW1y\nTU1LXFNTRTxSY2ZmZrngpCbxvHJlHL/KOH6t59hVxvGzPHFSY2ZmZrngmppGDoSZ1SbX1LTENTVV\nxCM1ZmZmlgtOahLPK1fG8auM49d6jl1lHD/LEyc1ZmZmlguuqWnkQJhZbXJNTUtcU1NFPFJjZmZm\nueCkJvG8cmUcv8o4fq3n2FXG8bM8cVJjZmZmueCamkYOhJnVJtfUtMQ1NVXEIzVmZmaWC05qEs8r\nV8bxq4zj13qOXWUcP8sTTz8lkqefzKw2jaKO0dStXvefhTV4+qmKeKTGzMzMcmG9SY2kVZLGlKx/\nR9Il5Rxc0gWSPpC0RSWdXM85vizpP9rq+GZmZlYdyhmpWQacJKlnK44/FHgQOKkV+66XpM4RcU9E\n/LQtjm9mZmbVo5ykZgVwDXDRhhxYUi+gK3Ap8NWS9rMk3SXpAUkvS/p2Gv2pl/SkpK0a9pf0J0mT\nJT0qqXdqHyvpaklPAT9Jx7sivbatpDslTZU0RdKBqf2udJzpks7ZkOswMzOz6lBOUhPAlcDpGziN\nNBS4LSKeBj4taZuS1/oAJwIHkCU970XEAGAScGba5hrg2xGxPzASuLpk/x0j4qCIKJT0EeBy4JGI\n6AcMAGam9uHpOPsDIyT12IDrMDMzsyrQpZyNIuJ9SdcDI4APyjz2MOCEtDweOAW4Kq0/HBFLgCWS\nFgL3pvbpwD6SugOfA8ZJaqg871py7HHNnPNw4IzU5wAWpfYLJJ2YlncCdgeeKfM6zMzMrAqUldQk\nlwH1wG/Xt6GkvckShz+nnORjwBwak5plJZtHyfqq1KdOwMI0etOUxc20r/NBREmHkCU7gyJimaSH\ngU3Wdw1mZmZWXcqZfhJARCwEbgPKqUkZBoyKiF7psRPwSUk7l9OpiFgEzJF08upOSH3L2HUi8O9p\n+06SPg5sSZYgLZP0WeDAcvpgZmZm1aXcmpoGPwM+0dCWPk5d18Q+pwF3rdV2F1mdzdqjKc3d5ulr\nwDdS0e8MYMh6tge4ADhM0jTgWWBPYALQVdJM4IfAUy3sb2ZmZlXKdxROfEdhM6tVvqNwi3xH4Sri\nOwqbmZlZLjipScaMmUAEfrTy4fg5fo5ddT7GjJlA3ag128yqlaefGjkQZlab6uqyhzXF009VxCM1\nZmZmlgtOapJicUJ7d6GqOX6Vcfxaz7GrjONneeKkxszMzHLBNTWNHAgzq02uqWmJa2qqiEdqzMzM\nLBec1CSeV66M41cZx6/1HLvKOH6WJ05qzMzMLBdcU9PIgTCz2uSampa4pqaKeKTGzMzMcsFJTeJ5\n5co4fpVx/FrPsauM42d54qTGzMzMcsE1NY0cCDOrTa6paYlraqqIR2rMzMwsF5zUJJ5XrozjVxnH\nr/Ucu8o4fpYnTmrMzMwsF1xTk0iuqTGz2jSKOkZT197dKNtG/rPlmpoq0mVjn1DSSuB5sjdKAL+P\niJ9u7H6YmZlZvmz0pAZYHBEDWrOjpM4RsfKj7pCZmZlVv/aoqWlyKE/SHEk90/JASQ+n5VGSbpD0\nF+AGSd0k/VbSNEnPSTo0bXeWpPGSHpY0W9IlJcc+XdLTkuolXS3Jw4lmZmY50x4jNZtKqqdx+ulH\nETGOde8TU7q+J3BwRHwo6SJgVUT0lbQH8ICk3dN2+wN9gKXAZEn3AkuA04DPRcRKSVcCpwM3tdUF\nmpmZ2cbXHknNkmamn1oaPbk7Ij5My58HLgeIiNmSXgF6p9cejIh3ACTdkbZdCQwkS3IEbALMr/gq\nzMzMrENpj6SmOStonA7bZK3XFrewX2kyFGu1N6xfFxH/VVn3zMzMrCPrMDU1wByyERWAf2lh/8fJ\npo+Q1BvYGZidXjtK0laSNgVOBJ4AHgJOlrRN2qeHpF0quwQzMzPraNpjpGaTtWpqJkTExcD/AX4j\n6V3gkRb2vwq4WtI0YDlwVkQsT7W/zwB3AjsCN0ZEPYCk/yarvekEfAicC7zWFhdnZmZm7WOjJzUR\n0bWZ9r8AezTRPnqt9WXA15s5/OsRcVITxxgHjNvw3pqZmVm18NckmJmZWS7kJqmJiOsj4vzW7j9m\nzAQi8KOVD8fP8XPsqvMxZswE6ka1fz825GHWHH/3UyMHwsxqU11d9rCm+GatVSQ3IzVmZmZW25zU\nJMXihPbuQlVz/Crj+LWeY1cZx8/yxEmNmZmZ5YJraho5EGZWm1xT0xLX1FQRj9SYmZlZLjipSTyv\nXBnHrzKOX+s5dpVx/CxPnNSYmZlZLrimppEDYWa1yTU1LXFNTRXxSI2ZmZnlgpOaxPPKlXH8KuP4\ntZ5jVxnHz/LESY2ZmZnlgmtqGjkQZlabXFPTEtfUVBGP1JiZmVkuOKlJPK9cGcevMo5f6zl2lXH8\nLE+c1JiZmVkuuKYmkVxTY2a1aRR1jKYOAP9JWIdraqpIVY3USDpR0ipJvdez3b2SPr6x+mVmZmbt\nr6qSGmAocC8wrKWNIuJLEfHexumSmZmZdQRVk9RI6g4MAs4lS26QtL2kRyXVS5om6eDUPkdSz7R8\nl6TJkqZLOqfdLsDMzMzaVJf27sAGOAG4PyLmSnpTUn/gMGBCRPxIkoDN0rals8LDI+IdSZsAkyXd\nERELN3LfzczMrI1VzUgN2ZTTbWl5HPBV4Bng65IuAfpGxOL0emlh1wWSpgKTgJ2A3TdSf83MzGwj\nqoqRGkk9gMOBvSUF0BmIiBgpaTBwPHCdpJ9FxE0l+x2S9hsUEcskPQxs0g6XYGZmZm2sWkZqTgFu\niIjdIqJXROwKzJH0BeDNiPgNcC0wYK39tgQWpoTms8CBG7fbZmZmtrFUxUgNcBrwk7Xa7gTGAosl\nrQAWAWek1xpqaiYA35Q0E5gNPLUR+mpmZmbtoCqSmog4oom2K4Armtm+V8nqcW3VLzMzM+s4qmX6\nyczMzKxFTmqSMWMmEIEfrXw4fo6fY1edjzFjJlA3qnHdrJr5u58aORBmVpvq6rKHNcXf/VRFPFJj\nZmZmueCkJikWJ7R3F6qa41cZx6/1HLvKOH6WJ05qzMzMLBdcU9PIgTCz2uSampa4pqaKeKTGzMzM\ncsFJTeJ55co4fpVx/FrPsauM42d54qTGzMzMcsE1NY0cCDOrTa6paYlraqqIR2rMzMwsF5zUJJ5X\nrozjVxnHr/Ucu8o4fpYnTmrMzMwsF1xT08iBMLPa5Jqalrimpop4pMbMzMxywUlN4nnlyjh+lXH8\nWs+xq4zjZ3nipMbMzFpU7NSJ+848c/X6qpUruXKbbbhryJANOs6thx3G/Pp6AO780pdY9t57Ffdt\nxvXXM/H88wF4/te/ZtZNNwHw9uzZ3NC/PzcOHMg7c+ZUfJ62VJS+1wH6sHlRmlKU6tPzW0Xp5+m1\njxWl3xell4rSU0Vpl/bub3O6tHcHOoqRI49h5Mj27kU1c/wqU3n8arU8rlA4pr27UNUKhWOgblKL\n23Tt3p0FM2awYtkyunTrxqsPPsgWO+9c0XlPuvfeivZvyr7/9m+rl18aP57ep5zCgRdf/JGfpw1c\nDPyoPTtQiHgf6N+wXpSeBe5Iq98A3i5E7F6UTgN+CgzdGP0qSp0KEavK3d5JjZmZrVev447j5T/+\nkd4nncQLt9zCZ4cN4/89/jgAy5csYeJ55/HPmTNZtXw5B40axWeGDGHF0qVMGD6ct6ZNo+cee7Bi\n6dLVx7tmt90447nn2LRnT8Z/5Sssev11Vi5dyoARI+h7zjkAXLbFFgwcMYK/33svXTfbjBP/8Ac2\n22abZvv45OjRdN18cz6x117U//KXdOrShdcmTuTUiROZdfPN1F9+OauWL2eHQYM48qqrkNasAZ5f\nX8/DF13E8sWL2XTrrTn2uuu4evvtOwNPAYVCxGNF6UfAikLE94vSHOA24FhgCfDVQsTLRWlr4P8C\nDZnfhYWIJ4tSd+AKYD9gFTAaOADYtCjVAzMLEWcUpbuAnYBNgMsKEdcCFKVFwGXAl9L5TihEvFWU\ntk3n60X2oZdvpT69XYi4LO37A2B+IeKK9f2si1JvYJtCxBOp6QRgVFq+HfhVE/uMbu58RakAnAp8\nDLirEDE6bdPSdf4aOAI4tyh9GRgCLAceKET8R3N971DTT5JOlLRKWUAb2sZImi7pJ01s/2VJzV6c\nmeWfa0IqU078JLHH0KG8eMstrFi2jAXTprHDoEGrX5906aXsesQRnD5pEqc+9BCPjhzJ8g8+YOrV\nV9O1e3eGz5zJ50aPZv6zz65xzAbHjB3LGZMn87XJk6m/7DKWLlwIwPLFi/nk5z7HWVOnsuPgwUz7\n3/8tq6+9jj2Wfb/5TQZeeCGnTpzIP198kdm33spXn3ySM+vrUadOvHDzzWvst2rFCiaedx4n3HEH\nZ0yezN7Dh/P4xRdTiFgJnA1cXZSOAI4G6kp2XViI6AtcSZZwkJ5/XogYBJwMXJvavw+8U4joW4jo\nBzxUiPgesKQQMaAQcUbabnghYn9gf2BEUeqR2rsDT6Z9Hwf+NbVfDjyS2gcAM4HfAmcCFLNgDwVu\nWm8AM6cBt5as7wjMBRri8U5R6rnWPk2erygdBexeiDiAbCRov6L0+TKu86lCRH/gReArhYg+6fp+\n0FLHO9pIzVDgXmAYWQYL2Q+tR6z12XNJnSPiHuCejdtFM7Pas83ee/PuK6/w4i230Ov449eY73zl\ngQf4+z33MHnMGABWfvghi157jdcfe4wBI0Zk+++zD9vsu+/qfUr/SX/ul7/kb+PHA7Do9ddZ+NJL\n7HDAAXTp1o1exx0HwHYDB/Lan//cqr6/NnEi8+vruWn//SGCFUuXstl2262xzduzZ7NgxgzGHXUU\nRBCrVtF9hx0AKETMKko3kf19GpT+sDf4fXq+Bfh5Wj4S2LPYmLltnkZpjiRLGBqO+24zXb6gKJ2Y\nlncCdgeeAZYVIu5L7c+l4wEcDpyRjhnAImBRUVpQlPYFtgfqCxEL1xuszFDgay28vs7H3AsRrzZ1\nvqJ0NHBUGokSWcKyO/CXFq5zBXBnan8X+KAoXQv8kexn0KwOk9Qo+4EPAr4APACMlvQHYHPgOWVD\nfscBS4F+wBOSpgP7RcR5amL4LSImaa3hrUjDW2aWD66pqUw5NTUNPjNkCI+OHMlpjzzCBwsWNL4Q\nwQl33EGP3Xdv+QBNFH7NffRR5j70EKc//TRdunXj1sMOWz1N1alr19XbdercmVUrVpTVz3VPG/Q5\n6ywGX3ppi9tsvffefPWJJ5rbZB9gIbDdWu3RxHInsuRneemGRam5yjeVbHMIWZIyqBCxrCg9TPb3\nC7LplwYrafwb3txxrwWGkyUZv21mmzUUpb5A50LElJLm18mm0v5RlDoDHy9EvF3m+QT8qBCxxjDb\neq5zaUrOKESsLEoHkE1FnQJ8Oy03qSNNP50A3B8Rc4E3JfWPiBOAJRExICLGpe12jIiDIqKQ1ht+\nmJcDj8Saw28Aw6NkeEuNw1tmZlaGhlGVvb/+dQ4aNYqt+/RZ4/VPffGL1F9++er1N6dOBWCnL3xh\n9TTPWzNm8Na0aesce9m779KtRw+6dOvGP198kTcmNSZYH9XNYXc94gj+evvtLHnrLQCWLlzIe6+9\ntsY2PffYgw/eeot/pPOvWrGCBbNmAVCUTgJ6kP2n+1dF6eMluzaMvAwlq70BuB8Y0bBBGr0AeBA4\nt6R9q7T4YUoWALYkm9JaVpQ+CxxYcq7mbgQ4Efj3dMxOJf0bDxxDVsNzf8l5X2jmOJDNlNyyVts9\nwFlp+RTgoWb2bep89wNfTyNVFKVPFqVtyr3OtN9WhYgJwEVA3xb63qGSmmFkBVcA49I6rPtDHEfT\nDgeuBojMotR+gaSpwCQah7fMLCdcU1OZcmtqALbYcUcGfPvb67x+0Pe/z6rly7mub1+u22cfnrjk\nEgD6fetbLH//fcb26cOTdXVst99+6xxzt2OOYdXy5Yzt04e/XHwxOxx00DrbVOoTe+7J53/wA24/\n+miu33dfxh19NIvnzVtjm85duzLk9tt57D//k+v79eOG/v1546mnKEqfAH4IfKMQ8TeyQt/LSnbt\nUZSeB84DLkxtI8hqR54vSjOAho9lXQr0LErTi9IU4NDUfg0wvSjdCPwJ6FqUZqbzNiRK0PyIzAXA\nYUVpGvAssCdAGil6GLitYeQjXU9LTmHdpOY3wNZF6aV0ru82tWNT5ytEPAj8Dngq9W8c2QzMhDKv\ncwvg3hTjx2iMcZM6xNckpNGT14E3yS6mM1lu8ilJiyJii7TdWOCeiLgzrZ8FDIyI8yXNB3aKkuE+\nZcNb/wMcFRHLlA1vjYqIx9btg78mwapbB/hVbhfF4gRPQVWgWJxA4f1J/pqE5jWbWaVPPw1sZiqm\n3RWlTmS1NycXIv6e2o4HditErPMJprY438bWUUZqTgFuiIjdIqJXROwKzJE0eAOOsXr4TVInZcNv\nWwILU0Kz9vCWmeWAE5rKOH4V6bD/lShKewIvAQ+WJhiFiD+2UULT5Pk2to5SKHwasPZHtu8gm4Iq\nvelOS2+gC4BrJH2DrHL6W2TDW99UNrw1mzWHt8zMzFqtENGrvfvQnELEC8Cn83q+5nSI6aeOwNNP\nVu1q9VfZ00+V8fTTevlbuqtIR5l+MjMzM6uIR2oaORBmVpvq6jxS0zyP1FQRj9SYmZlZLjipSXyv\ni8o4fpVx/FrPsauM42d54qTGzMzMcsE1NY0cCDOrTa6paYlraqqIR2rMzMwsF5zUJJ5XrozjVxnH\nr/Ucu8o4fpYnnn4yMzOzXPBIjZmZmeWCkxozMzPLBSc1ZmZmlgtOaszMzCwXajKpkdRN0tOSpkia\nKemHqb2HpAckzZZ0v6Qt27uvHZWkTpLqJd2d1h27Mkl6RdLz6f33TGpz/MokaUtJ4yS9kH5/Bzl+\n5ZHUO73v6tPzu5LOd/wsL2oyqYmIZcBhEdEf6AscLulg4LvAnyNiD+Ah4Hvt2M2ObgQwq2TdsSvf\nKuDQiOgfEQekNsevfJcB90XEnsC+wIs4fmWJiL+m990AYCCwGLgLx89yoiaTGoCIWJIWu5HFYSFw\nAnB9ar8eOLEdutbhSdoJOA64tqTZsSufWPd3z/Erg6SPA4MjYixARKyIiHdx/FrjSODvETEXx89y\nomaTmjR9MgWYBzwSEbOA7SJiPkBEzAO2bc8+dmC/AEay5ldLOHblC+BBSZMlnZPaHL/y7AYskDQ2\nTaFcI2kzHL/WOA34XVp2/CwXajapiYhVafppJ2CwpENZ9/uffGfCtUg6HpgfEVNp+TtRHLvmHZyG\n/48DzpU0GL/3ytUFGABcmWK4mGzqxPHbAJK6AkOAcanJ8bNcqNmkpkFEvAfcB+wHzJe0HYCk7YE3\n27NvHdTBwBBJLwO3kNUj3QjMc+zKExFvpOe3gPHAAfi9V67XgbkR8Wxav4MsyXH8NsyxwHMRsSCt\nO36WCzWZ1EjauqG6X9KmwFHAFOBu4Oy02VnAH9qlgx1YRFwcEbtERC9gKPBQRJwB3INjt16SNpO0\neVruDhwNTMfvvbKkKZK5knqnpiOAmTh+G2oY2X9KGjh+lgs1+d1PkvYhK4ZrKNi8MSKKknoCtwE7\nA68Cp0bEO+3X045N0iHAdyJiiGNXHkm7kX3aJMimUm6OiB87fuWTtC9ZkXpX4GVgONAZx68sqQbp\nVaBXRCwg5hgCAAAASElEQVRKbX7/WS7UZFJjZmZm+VOT009mZmaWP05qzMzMLBec1JiZmVkuOKkx\nMzOzXHBSY2ZmZrngpMbMzMxywUmNmZmZ5cL/BwvzDCiK/hs1AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "# Get rid of this line, and the minor grid lines disappear\n", "#ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "# Use ax.annotate to add text\n", "ax.annotate(s=\"Median life expectancy, 70 years\", xy=(71,0), color='darkred')\n", "\n", "ax.set_xlim((30,79))" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(30, 79)" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAADRCAYAAAA0X0MlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VXWd//HXm0uoaIZp6nhLJjFTUUBFc0zwlmmhOV4g\nU6Ocx9SYobWdKWfqcH6TXddMqaP+cizEy5iSSmnNUUPUUlH0gCAqWd5/KUqhIgpy+fz+2N/D2cA5\nh81ZHPbZa7+fj8d57LW+e12+63M28OH7/ay1FRGYmZmZ1bs+te6AmZmZ2cbgpMbMzMwKwUmNmZmZ\nFYKTGjMzMysEJzVmZmZWCE5qzMzMrBAaMqmRNEDSQ5JmSZon6TupfZCkOyXNl3SHpK1r3dfeSlIf\nSa2SfpXWHbsqSXpO0mPp8/dwanP8qiRpa0lTJD2Z/vyOdPyqI2lI+ty1ptc3JH3F8bOiaMikJiKW\nAaMjYhgwFDhC0qHA14HfRsSewN3AN2rYzd5uAvBExbpjV71VwKiIGBYRB6U2x696FwO/iYi9gP2A\np3D8qhIRf0ifu+HACGAJcCuOnxVEQyY1ABHxdlocQDkOi4ATgMmpfTJwYg261utJ2hk4Driqotmx\nq55Y98+e41cFSe8FDouISQARsSIi3sDx646jgD9FxIs4flYQDZvUpOmTWcArwD0R8QSwfUQsAIiI\nV4AP1LKPvdiPgAuAysdRO3bVC+AuSTMlnZ3aHL/q7A4slDQpTaFcKWkLHL/uOA34n7Ts+FkhNGxS\nExGr0vTTzsBhkkax5j/SdLDe8CQdDyyIiNmURxw649h17tA0/H8ccI6kw/Bnr1r9gOHAZSmGSyhP\nnTh+G0BSf2AMMCU1OX5WCA2b1LSJiDeB3wAHAAskbQ8gaQfg1Vr2rZc6FBgj6RngBsr1SNcCrzh2\n1YmIl9Pra8BU4CD82avWS8CLEfFIWr+ZcpLj+G2YTwCPRsTCtO74WSE0ZFIjadu26n5JmwNHA7OA\nXwGfS5udBfyyJh3sxSLiwojYNSIGA2OBuyPiDOA2HLv1krSFpC3T8kDgGGAu/uxVJU2RvChpSGo6\nEpiH47ehxlH+T0kbx88KQY34Ld2S9qVcDNdWsHltRGSStgFuAnYBngdOjYjXa9fT3k3S4cDXImKM\nY1cdSbtTvtskKE+lXB8R33P8qidpP8pF6v2BZ4DxQF8cv6qkGqTngcERsTi1+fNnhdCQSY2ZmZkV\nT0NOP5mZmVnxOKkxMzOzQnBSY2ZmZoXgpMbMzMwKoV+tO9CLuGLazBrTxInlH+tIVw8ZtV7GIzVm\nZmZWCE5qzMzMrBCc1CRZ1lLrLtQ1xy8fx6/7HLt8HD8rEic1ZmZmVgh+onA7B8LMGpMLhbviQuE6\n4pEaMzMzKwSP1CTNzc0OhJk1pMOnT+fe0aPXaGtqaqpRb3odj9TUEY/UmJmZWSFUldRI+ldJj0t6\nTFKrpAOr3G+qpAfzdXG952iWdERPnsPMzMx6v/U+UVjSwcBxwP4RsULSNsB7qthva2Af4A1JH4yI\n5/J2toNz9IkIj5GamZlZVSM1OwILI2IFQET8NSJeqWK/k4BfATcB49oaJU2SdLmkByX9UdIoSVdL\nekLSzyq2O1rSA5IekXSjpC1S+7OSvifpEeDkdLyT0nsHSrpf0mxJMyQNlLSbpPvScR5JSZqZmZkV\nTDVJzZ3ArpKeknSZpI9VeexxwI3AFCqSmuR9EXEI8FXKic8PIuIjwFBJQyW9H/g34MiIOAB4NG3b\nZmFEHBARN7U1SOoP/Bw4NyL2B44C3gEWAEel44wFLq2y/2ZmZlZH1jv9FBFLJA0HDgOOAH4u6esR\ncU1n+0j6APChiHgorb8r6SMR8UTa5Lb0Ohd4uaJ9HvBBYBfgI8D9kgT0Bx6oOMWNHZx2T+DPEdGa\n+v1WOvd7gP+StD+wEthjfddsZmZm9aeqb+mO8n3f9wH3SZoLnAl0mtQApwKDJD1D+Xa4rSiP1nwz\nvb8sva6qWG5b75de74yI0zs5/pJO2ju69e584JWIGCqpL+XRGzMzMyuY9U4/SRoi6UMVTfsDz69n\nt3HAxyNicETsDhzAulNQq0/RQdsM4FBJf5v6sIWk9Y2wzAd2kDQi7bNlSmK2Bl5O25wJ9F3PcczM\nzKwOVVNTsyUwOd3SPRvYC5gIq2+n/mTlxpJ2A3aNiIfb2tKdT6+nW8HXfshdrL0cEQuBzwE3SHqM\n8tTTnh1sX7nPcuA0ylNNsynXAg0ALgc+J2kWMITOR3nMzMysjvmJwomfKGxmjcpPFO6SnyhcR/xE\nYTMzMyuEqgqFG8HAgSMplY6tdTfqVpa1OH45OH7d59jlk2UtjBoVjPLIjBWAR2rMzMysEFxT086B\nMLPGNHFi+cc64pqaOuKRGjMzMysEJzVJlrXUugt1zfHLx/HrPscuH8fPisRJjZmZmRWCa2raORBm\n1phcU9MV19TUEY/UmJmZWSE4qUk8r5yP45eP49d9jl0+jp8ViZMaMzMzKwTX1LRzIMysMbmmpiuu\nqakjHqkxMzOzQnBSk3heOR/HLx/Hr/scu3wcPysSJzVmZmZWCK6paedAmFljck1NV1xTU0c8UmNm\nZmaF4KQm8bxyPo5fPo5f9zl2+Th+ViSefkqam5sdCDPr9Zqamjbq8bKshdJbMzz91DlPP9WRHh2p\nkbSTpKmS/iDpaUk/ktSvJ8+ZzrujpJt6+jxmZvWuVDq21l0w22h6evrpFuCWiBgCDAG2Ar7Tw+ck\nIl6OiFN7+jxmZmbWe/RYUiPpCOCdiLgGIMrzXOcD4yVtLimTNFfSbEnnpH2GS7pH0kxJ/ytp+9R+\ntqSHJc2SNEXSZql9kqSLJd0v6Y+STkrtu0maW7F8n6RH0s/BPXXNZmb1xjU1ViQ9OVKzN/BoZUNE\nLAZeBP4B2BUYGhH7A9enaalLgb+PiAOBSbSP6twcEQdFxDDgKeALFYfdISIOBT4FfL/ydOn1VeCo\niDgAGJvOYWZmZgXT4/UtnTgcuDyN3hARr0vaG9gHuEuSKCdcf07bD5X078D7gIHAHRXHmpqO8aSk\nD3Rwrv7ATyTtD6wE9uiJCzIzq0el0rEwcUatu2G2UfRkUvMEcHJlg6StKI/QPNvB9gIeT6Mua5sE\njImIxyWdRTkparNsrWOs7XzglYgYKqkv8M4GXIOZmZnViR6bfoqIacDmkj4LkBKK/6CcoNwBfDG1\nIWkQMB/Yrq3mRVI/SR9Jh9sSeEVSf+D0Lk7bUVKzNfByWj4T6JvrwszMCsQ1NVYkPX3306eBUyX9\ngXItzDvAhcBPgReAOZJmAeMiYjnlkZ3vS5oNzAIOScf5FvAw8DvgyYrjr/1smY6eNXM58Ll0niHA\nko1xYWZmZta7+OF7iR++Z2b1YGM/fA/wdz91zQ/fqyP+mgQzMzMrhFrd/dTrDBw40k/WzCHLWhy/\nHBy/7nPs8smyFkq17oTZRuKRGjMzMysE19S0cyDMrDG5pqYrrqmpIx6pMTMzs0JwUpP4WQ35OH75\nOH7d59jl4/hZkTipMTMzs0JwTU07B8LMGpNrarrimpo64pEaMzMzKwQnNYnnlfNx/PJx/LrPscvH\n8bMicVJjZmZmheCamnYOhJk1JtfUdMU1NXXEIzVmZmZWCE5qEs8r5+P45eP4dZ9jl4/jZ0XipMbM\nzMwKwTU17RwIM2tMrqnpimtq6ohHaszMzKwQnNQknlfOx/HLx/HrPscuH8fPisTTT0lzc7MDYWYN\n6fDp07l39OjV601NTTXsTa/j6ac64pEaMzMzK4T1JjWSVkn6YcX61yR9q5qDSzpP0juStsrTyfWc\n41OS/rmnjm9mZmb1oZqRmmXASZK26cbxxwJ3ASd1Y9/1ktQ3Im6LiB/0xPHNzMysflST1KwArgS+\nuiEHljQY6A9cBHymov0sSbdKulPSM5K+nEZ/WiU9IOl9bftL+l9JMyXdK2lIap8k6QpJDwLfT8e7\nNL33AUm3SJotaZakg1P7rek4cyWdvSHXYWZmZvWhmqQmgMuA0zdwGmkscFNEPAT8raTtKt7bGzgR\nOIhy0vNmRAwHZgBnpm2uBL4cEQcCFwBXVOy/U0QcEhGlij4CXALcExH7A8OBeal9fDrOgcAESYM2\n4DrMzMysDvSrZqOIeEvSZGAC8E6Vxx4HnJCWpwKnAJen9ekR8TbwtqRFwO2pfS6wr6SBwEeBKZLa\nKs/7Vxx7SifnPAI4I/U5gMWp/TxJJ6blnYE9gIervA4zMzOrA1UlNcnFQCvws/VtKGkfyonDb1NO\n8h7gWdqTmmUVm0fF+qrUpz7AojR605ElnbSvc1u2pMMpJzsjI2KZpOnAZuu7BjMzM6sv1Uw/CSAi\nFgE3AdXUpIwDmiJicPrZGfgbSbtU06mIWAw8K+nk1Z2Qhlax6zTgn9L2fSS9F9iacoK0TNKHgYOr\n6YOZmZnVl2pratr8B/D+trZ0O/XEDvY5Dbh1rbZbKdfZrD2a0tlD7z4LfCEV/T4OjFnP9gDnAaMl\nzQEeAfYCWoD+kuYB3wEe7GJ/MzMzq1N+onDiJwqbWaPyE4W75CcK1xE/UdjMzMwKYUMKhQtt4MCR\nlErH1robdSvLWhy/HBy/7nPs8smyFkaNCkZ5dMYKwNNP7RwIM2tMEyeWf6wjnn6qI55+MjMzs0Jw\nUpNkWUutu1DXHL98HL/uc+zycfysSJzUmJmZWSG4pqadA2Fmjck1NV1xTU0d8UiNmZmZFYKTmsTz\nyvk4fvk4ft3n2OXj+FmROKkxMzOzQnBNTTsHwswak2tquuKamjrikRozMzMrBCc1ieeV83H88nH8\nus+xy8fxsyJxUmNmZmaF4Jqadg6EmTUm19R0xTU1dcQjNWZmZlYITmoSzyvn4/jl4/h1n2OXj+Nn\nReKkxszMzArBNTVJc3OzA2FmDenw6dO5d/ToWnejak1NTZvydK6pqSP9NvUJJa0EHqP8QQng5xHx\ng03dDzMzMyuWTZ7UAEsiYnh3dpTUNyJWbuwOmZmZWf2rRU1Nh0N5kp6VtE1aHiFpelpuknSNpN8D\n10gaIOlnkuZIelTSqLTdWZKmSpouab6kb1Uc+3RJD0lqlXSFJA8nmpmZFUwtRmo2l9RK+/TTdyNi\nCus+J6ZyfS/g0Ih4V9JXgVURMVTSnsCdkvZI2x0I7A0sBWZKuh14GzgN+GhErJR0GXA6cF1PXaCZ\nmZlterVIat7uZPqpq9GTX0XEu2n574BLACJivqTngCHpvbsi4nUASTenbVcCIygnOQI2Axbkvgoz\nMzPrVWqR1HRmBe3TYZut9d6SLvarTIZirfa29asj4l/zdc/MzMx6s15TUwM8S3lEBeDvu9j/d5Sn\nj5A0BNgFmJ/eO1rS+yRtDpwI3A/cDZwsabu0zyBJu+a7BDMzM+ttajFSs9laNTUtEXEh8H+An0p6\nA7ini/0vB66QNAdYDpwVEctT7e/DwC3ATsC1EdEKIOnfKNfe9AHeBc4BXuiJizMzM7Pa2ORJTUT0\n76T998CeHbQ3r7W+DPh8J4d/KSJO6uAYU4ApG95bMzMzqxf+mgQzMzMrhN5UKJxLREwGJnd3/4ED\nR1IqHbsRe9RYsqzF8cvB8es+xy6fLGth1Khg1Kb96gGzHuHvfmrnQJhZY5o4sfxjHfHDWuuIp5/M\nzMysEJzUJFnWUusu1DXHLx/Hr/scu3wcPysSJzVmZmZWCK6paedAmFljck1NV1xTU0c8UmNmZmaF\n4KQm8bxyPo5fPo5f9zl2+Th+ViROaszMzKwQXFPTzoEws8bkmpquuKamjnikxszMzArBSU3ieeV8\nHL98HL/uc+zycfysSJzUmJmZWSG4pqadA2Fmjck1NV1xTU0d8UiNmZmZFYKTmsTzyvk4fvk4ft3n\n2OXj+FmROKkxMzOzQnBNTdLc3OxAmFlDOnz6dO4dPRqApqamGvem13FNTR2pq5EaSSdKWiVpyHq2\nu13SezdVv8zMzKz26iqpAcYCtwPjutooIj4ZEW9umi6ZmZlZb1A3SY2kgcBI4BzKyQ2SdpB0r6RW\nSXMkHZran5W0TVq+VdJMSXMlnV2zCzAzM7Me1a/WHdgAJwB3RMSLkl6VNAwYDbRExHclCdgibVtZ\nHzM+Il6XtBkwU9LNEbFoE/fdzMzMeljdjNRQnnK6KS1PAT4DPAx8XtK3gKERsSS9X1nYdZ6k2cAM\nYGdgj03UXzMzM9uE6mKkRtIg4AhgH0kB9AUiIi6QdBhwPHC1pP+IiOsq9js87TcyIpZJmg5sVoNL\nMDMzsx5WLyM1pwDXRMTuETE4InYDnpX0MeDViPgpcBUwfK39tgYWpYTmw8DBm7bbZmZmtqnUxUgN\ncBrw/bXabgEmAUskrQAWA2ek99pqalqAL0qaB8wHHtwEfTUzM7MaqIukJiKO7KDtUuDSTrYfXLF6\nXE/1y8zMzHqPepl+MjMzM+tSXYzUbAoDB46kVDq21t2oW1nW4vjl4Ph1n2OXT5a1MGpUMMpfj2AF\n4O9+audAmFljmjix/GMd8Xc/1RFPP5mZmVkhOKlJsqyl1l2oa45fPo5f9zl2+Th+ViROaszMzKwQ\nXFPTzoEws8bkmpquuKamjnikxszMzArBSU3ieeV8HL98HL/uc+zycfysSJzUmJmZWSG4pqadA2Fm\njck1NV1xTU0d8UiNmZmZFYKTmsTzyvk4fvk4ft3n2OXj+FmROKkxMzOzQnBNTTsHwswak2tquuKa\nmjrikRozMzMrBCc1ieeV83H88nH8us+xy8fxsyJxUmNmZl3K+vThN2eeuXp91cqVXLbddtw6ZswG\nHefG0aNZ0NoKwC2f/CTL3nwzd98enzyZaV/5CgCP/eQnPHHddQD8df58rhk2jGtHjOD1Z5/NfZ6e\nlEnf6AV92DKTZmVSa3p9LZP+M733nkz6eSY9nUkPZtKute5vZ/rVugO9xZIlD9Hc/FCtu1HXHL98\n8savqalpI/WkvpRKx9a6C3WtVDoWJs7ocpv+Awey8PHHWbFsGf0GDOD5u+5iq112yXXek26/Pdf+\nHdnvH/9x9fLTU6cy5JRTOPjCCzf6eXrAhcB3a9mBUsRbwLC29Ux6BLg5rX4B+GspYo9MOg34ATB2\nU/Qrk/qUIlZVu72TGjMzW6/Bxx3HM7/+NUNOOoknb7iBD48bx//73e8AWP7220w791z+Mm8eq5Yv\n55CmJj40Zgwrli6lZfx4Xpszh2323JMVS5euPt6Vu+/OGY8+yubbbMPUT3+axS+9xMqlSxk+YQJD\nzz4bgIu32ooREybwp9tvp/8WW3DiL3/JFttt12kfH2hupv+WW/L+j3yE1h//mD79+vHCtGmcOm0a\nT1x/Pa2XXMKq5cvZceRIjrr8cqQ1a4AXtLYy/atfZfmSJWy+7bZ84uqruWKHHfoCDwKlUsR9mfRd\nYEUp4puZ9CxwE/AJ4G3gM6WIZzJpW+D/Am2Z3/mliAcyaSBwKXAAsApoBg4CNs+kVmBeKeKMTLoV\n2BnYDLi4FHEVQCYtBi4GPpnOd0Ip4rVM+kA632DKN718KfXpr6WIi9O+3wYWlCIuXd/vOpOGANuV\nIu5PTScAbf9r+gXwXx3s09zZ+TKpBJwKvAe4tRTRnLbp6jp/AhwJnJNJnwLGAMuBO0sR/9xZ33vV\n9JOkEyWtUjmgbW0/lDRX0vc72P5Tkjq9ODMrPteE5FNN/CSx59ixPHXDDaxYtoyFc+aw48iRq9+f\ncdFF7HbkkZw+Ywan3n03915wAcvfeYfZV1xB/4EDGT9vHh9tbmbBI4+sccw2x06axBkzZ/LZmTNp\nvfhili5aBMDyJUv4m49+lLNmz2anww5jzn//d1V9HfyJT7DfF7/IiPPP59Rp0/jLU08x/8Yb+cwD\nD3Bmayvq04cnr79+jf1WrVjBtHPP5YSbb+aMmTPZZ/x4fnfhhZQiVgKfA67IpCOBY4CJFbsuKkUM\nBS6jnHCQXv+zFDESOBm4KrV/E3i9FDG0FLE/cHcp4hvA26WI4aWIM9J240sRBwIHAhMyaVBqHwg8\nkPb9HfAPqf0S4J7UPhyYB/wMOBMgKwd7LHDdegNYdhpwY8X6TsCLQFs8Xs+kbdbap8PzZdLRwB6l\niIMojwQdkEl/V8V1PliKGAY8BXy6FLF3ur5vd9Xx3jZSMxa4HRhHOYOF8i9tUKx177mkvhFxG3Db\npu2imVnj2W6ffXjjued46oYbGHz88VDxV/Jzd97Jn267jZk//CEAK999l8UvvMBL993H8AkTyvvv\nuy/b7bff6n0q/0p/9Mc/5o9TpwKw+KWXWPT00+x40EH0GzCAwccdB8D2I0bwwm9/262+vzBtGgta\nW7nuwAMhghVLl7LF9tuvsc1f589n4eOPM+XooyGCWLWKgTvuCEAp4olMuo7yv08j0z/sbX6eXm8A\n/jMtHwXslbVnblumUZqjKCcMbcd9o5Mun5dJJ6blnYE9gIeBZaWI36T2R9PxAI4AzkjHDGAxsDiT\nFmbSfsAOQGspYtF6g1U2FvhsF++vc5t7KeL5js6XSccAR6eRKFFOWPYAft/Fda4AbkntbwDvZNJV\nwK8p/w461WuSGpV/4SOBjwF3As2SfglsCTyq8pDfccBSYH/gfklzgQMi4lx1MPwWETO01vBWpOEt\nMysG19TkU01NTZsPjRnDvRdcwGn33MM7Cxe2vxHBCTffzKA99uj6AB08F+3Fe+/lxbvv5vSHHqLf\ngAHcOHr06mmqPv37r96uT9++rFqxoqp+rnvaYO+zzuKwiy7qcptt99mHz9x/f2eb7AssArZfqz06\nWO5DOflZXrlhJnX2PDRVbHM45SRlZCliWSZNp/zvF5SnX9qspP3f8M6OexUwnnKS8bNOtllDJg0F\n+pYiZlU0v0R5Ku3PmdQXeG8p4q9Vnk/Ad0sRawyzrec6l6bkjFLEykw6iPJU1CnAl9Nyh3rT9NMJ\nwB0R8SLwqqRhEXEC8HZEDI+IKWm7nSLikIgopfW2X+YlwD2x5vAbwPioGN5S+/CWmZlVoW1UZZ/P\nf55DmprYdu+913j/gx//OK2XXLJ6/dXZswHY+WMfWz3N89rjj/PanDnrHHvZG28wYNAg+g0YwF+e\neoqXZ7QnWBvr4bC7HXkkf/jFL3j7tdcAWLpoEW++8MIa22yz556889pr/Dmdf9WKFSx84gkAMukk\nYBDl/3T/Vya9t2LXtpGXsZRrbwDuACa0bZBGLwDuAs6paH9fWnw3JQsAW1Oe0lqWSR8GDq44V2cP\nApwG/FM6Zp+K/k0FjqVcw3NHxXmf7OQ4UJ4puWGtttuAs9LyKcDdnezb0fnuAD6fRqrIpL/JpO2q\nvc603/tKES3AV4GhXfS9VyU14ygXXAFMSeuw7i9xCh07ArgCIMoWp/bzJM0GZtA+vGVmBeGamnyq\nrakB2GqnnRj+5S+v8/4h3/wmq5Yv5+qhQ7l63325/1vfAmD/L32J5W+9xaS99+aBiRPZ/oAD1jnm\n7scey6rly5m09978/sIL2fGQQ9bZJq/377UXf/ftb/OLY45h8n77MeWYY1jyyitrbNO3f3/G/OIX\n3Pcv/8Lk/ffnmmHDePnBB8mk9wPfAb5Qivgj5ULfiyt2HZRJjwHnAuentgmUa0cey6THgbbbsi4C\ntsmkuZk0CxiV2q8E5mbStcD/Av0zaV46b1uiBJ2PyJwHjM6kOcAjwF4AaaRoOnBT28hHup6unMK6\nSc1PgW0z6el0rq93tGNH5ytF3AX8D/Bg6t8UyjMwLVVe51bA7SnG99Ee4w71iq9JSKMnLwGvUr6Y\nvpRzkw9KWhwRW6XtJgG3RcQtaf0sYEREfEXSAmDnqBjuU3l469+BoyNimcrDW00Rcd/afWhubq59\nIMxyaNRburOsxVNQOWRZC6W3ZvhrEjrXaWaV7n4a0clUTM1lUh/KtTcnlyL+lNqOB3YvRaxzB1NP\nnG9T6y0jNacA10TE7hExOCJ2A56VdNgGHGP18JukPioPv20NLEoJzdrDW2ZWAE5o8nH8cum1/xnO\npL2Ap4G7KhOMUsSveyih6fB8m1pvKRQ+DVj7lu2bKU9BVT50p6sP0HnAlZK+QLly+kuUh7e+qPLw\n1nzWHN4yMzPrtlLE4Fr3oTOliCeBvy3q+TrTK5KaiFinkjnaM8l/qmj7/FrbTAYmp+VXgRNZ13Eb\nr6dm1tt4+imfLGuhtP7NzOpCb5l+MjMzM8ulVxQK9xIOhJk1pokTXSjcuY1zC5ZtEh6pMTMzs0Jw\nUpP4WRf5OH75OH7d59jl4/hZkTipMTMzs0JwTU07B8LMGpNrarrimpo64pEaMzMzKwQnNYnnlfNx\n/PJx/LrPscvH8bMi8fSTmZmZFYJHaszMzKwQnNSYmZlZITipMTMzs0JwUmNmZmaF0JBJjaQBkh6S\nNEvSPEnfSe2DJN0pab6kOyRtXeu+9laS+khqlfSrtO7YVUnSc5IeS5+/h1Ob41clSVtLmiLpyfTn\nd6TjVx1JQ9LnrjW9viHpK46fFUVDJjURsQwYHRHDgKHAEZIOBb4O/DYi9gTuBr5Rw272dhOAJyrW\nHbvqrQJGRcSwiDgotTl+1bsY+E1E7AXsBzyF41eViPhD+twNB0YAS4BbcfysIBoyqQGIiLfT4gDK\ncVgEnABMTu2TgRNr0LVeT9LOwHHAVRXNjl31xLp/9hy/Kkh6L3BYREwCiIgVEfEGjl93HAX8KSJe\nxPGzgmjYpCZNn8wCXgHuiYgngO0jYgFARLwCfKCWfezFfgRcwJpfLeHYVS+AuyTNlHR2anP8qrM7\nsFDSpDSFcqWkLXD8uuM04H/SsuNnhdCwSU1ErErTTzsDh0kaxbrf/+QnE65F0vHAgoiYTdffieLY\nde7QNPx/HHCOpMPwZ69a/YDhwGUphksoT504fhtAUn9gDDAlNTl+VggNm9S0iYg3gd8ABwALJG0P\nIGkH4NVa9q2XOhQYI+kZ4AbK9UjXAq84dtWJiJfT62vAVOAg/Nmr1kvAixHxSFq/mXKS4/htmE8A\nj0bEwrTu+FkhNGRSI2nbtup+SZsDRwOzgF8Bn0ubnQX8siYd7MUi4sKI2DUiBgNjgbsj4gzgNhy7\n9ZK0haT84CSrAAAAwElEQVQt0/JA4BhgLv7sVSVNkbwoaUhqOhKYh+O3ocZR/k9JG8fPCqEhv/tJ\n0r6Ui+HaCjavjYhM0jbATcAuwPPAqRHxeu162rtJOhz4WkSMceyqI2l3ynebBOWplOsj4nuOX/Uk\n7Ue5SL0/8AwwHuiL41eVVIP0PDA4IhanNn/+rBAaMqkxMzOz4mnI6SczMzMrHic1ZmZmVghOaszM\nzKwQnNSYmZlZITipMTMzs0JwUmNmZmaF4KTGzMzMCuH/A2F6wDCzaakRAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', color='gray', ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "# Get rid of this line, and the minor grid lines disappear\n", "#ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "# Use ax.annotate to add text\n", "ax.annotate(s=\"Median life expectancy, 70 years\", xy=(71,0), color='darkred')\n", "\n", "ax.set_xlim((30,79))" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(30, 79)" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAADRCAYAAAA0X0MlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXW9//HXm0uoaIZpat6SEjMVBVS8HBO85aXQPF4g\nU6M8j1OZobU9pzyngN/JrquLlvrLYyFeMsULpdWo4a1UFB0QRCXL+y9FKVREQS6f3x/7O8xmmBk2\nsxj27LXfz8djHrPWd6/Ld31mw3zm+/2stRURmJmZmdW7XrXugJmZmdn64KTGzMzMCsFJjZmZmRWC\nkxozMzMrBCc1ZmZmVghOaszMzKwQGjKpkdRP0oOSZkqaK+nbqX2ApNslzZN0m6TNa93XnkpSL0nN\nkn6b1h27Kkl6VtKj6f33UGpz/KokaXNJUyQ9kf79Dnf8qiNpUHrfNafvr0v6suNnRdGQSU1ELAVG\nRsQQYDBwqKSDgK8Bf4yIXYE7ga/XsJs93Tjg8Yp1x656K4ERETEkIvZLbY5f9S4Efh8RuwF7AU/i\n+FUlIv6S3ndDgWHAYuBmHD8riIZMagAi4q202I9yHBYCxwGTU/tk4PgadK3Hk7Q9cAxweUWzY1c9\nsea/PcevCpLeDRwcEZMAImJ5RLyO49cVhwN/i4gXcPysIBo2qUnTJzOBl4G7I+JxYOuImA8QES8D\n76tlH3uwHwPnAZWPo3bsqhfAHZJmSDoztTl+1dkZWCBpUppCuUzSJjh+XXEK8Ku07PhZITRsUhMR\nK9P00/bAwZJGsPovadpZb3iSjgXmR8QsyiMOHXHsOnZQGv4/BjhL0sH4vVetPsBQ4OIUw8WUp04c\nv3UgqS8wCpiSmhw/K4SGTWpaRMQbwO+BfYD5krYGkLQN8Eot+9ZDHQSMkvQ0cC3leqSrgJcdu+pE\nxEvp+6vAVGA//N6r1ovACxHxcFq/kXKS4/itm6OBRyJiQVp3/KwQGjKpkbRlS3W/pI2BI4CZwG+B\nz6TNzgB+U5MO9mARcX5E7BgRA4HRwJ0RcRpwC47dWknaRNKmabk/cCQwB7/3qpKmSF6QNCg1HQbM\nxfFbV2Mo/1HSwvGzQlAjfkq3pD0pF8O1FGxeFRGZpC2A64EdgOeAkyPitdr1tGeTdAjw1YgY5dhV\nR9LOlO82CcpTKddExHcdv+pJ2otykXpf4GlgLNAbx68qqQbpOWBgRCxKbX7/WSE0ZFJjZmZmxdOQ\n009mZmZWPE5qzMzMrBCc1JiZmVkhOKkxMzOzQuhT6w70IK6YNrPGNGFC+cva09lDRq2H8UiNmZmZ\nFYKTGjMzMysEJzVJljXVugt1zfHLx/HrOscuH8fPisRJjZmZmRWCnyjcyoEws8bkQuHOuFC4jnik\nxszMzArBIzVJJjkQZtaQDgTub9NW8u+GFh6pqSMeqTEzM7NCqCqpkfRfkh6T9KikZkn7VrnfVEkP\n5OviWs8xUdKh3XkOMzMz6/nW+kRhSfsDxwB7R8RySVsA76piv82BPYDXJX0gIp7N29l2ztErIsav\n7+OamZlZ/almpGZbYEFELAeIiH9GxMtV7HcC8FvgemBMS6OkSZIukfSApL9KGiHpCkmPS/plxXZH\nSLpf0sOSrpO0SWp/RtJ3JT0MnJiOd0J6bV9J90maJWm6pP6SdpJ0bzrOwylJMzMzs4KpJqm5HdhR\n0pOSLpb00SqPPQa4DphCRVKTvCciDgC+Qjnx+X5EfAQYLGmwpPcC/w0cFhH7AI+kbVssiIh9IuL6\nlgZJfYFfA2dHxN7A4cDbwHzg8HSc0cBPq+y/mZmZ1ZG1Tj9FxGJJQ4GDgUOBX0v6WkRc2dE+kt4H\nfCgiHkzr70j6SEQ8nja5JX2fA7xU0T4X+ACwA/AR4D5JAvqyenH+de2cdlfg7xHRnPr9Zjr3u4Cf\nSdobWAHssrZrNjMzs/pT1ad0R/m+73uBeyXNAU4HOkxqgJOBAZKepnw73GaUR2u+kV5fmr6vrFhu\nWe+Tvt8eEad2cPzFHbS3d+vducDLETFYUm/KozdmZmZWMGudfpI0SNKHKpr2Bp5by25jgI9FxMCI\n2BnYhzWnoFadop226cBBkj6Y+rCJpLWNsMwDtpE0LO2zaUpiNgdeStucDvRey3HMzMysDlVTU7Mp\nMDnd0j0L2A2YAKtup/545caSdgJ2jIiHWtrSnU+vpVvB2z7RKdouR8QC4DPAtZIepTz1tGs721fu\nsww4hfJU0yzKtUD9gEuAz0iaCQyi41EeMzMzq2N+onDiJwqbWaPyE4U75ScK1xE/UdjMzMwKoapC\n4Ybwgz9QKh1V617UrSxrcvxycPy6zrHLJ8uaOPDN6RzoT+m2AvBIjZmZmRWCa2paORBm1pgmTCh/\nWXtcU1NHPFJjZmZmheCkJsmyplp3oa45fvk4fl3n2OXj+FmROKkxMzOzQnBNTSsHwswak2tqOuOa\nmjrikRozMzMrBCc1ieeV83H88nH8us6xy8fxsyJxUmNmZmaF4JqaVg6EmTUm19R0xjU1dcQjNWZm\nZlYITmoSzyvn4/jl4/h1nWOXj+NnReKkxszMzArBNTWtHAgza0yuqemMa2rqiEdqzMzMrBCc1CSe\nV87H8cvH8es6xy4fx8+KxNNPycSJEx0IM+vxxo8fv16Pl2VNlN6c7umnjnn6qY5060iNpO0kTZX0\nF0lPSfqxpD7dec503m0lXd/d5zEzq3el0lG17oLZetPd0083ATdFxCBgELAZ8O1uPicR8VJEnNzd\n5zEzM7Oeo9uSGkmHAm9HxJUAUZ7nOhcYK2ljSZmkOZJmSTor7TNU0t2SZkj6g6StU/uZkh6SNFPS\nFEkbpfZJki6UdJ+kv0o6IbXvJGlOxfK9kh5OX/t31zWbmdUb19RYkXTnSM3uwCOVDRGxCHgB+Ddg\nR2BwROwNXJOmpX4K/GtE7AtMonVU58aI2C8ihgBPAp+rOOw2EXEQ8Ange5WnS99fAQ6PiH2A0ekc\nZmZmVjDdXt/SgUOAS9LoDRHxmqTdgT2AOySJcsL197T9YEn/A7wH6A/cVnGsqekYT0h6Xzvn6gv8\nXNLewApgl+64IDOzelQqHQUTpte6G2brRXcmNY8DJ1Y2SNqM8gjNM+1sL+CxNOrS1iRgVEQ8JukM\nyklRi6VtjtHWucDLETFYUm/g7XW4BjMzM6sT3Tb9FBHTgI0lfRogJRQ/pJyg3AZ8PrUhaQAwD9iq\npeZFUh9JH0mH2xR4WVJf4NROTtteUrM58FJaPh3onevCzMwKxDU1ViTdfffTJ4GTJf2Fci3M28D5\nwC+A54HZkmYCYyJiGeWRne9JmgXMBA5Ix/km8BDwJ+CJiuO3fbZMe8+auQT4TDrPIGDx+rgwMzMz\n61n88L3ED98zs3qwvh++B/iznzrnh+/VEX9MgpmZmRVCre5+6nH69x/uJ2vmkGVNjl8Ojl/XOXb5\nZFkTpVp3wmw98UiNmZmZFYJralo5EGbWmFxT0xnX1NQRj9SYmZlZITipSfyshnwcv3wcv65z7PJx\n/KxInNSYmZlZIbimppUDYWaNyTU1nXFNTR3xSI2ZmZkVgpOaxPPK+Th++Th+XefY5eP4WZE4qTEz\nM7NCcE1NKwfCzBqTa2o645qaOuKRGjMzMysEJzWJ55Xzcfzycfy6zrHLx/GzInFSY2ZmZoXgmppW\nDoSZNSbX1HTGNTV1xCM1ZmZmVghOahLPK+fj+OXj+HWdY5eP42dF4umnZOLEiQ6EmTWkQ+66i3tG\njly1Pn78+Br2psfx9FMd8UiNmZmZFcJakxpJKyX9oGL9q5K+Wc3BJZ0j6W1Jm+Xp5FrO8QlJ/9Fd\nxzczM7P6UM1IzVLgBElbdOH4o4E7gBO6sO9aSeodEbdExPe74/hmZmZWP6pJapYDlwFfWZcDSxoI\n9AUuAD5V0X6GpJsl3S7paUlfSqM/zZLul/Selv0l/UHSDEn3SBqU2idJulTSA8D30vF+ml57n6Sb\nJM2SNFPS/qn95nScOZLOXJfrMDMzs/pQTVITwMXAqes4jTQauD4iHgQ+KGmritd2B44H9qOc9LwR\nEUOB6cDpaZvLgC9FxL7AecClFftvFxEHRESpoo8AFwF3R8TewFBgbmofm46zLzBO0oB1uA4zMzOr\nA32q2Sgi3pQ0GRgHvF3lsccAx6XlqcBJwCVp/a6IeAt4S9JC4NbUPgfYU1J/4EBgiqSWyvO+Fcee\n0sE5DwVOS30OYFFqP0fS8Wl5e2AX4KEqr8PMzMzqQFVJTXIh0Az8cm0bStqDcuLwx5STvAt4htak\nZmnF5lGxvjL1qRewMI3etGdxB+1r3JYt6RDKyc7wiFgq6S5go7Vdg5mZmdWXaqafBBARC4HrgWpq\nUsYA4yNiYPraHni/pB2q6VRELAKekXTiqk5Ig6vYdRrwxbR9L0nvBjannCAtlfRhYP9q+mBmZmb1\npdqamhY/BN7b0pZup57Qzj6nADe3abuZcp1N29GUjh5692ngc6no9zFg1Fq2BzgHGClpNvAwsBvQ\nBPSVNBf4NvBAJ/ubmZlZnfIThRM/UdjMGpWfKNwpP1G4jviJwmZmZlYI61IoXGj9+w+nVDqq1t2o\nW1nW5Pjl4Ph1nWOXT5Y1MWJEMMKjM1YAnn5q5UCYWWOaMKH8Ze3x9FMd8fSTmZmZFYKTmiTLmmrd\nhbrm+OXj+HWdY5eP42dF4qTGzMzMCsE1Na0cCDNrTK6p6YxrauqIR2rMzMysEJzUJJ5Xzsfxy8fx\n6zrHLh/Hz4rESY2ZmZkVgmtqWjkQZtaYXFPTGdfU1BGP1JiZmVkhOKlJPK+cj+OXj+PXdY5dPo6f\nFYmTGjMzMysE19S0ciDMrDG5pqYzrqmpIx6pMTMzs0JwUpN4Xjkfxy8fx6/rHLt8HD8rEic1ZmZm\nVgiuqUkmTpzoQJhZQzrkrru4Z+TIWnejauPHj9+Qp3NNTR3ps6FPKGkF8CjlN0oAv46I72/ofpiZ\nmVmxbPCkBlgcEUO7sqOk3hGxYn13yMzMzOpfLWpq2h3Kk/SMpC3S8jBJd6Xl8ZKulPRn4EpJ/ST9\nUtJsSY9IGpG2O0PSVEl3SZon6ZsVxz5V0oOSmiVdKsnDiWZmZgVTi5GajSU10zr99J2ImMKaz4mp\nXN8NOCgi3pH0FWBlRAyWtCtwu6Rd0nb7ArsDS4AZkm4F3gJOAQ6MiBWSLgZOBa7urgs0MzOzDa8W\nSc1bHUw/dTZ68tuIeCct/wtwEUBEzJP0LDAovXZHRLwGIOnGtO0KYBjlJEfARsD83FdhZmZmPUot\nkpqOLKd1OmyjNq8t7mS/ymQo2rS3rF8REf+Vr3tmZmbWk/WYmhrgGcojKgD/2sn+f6I8fYSkQcAO\nwLz02hGS3iNpY+B44D7gTuBESVulfQZI2jHfJZiZmVlPU4uRmo3a1NQ0RcT5wP8BfiHpdeDuTva/\nBLhU0mxgGXBGRCxLtb8PATcB2wFXRUQzgKT/plx70wt4BzgLeL47Ls7MzMxqY4MnNRHRt4P2PwO7\nttM+sc36UuCzHRz+xYg4oZ1jTAGmrHtvzczMrF74YxLMzMysEHpSoXAuETEZmNzV/fv3H06pdNR6\n7FFjybImxy8Hx6/rHLt8sqyJESOCERv2owfMuoU/+6mVA2FmjWnChPKXtccPa60jnn4yMzOzQnBS\nk2RZU627UNccv3wcv65z7PJx/KxInNSYmZlZIbimppUDYWaNyTU1nXFNTR3xSI2ZmZkVgpOaxPPK\n+Th++Th+XefY5eP4WZE4qTEzM7NCcE1NKwfCzBqTa2o645qaOuKRGjMzMysEJzWJ55Xzcfzycfy6\nzrHLx/GzInFSY2ZmZoXgmppWDoSZNSbX1HTGNTV1xCM1ZmZmVghOahLPK+fj+OXj+HWdY5eP42dF\n4qTGzMzMCsE1NUkmORBm1pAOBO5PyyX/TmjLNTV1pK5GaiQdL2mlpEFr2e5WSe/eUP0yMzOz2qur\npAYYDdwKjOlso4j4eES8sWG6ZGZmZj1B3SQ1kvoDw4GzKCc3SNpG0j2SmiXNlnRQan9G0hZp+WZJ\nMyTNkXRmzS7AzMzMulWfWndgHRwH3BYRL0h6RdIQYCTQFBHfkSRgk7Rt5aTw2Ih4TdJGwAxJN0bE\nwg3cdzMzM+tmdTNSQ3nK6fq0PAX4FPAQ8FlJ3wQGR8Ti9HplYdc5kmYB04HtgV02UH/NzMxsA6qL\nkRpJA4BDgT1UvkupNxARcZ6kg4FjgSsk/TAirq7Y75C03/CIWCrpLmCjGlyCmZmZdbN6Gak5Cbgy\nInaOiIERsRPwjKSPAq9ExC+Ay4GhbfbbHFiYEpoPA/tv2G6bmZnZhlIXIzXAKcD32rTdBEwCFkta\nDiwCTkuvtdTUNAGflzQXmAc8sAH6amZmZjXgh+8lfviemTUqP3yvU374Xh2pl+knMzMzs07Vy/RT\n9/vBHyiVjqp1L+pWljU5fjk4fl3n2OWTZU0c+OZ0DpwwodZdMcvN00+tHAgza0wTJpS/rD2efqoj\nnn4yMzOzQnBSk2RZU627UNccv3wcv65z7PJx/KxInNSYmZlZIbimppUDYWaNyTU1nXFNTR3xSI2Z\nmZkVgpOaxPPK+Th++Th+XefY5eP4WZE4qTEzM7NCcE1NKwfCzBqTa2o645qaOuKRGjMzMysEJzWJ\n55Xzcfzycfy6zrHLx/GzInFSY2ZmZoXgmppWDoSZNSbX1HTGNTV1xCM1ZmZmVghOahLPK+fj+OXj\n+HWdY5eP42dF4qTGzMw6lfXqxe9PP33V+soVK7h4q624edSodTrOdSNHMr+5GYCbPv5xlr7xRu6+\nPTZ5MtO+/GUAHv35z3n86qsB+Oe8eVw5ZAhXDRvGa888k/s83SmTvt4D+rBpJs3MpOb0/dVM+lF6\n7V2Z9OtMeiqTHsikHWvd3470qXUHeorFix9k4sQHa92Nuub45ZM3fuPHj19PPakvpdJRte5CXSuV\njoIJ0zvdpm///ix47DGWL11Kn379eO6OO9hshx1ynfeEW2/NtX979vr3f1+1/NTUqQw66ST2P//8\n9X6ebnA+8J1adqAU8SYwpGU9kx4GbkyrnwP+WYrYJZNOAb4PjN4Q/cqkXqWIldVu76TGzMzWauAx\nx/D0737HoBNO4Ilrr+XDY8bw//70JwCWvfUW084+m3/MncvKZcs4YPx4PjRqFMuXLKFp7FhenT2b\nLXbdleVLlqw63mU778xpjzzCxltswdRPfpJFL77IiiVLGDpuHIPPPBOACzfbjGHjxvG3W2+l7yab\ncPxvfsMmW23VYR/vnziRvptuyns/8hGaf/ITevXpw/PTpnHytGk8fs01NF90ESuXLWPb4cM5/JJL\nkFavAZ7f3MxdX/kKyxYvZuMtt+ToK67g0m226Q08AJRKEfdm0neA5aWIb2TSM8D1wNHAW8CnShFP\nZ9KWwP8FWjK/c0sR92dSf+CnwD7ASmAisB+wcSY1A3NLEadl0s3A9sBGwIWliMsBMmkRcCHw8XS+\n40oRr2bS+9L5BlK+6eULqU//LEVcmPb9FjC/FPHTtf2sM2kQsFUp4r7UdBzQ8lfTDcDP2tlnYkfn\ny6QScDLwLuDmUsTEtE1n1/lz4DDgrEz6BDAKWAbcXor4j4763qOmnyQdL2mlygFtafuBpDmSvtfO\n9p+Q1OHFmVnxuSYkn2riJ4ldR4/myWuvZfnSpSyYPZtthw9f9fr0Cy5gp8MO49Tp0zn5zju557zz\nWPb228y69FL69u/P2LlzOXDiROY//PBqx2xx1KRJnDZjBp+eMYPmCy9kycKFACxbvJj3H3ggZ8ya\nxXYHH8zs//3fqvo68Oij2evzn2fYuedy8rRp/OPJJ5l33XV86v77Ob25GfXqxRPXXLPafiuXL2fa\n2Wdz3I03ctqMGewxdix/Ov98ShErgM8Al2bSYcCRwISKXReWIgYDF1NOOEjff1SKGA6cCFye2r8B\nvFaKGFyK2Bu4sxTxdeCtUsTQUsRpabuxpYh9gX2BcZk0ILX3B+5P+/4J+LfUfhFwd2ofCswFfgmc\nDpCVgz0auHqtASw7BbiuYn074AWgJR6vZdIWbfZp93yZdASwSyliP8ojQftk0r9UcZ0PlCKGAE8C\nnyxF7J6u71uddbynjdSMBm4FxlDOYKH8QxsQbe49l9Q7Im4BbtmwXTQzazxb7bEHrz/7LE9eey0D\njz0WKv5Lfvb22/nbLbcw4wc/AGDFO++w6PnnefHeexk6blx5/z33ZKu99lq1T+V/6Y/85Cf8depU\nABa9+CILn3qKbffbjz79+jHwmGMA2HrYMJ7/4x+71Pfnp01jfnMzV++7L0SwfMkSNtl669W2+ee8\neSx47DGmHHEERBArV9J/220BKEU8nklXU/79NDz9Ym/x6/T9WuBHaflwYLesNXPbNI3SHE45YWg5\n7usddPmcTDo+LW8P7AI8BCwtRfw+tT+SjgdwKHBaOmYAi4BFmbQgk/YCtgGaSxEL1xqsstHApzt5\nfY3b3EsRz7V3vkw6EjgijUSJcsKyC/DnTq5zOXBTan8deDuTLgd+R/ln0KEek9So/AMfDnwUuB2Y\nKOk3wKbAIyoP+R0DLAH2Bu6TNAfYJyLOVjvDbxExXW2GtyINb5lZMbimJp9qampafGjUKO457zxO\nuftu3l6woPWFCI678UYG7LJL5wdo57loL9xzDy/ceSenPvggffr147qRI1dNU/Xq23fVdr1692bl\n8uVV9XPN0wa7n3EGB19wQafbbLnHHnzqvvs62mRPYCGwdZv2aGe5F+XkZ1nlhpnU0fPQVLHNIZST\nlOGliKWZdBfl319Qnn5psYLW3+EdHfdyYCzlJOOXHWyzmkwaDPQuRcysaH6R8lTa3zOpN/DuUsQ/\nqzyfgO+UIlYbZlvLdS5JyRmliBWZtB/lqaiTgC+l5Xb1pOmn44DbIuIF4BVJQyLiOOCtiBgaEVPS\ndttFxAERUUrrLT/Mi4C7Y/XhN4CxUTG8pdbhLTMzq0LLqMoen/0sB4wfz5a7777a6x/42Mdovuii\nVeuvzJoFwPYf/eiqaZ5XH3uMV2fPXuPYS19/nX4DBtCnXz/+8eSTvDS9NcFaXw+H3emww/jLDTfw\n1quvArBk4ULeeP751bbZYtddefvVV/l7Ov/K5ctZ8PjjAGTSCcAAyn90/yyT3l2xa8vIy2jKtTcA\ntwHjWjZIoxcAdwBnVbS/Jy2+k5IFgM0pT2ktzaQPA/tXnKujBwFOA76Yjtmron9TgaMo1/DcVnHe\nJzo4DpRnSq5t03YLcEZaPgm4s4N92zvfbcBn00gVmfT+TNqq2utM+72nFNEEfAUY3Enfe1RSM4Zy\nwRXAlLQOa/4Qp9C+Q4FLAaJsUWo/R9IsYDqtw1tmVhCuqcmn2poagM22246hX/rSGq8f8I1vsHLZ\nMq4YPJgr9tyT+775TQD2/sIXWPbmm0zafXfunzCBrffZZ41j7nzUUaxctoxJu+/On88/n20POGCN\nbfJ672678S/f+hY3HHkkk/faiylHHsnil19ebZveffsy6oYbuPc//5PJe+/NlUOG8NIDD5BJ7wW+\nDXyuFPFXyoW+F1bsOiCTHgXOBs5NbeMo1448mkmPAS23ZV0AbJFJczJpJjAitV8GzMmkq4A/AH0z\naW46b0uiBB2PyJwDjMyk2cDDwG4AaaToLuD6lpGPdD2dOYk1k5pfAFtm0lPpXF9rb8f2zleKuAP4\nFfBA6t8UyjMwTVVe52bArSnG99Ia43b1iI9JSKMnLwKvUL6Y3pRzkw9IWhQRm6XtJgG3RMRNaf0M\nYFhEfFnSfGD7qBjuU3l463+AIyJiqcrDW+Mj4t62fZg4cWLtA2GWQ6Pe0p1lTZ6CyiHLmii9Od0f\nk9CxDjOrdPfTsA6mYmouk3pRrr05sRTxt9R2LLBzKWKNO5i643wbWk8ZqTkJuDIido6IgRGxE/CM\npIPX4Rirht8k9VJ5+G1zYGFKaNoOb5lZATihycfxy6XH/jGcSbsBTwF3VCYYpYjfdVNC0+75NrSe\nUih8CtD2lu0bKU9BVT50p7M30DnAZZI+R7ly+guUh7c+r/Lw1jxWH94yMzPrslLEwFr3oSOliCeA\nDxb1fB3pEUlNRKxRyRytmeQXK9o+22abycDktPwKcDxrOmb99dTMehpPP+WTZU2U1r6ZWV3oKdNP\nZmZmZrn0iELhHsKBMLPGNGGCC4U7tn5uwbINwiM1ZmZmVghOahI/6yIfxy8fx6/rHLt8HD8rEic1\nZmZmVgiuqWnlQJhZY3JNTWdcU1NHPFJjZmZmheCkJvG8cj6OXz6OX9c5dvk4flYknn4yMzOzQvBI\njZmZmRWCkxozMzMrBCc1ZmZmVghOaszMzKwQGjKpkdRP0oOSZkqaK+nbqX2ApNslzZN0m6TNa93X\nnkpSL0nNkn6b1h27Kkl6VtKj6f33UGpz/KokaXNJUyQ9kf79Dnf8qiNpUHrfNafvr0v6suNnRdGQ\nSU1ELAVGRsQQYDBwqKSDgK8Bf4yIXYE7ga/XsJs93Tjg8Yp1x656K4ERETEkIvZLbY5f9S4Efh8R\nuwF7AU/i+FUlIv6S3ndDgWHAYuBmHD8riIZMagAi4q202I9yHBYCxwGTU/tk4PgadK3Hk7Q9cAxw\neUWzY1c9sea/PcevCpLeDRwcEZMAImJ5RLyO49cVhwN/i4gXcPysIBo2qUnTJzOBl4G7I+JxYOuI\nmA8QES8D76tlH3uwHwPnsfpHSzh21QvgDkkzJJ2Z2hy/6uwMLJA0KU2hXCZpExy/rjgF+FVadvys\nEBo2qYmIlWn6aXvgYEkjWPPzn/xkwjYkHQvMj4hZdP6ZKI5dxw5Kw//HAGdJOhi/96rVBxgKXJxi\nuJjy1Injtw4k9QVGAVNSk+NnhdCwSU2LiHgD+D2wDzBf0tYAkrYBXqll33qog4BRkp4GrqVcj3QV\n8LJjV52IeCl9fxWYCuyH33vVehF4ISIeTus3Uk5yHL91czTwSEQsSOuOnxVCQyY1krZsqe6XtDFw\nBDAT+C3wmbTZGcBvatLBHiwizo+IHSNiIDAauDMiTgNuwbFbK0mbSNo0LfcHjgTm4PdeVdIUyQuS\nBqWmw4A78637AAAAqklEQVS5OH7ragzlP0paOH5WCA352U+S9qRcDNdSsHlVRGSStgCuB3YAngNO\njojXatfTnk3SIcBXI2KUY1cdSTtTvtskKE+lXBMR33X8qidpL8pF6n2Bp4GxQG8cv6qkGqTngIER\nsSi1+f1nhdCQSY2ZmZkVT0NOP5mZmVnxOKkxMzOzQnBSY2ZmZoXgpMbMzMwKwUmNmZmZFYKTGjMz\nMysEJzVmZmZWCP8fKmC6Lr/qsgUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', color=['gray', 'darkred', 'gray', 'gray', 'gray', 'darkred'], ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "# Get rid of this line, and the minor grid lines disappear\n", "#ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "# Use ax.annotate to add text\n", "ax.annotate(s=\"Median life expectancy, 70 years\", xy=(71,0), color='darkred')\n", "\n", "ax.set_xlim((30,79))" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAADRCAYAAAA0X0MlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8lGW5//HPl0OoaIppap6SEvOEAiqameApD4Xm9gCZ\nGuV+7dpmaI17l3sX8NvZ8emgpv5yW4iHTPFAabXUELVUFF0giEqW51+KUqgIghyu3x9zL9YAay2G\n9biYNc98368XrzXPPc/hnosBLq77mmcUEZiZmZnVux61noCZmZnZu8FJjZmZmRWCkxozMzMrBCc1\nZmZmVghOaszMzKwQnNSYmZlZITRkUiOpj6SHJM2QNEfSd9J4P0l3Spor6Q5Jm9d6rt2VpB6SmiX9\nNm07dlWS9Jykx9L77+E05vhVSdLmkiZJejL9+R3q+FVH0oD0vmtOP9+Q9BXHz4qiIZOaiFgKDI+I\nQcBA4DBJBwNfB/4YEbsBdwPfqOE0u7sxwBMV245d9VYCwyJiUEQckMYcv+pdBPw+InYH9gGewvGr\nSkT8Jb3vBgNDgEXArTh+VhANmdQARMTi9LAP5TgsAI4HJqbxicAJNZhatydpB+BY4MqKYceuemLt\nP3uOXxUkvRc4JCImAETE8oh4A8evM44A/hYRL+L4WUE0bFKTlk9mAK8A90TEE8A2ETEPICJeAd5f\nyzl2Yz8Bzgcqb0ft2FUvgLskTZd0Vhpz/KqzCzBf0oS0hHKFpE1w/DrjVOBX6bHjZ4XQsElNRKxM\ny087AIdIGsbq/0jTxnbDk3QcMC8iZlKuOLTHsWvfwan8fyxwtqRD8HuvWr2AwcClKYaLKC+dOH7r\nQVJvYAQwKQ05flYIDZvUtIiIN4HfA/sB8yRtAyBpW+DVWs6tmzoYGCHpGeB6yv1I1wCvOHbViYiX\n08/XgMnAAfi9V62XgBcj4pG0fTPlJMfxWz/HAI9GxPy07fhZITRkUiNpq5bufkkbA0cCM4DfAp9L\nu50J/KYmE+zGIuKCiNgpIvoDI4G7I+J04DYcu3WStImkTdPjvsBRwGz83qtKWiJ5UdKANHQ4MAfH\nb32NovyfkhaOnxWCGvFbuiXtTbkZrqVh85qIyCRtCdwI7Ag8D5wSEa/Xbqbdm6RDga9FxAjHrjqS\ndqH8aZOgvJRyXUR8z/GrnqR9KDep9waeAUYDPXH8qpJ6kJ4H+kfEwjTm958VQkMmNWZmZlY8Dbn8\nZGZmZsXjpMbMzMwKwUmNmZmZFYKTGjMzMyuEXrWeQDfijmkza0zjxpV/WVs6usmodTOu1JiZmVkh\nOKkxMzOzQnBSk2RZU62nUNccv3wcv85z7PJx/KxInNSYmZlZIfiOwq0cCDNrTG4U7ogbheuIKzVm\nZmZWCK7UJOPHj3cgzKwhHTp1KvcOH77a2NixY2s0m27HlZo64kqNmZmZFUJVSY2k/5L0uKTHJDVL\n2r/K4yZLejDfFNd5jfGSDuvKa5iZmVn3t847Cks6EDgW2DcilkvaEnhPFcdtDuwFvCHpgxHxXN7J\ntnGNHhHhGqmZmZlVVanZDpgfEcsBIuKfEfFKFcedCPwWuBEY1TIoaYKkyyQ9KOmvkoZJukrSE5J+\nWbHfkZIekPSIpBskbZLGn5X0PUmPACel852Ynttf0v2SZkqaJqmvpJ0l3ZfO80hK0szMzKxgqklq\n7gR2kvSUpEslfbzKc48CbgAmUZHUJFtExEHAVyknPj+IiD2AgZIGSnof8N/A4RGxH/Bo2rfF/IjY\nLyJubBmQ1Bv4NXBOROwLHAG8DcwDjkjnGQlcUuX8zczMrI6sc/kpIhZJGgwcAhwG/FrS1yPi6vaO\nkfR+4MMR8VDafkfSHhHxRNrltvRzNvByxfgc4IPAjsAewP2SBPQGHqi4xA1tXHY34O8R0Zzm/Va6\n9nuAn0naF1gB7Lqu12xmZmb1p6pv6Y7y577vA+6TNBs4A2g3qQFOAfpJeobyx+E2o1yt+WZ6fmn6\nubLicct2r/Tzzog4rZ3zL2pnvK2P3p0HvBIRAyX1pFy9MTMzs4JZ5/KTpAGSPlwxtC/w/DoOGwV8\nIiL6R8QuwH6svQS16hJtjE0DDpb0oTSHTSStq8IyF9hW0pB0zKYpidkceDntcwbQcx3nMTMzszpU\nTU/NpsDE9JHumcDuwDhY9XHqT1buLGlnYKeIeLhlLH3y6fX0UfA1b3IXaz6OiPnA54DrJT1Geelp\ntzb2rzxmGXAq5aWmmZR7gfoAlwGfkzQDGED7VR4zMzOrY76jcOI7CptZo/IdhTvkOwrXEd9R2MzM\nzAqhqkbhRtC371BKpaNrPY26lWVNjl8Ojl/nOXb5ZFkTw4YFw1yZsQJwpcbMzMwKwT01rRwIM2tM\n48aVf1lb3FNTR1ypMTMzs0JwUpNkWVOtp1DXHL98HL/Oc+zycfysSJzUmJmZWSG4p6aVA2Fmjck9\nNR1xT00dcaXGzMzMCsFJTeJ15Xwcv3wcv85z7PJx/KxInNSYmZlZIbinppUDYWaNyT01HXFPTR1x\npcbMzMwKwUlN4nXlfBy/fBy/znPs8nH8rEic1JiZmVkhuKemlQNhZo3JPTUdcU9NHXGlxszMzArB\nSU3ideV8HL98HL/Oc+zycfysSLz8lGSSA2Fm3V7pXf47O8uaKL01zctP7fPyUx3p0kqNpO0lTZb0\nF0lPS/qJpF5dec103e0k3djV1zEzq3el0tG1noLZu6arl59uAW6JiAHAAGAz4DtdfE0i4uWIOKWr\nr2NmZmbdR5clNZIOA96OiKsBorzOdR4wWtLGkjJJsyXNlHR2OmawpHskTZf0B0nbpPGzJD0saYak\nSZI2SuMTJF0k6X5Jf5V0YhrfWdLsisf3SXok/Tqwq16zmVm9cU+NFUlXVmr2BB6tHIiIhcCLwL8C\nOwEDI2Jf4Lq0LHUJ8C8RsT8wgdaqzs0RcUBEDAKeAr5QcdptI+Jg4FPA9ysvl36+ChwREfsBI9M1\nzMzMrGC6vL+lHYcCl6XqDRHxuqQ9gb2AuySJcsL197T/QEn/A2wB9AXuqDjX5HSOJyW9v41r9QZ+\nLmlfYAWwa1e8IDOzelQqHQ3jptV6Gmbviq5Map4ATqockLQZ5QrNs23sL+DxVHVZ0wRgREQ8LulM\nyklRi6VrnGNN5wGvRMRAST2Bt9fjNZiZmVmd6LLlp4iYAmws6bMAKaH4EeUE5Q7gi2kMSf2AucDW\nLT0vknpJ2iOdblPgFUm9gdM6uGxbSc3mwMvp8RlAz1wvzMysQNxTY0XS1Z9++jRwiqS/UO6FeRu4\nAPgF8AIwS9IMYFRELKNc2fm+pJnADOCgdJ5vAQ8DfwKerDj/mjdsaOsGDpcBn0vXGQAsejdemJmZ\nmXUvvvle4pvvmVk9eLdvvgf4u5865pvv1RF/TYKZmZkVQq0+/dT9/PAPvrNmDlnW5Pjl4Ph1nmOX\nT5Y1Uar1JMzeJa7UmJmZWSG4p6aVA2Fmjck9NR1xT00dcaXGzMzMCsFJTeJ7NeTj+OXj+HWeY5eP\n42dF4qTGzMzMCsE9Na0cCDNrTO6p6Yh7auqIKzVmZmZWCE5qEq8r5+P45eP4dZ5jl4/jZ0XipMbM\nzMwKwT01rRwIM2tM7qnpiHtq6ogrNWZmZlYITmoSryvn4/jl4/h1nmOXj+NnReKkxszMzArBPTWt\nHAgza0zuqemIe2rqiCs1ZmZmVghOahKvK+fj+OXj+HWeY5eP42dF4uWnZPz48Q6EmTWkQ6dO5d7h\nw1dtjx07toaz6Xa8/FRHXKkxMzOzQlhnUiNppaQfVmx/TdK3qjm5pHMlvS1pszyTXMc1PiXpP7rq\n/GZmZlYfqqnULAVOlLRlJ84/ErgLOLETx66TpJ4RcVtE/KArzm9mZmb1o5qkZjlwBfDV9TmxpP5A\nb+BC4DMV42dKulXSnZKekfTlVP1plvSApC1ajpf0B0nTJd0raUAanyDpckkPAt9P57skPfd+SbdI\nmilphqQD0/it6TyzJZ21Pq/DzMzM6kM1SU0AlwKnrecy0kjgxoh4CPiQpK0rntsTOAE4gHLS82ZE\nDAamAWekfa4AvhwR+wPnA5dXHL99RBwUEaWKOQJcDNwTEfsCg4E5aXx0Os/+wBhJ/dbjdZiZmVkd\n6FXNThHxlqSJwBjg7SrPPQo4Pj2eDJwMXJa2p0bEYmCxpAXA7Wl8NrC3pL7AR4FJklo6z3tXnHtS\nO9c8DDg9zTmAhWn8XEknpMc7ALsCD1f5OszMzKwOVJXUJBcBzcAv17WjpL0oJw5/TDnJe4BnaU1q\nllbsHhXbK9OcegALUvWmLYvaGV/rY9mSDqWc7AyNiKWSpgIbres1mJmZWX2pZvlJABGxALgRqKYn\nZRQwNiL6p187AB+QtGM1k4qIhcCzkk5aNQlpYBWHTgH+Pe3fQ9J7gc0pJ0hLJX0EOLCaOZiZmVl9\nqbanpsWPgPe1jKWPU49r45hTgVvXGLuVcp/NmtWU9m5691ngC6np93FgxDr2BzgXGC5pFvAIsDvQ\nBPSWNAf4DvBgB8ebmZlZnfIdhRPfUdjMGpXvKNwh31G4jviOwmZmZlYI69MoXGh9+w6lVDq61tOo\nW1nW5Pjl4Ph1nmOXT5Y1MWxYMMzVGSsALz+1ciDMrDGNG1f+ZW3x8lMd8fKTmZmZFYKTmiTLmmo9\nhbrm+OXj+HWeY5eP42dF4qTGzMzMCsE9Na0cCDNrTO6p6Yh7auqIKzVmZmZWCE5qEq8r5+P45eP4\ndZ5jl4/jZ0XipMbMzMwKwT01rRwIM2tM7qnpiHtq6ogrNWZmZlYITmoSryvn4/jl4/h1nmOXj+Nn\nReKkxszMzArBPTWtHAgza0zuqemIe2rqiCs1ZmZmVghOahKvK+fj+OXj+HWeY5eP42dF4qTGzMzM\nCsE9Ncn48eMdCDNrSIdOncq9w4fXehpVGzt27Ia8nHtq6kivDX1BSSuAxyi/UQL4dUT8YEPPw8zM\nzIplgyc1wKKIGNyZAyX1jIgV7/aEzMzMrP7VoqemzVKepGclbZkeD5E0NT0eK+lqSX8GrpbUR9Iv\nJc2S9KikYWm/MyVNljRV0lxJ36o492mSHpLULOlySS4nmpmZFUwtKjUbS2qmdfnpuxExibXvE1O5\nvTtwcES8I+mrwMqIGChpN+BOSbum/fYH9gSWANMl3Q4sBk4FPhoRKyRdCpwGXNtVL9DMzMw2vFok\nNYvbWX7qqHry24h4Jz3+GHAxQETMlfQcMCA9d1dEvA4g6ea07wpgCOUkR8BGwLzcr8LMzMy6lVok\nNe1ZTuty2EZrPLeog+Mqk6FYY7xl+6qI+K980zMzM7PurNv01ADPUq6oAPxLB8f/ifLyEZIGADsC\nc9NzR0raQtLGwAnA/cDdwEmStk7H9JO0U76XYGZmZt1NLSo1G63RU9MUERcA/wf4haQ3gHs6OP4y\n4HJJs4BlwJkRsSz1/j4M3AJsD1wTEc0Akv6bcu9ND+Ad4Gzgha54cWZmZlYbGzypiYje7Yz/Gdit\njfHxa2wvBT7fzulfiogT2zjHJGDS+s/WzMzM6oW/JsHMzMwKoTs1CucSEROBiZ09vm/foZRKR7+L\nM2osWdbk+OXg+HWeY5dPljUxbFgwbMN+9YBZl/B3P7VyIMysMY0bV/5lbfHNWuuIl5/MzMysEJzU\nJFnWVOsp1DXHLx/Hr/Mcu3wcPysSJzVmZmZWCO6paeVAmFljck9NR9xTU0dcqTEzM7NCcFKTeF05\nH8cvH8ev8xy7fBw/KxInNWZmZlYI7qlp5UCYWWNyT01H3FNTR1ypMTMzs0JwUpN4XTkfxy8fx6/z\nHLt8HD8rEic1ZmZmVgjuqWnlQJhZY3JPTUfcU1NHXKkxMzOzQnBSk3hdOR/HLx/Hr/Mcu3wcPysS\nJzVmZmZWCO6pScaPH+9AmFlDOnTqVO4dPhyAsWPH1ng23Y57aupIXVVqJJ0gaaWkAevY73ZJ791Q\n8zIzM7Paq6ukBhgJ3A6M6miniPhkRLy5YaZkZmZm3UHdJDWS+gJDgbMpJzdI2lbSvZKaJc2SdHAa\nf1bSlunxrZKmS5ot6ayavQAzMzPrUr1qPYH1cDxwR0S8KOlVSYOA4UBTRHxXkoBN0r6V/TGjI+J1\nSRsB0yXdHBELNvDczczMrIvVTaWG8pLTjenxJOAzwMPA5yV9CxgYEYvS85WNXedKmglMA3YAdt1A\n8zUzM7MNqC4qNZL6AYcBe0kKoCcQEXG+pEOA44CrJP0oIq6tOO7QdNzQiFgqaSqwUQ1egpmZmXWx\neqnUnAxcHRG7RET/iNgZeFbSx4FXI+IXwJXA4DWO2xxYkBKajwAHbthpm5mZ2YZSF5Ua4FTg+2uM\n3QJMABZJWg4sBE5Pz7X01DQBX5Q0B5gLPLgB5mpmZmY1UBdJTUQc3sbYJcAl7ezfv2Lz2K6al5mZ\nmXUf9bL8ZGZmZtahuqjUbAh9+w6lVDq61tOoW1nW5Pjl4Ph1nmOXT5Y1MWxYMMxfj2AF4O9+auVA\nmFljGjeu/Mva4u9+qiNefjIzM7NCcFKTZFlTradQ1xy/fBy/znPs8nH8rEic1JiZmVkhuKemlQNh\nZo3JPTUdcU9NHXGlxszMzArBSU3ideV8HL98HL/Oc+zycfysSJzUmJmZWSG4p6aVA2Fmjck9NR1x\nT00dcaXGzMzMCsFJTeJ15Xwcv3wcv85z7PJx/KxInNSYmZlZIbinppUDYWaNyT01HXFPTR1xpcbM\nzMwKwUlN4nXlfBy/fBy/znPs8nH8rEic1JiZWYeyHj34/RlnrNpeuWIFl269NbeOGLFe57lh+HDm\nNTcDcMsnP8nSN9/MPbfHJ05kyle+AsBjP/85T1x7LQD/nDuXqwcN4pohQ3j92WdzX6crZdI3usEc\nNs2kGZnUnH6+lkk/Ts+9J5N+nUlPZ9KDmbRTrefbnl61nkC3cf4xZOfXehL1zfHLJ2/8Sg3aH1cq\nHV3rKdS1UuloGDetw3169+3L/McfZ/nSpfTq04fn77qLzXbcMdd1T7z99lzHt2Wff/u3VY+fnjyZ\nASefzIEXXPCuX6cLXAB8t5YTKEW8BQxq2c6kR4Cb0+YXgH+WInbNpFOBHwAjN8S8MqlHKWJltfs7\nqTEzs3Xqf+yxPPO73zHgxBN58vrr+cioUfy/P/0JgGWLFzPlnHP4x5w5rFy2jIPGjuXDI0awfMkS\nmkaP5rVZs9hyt91YvmTJqvNdscsunP7oo2y85ZZM/vSnWfjSS6xYsoTBY8Yw8KyzALhos80YMmYM\nf7v9dnpvsgkn/OY3bLL11u3O8YHx4+m96aa8b489aP7pT+nRqxcvTJnCKVOm8MR119F88cWsXLaM\n7YYO5YjLLkNavQd4XnMzU7/6VZYtWsTGW23FMVddxeXbbtsTeBAolSLuy6TvAstLEd/MpGeBG4Fj\ngMXAZ0oRz2TSVsD/BVoyv/NKEQ9kUl/gEmA/YCUwHjgA2DiTmoE5pYjTM+lWYAdgI+CiUsSVAJm0\nELgI+GS63vGliNcy6f3pev0pf+jlS2lO/yxFXJSO/TYwrxRxybp+rzNpALB1KeL+NHQ8MDY9vgn4\nWRvHjG/veplUAk4B3gPcWooYn/bp6HX+HDgcODuTPgWMAJYBd5Yi/qO9uXer5SdJJ0haqXJAW8Z+\nKGm2pO+3sf+nJLX74sys+NwTkk818ZPEbiNH8tT117N86VLmz5rFdkOHrnp+2oUXsvPhh3PatGmc\ncvfd3Hv++Sx7+21mXn45vfv2ZfScOXx0/HjmPfLIaudscfSECZw+fTqfnT6d5osuYsmCBQAsW7SI\nD3z0o5w5cybbH3IIs/73f6uaa/9jjmGfL36RIeedxylTpvCPp55i7g038JkHHuCM5mbUowdPXnfd\nasetXL6cKeecw/E338zp06ez1+jR/OmCCyhFrAA+B1yeSYcDRwHjKg5dUIoYCFxKOeEg/fxxKWIo\ncBJwZRr/JvB6KWJgKWJf4O5SxDeAxaWIwaWI09N+o0sR+wP7A2MyqV8a7ws8kI79E/Cvafxi4J40\nPhiYA/wSOAMgKwd7JHDtOgNYdipwQ8X29sCLQEs8Xs+kLdc4ps3rZdKRwK6liAMoV4L2y6SPVfE6\nHyxFDAKeAj5ditgzvb5vdzTx7lapGQncDoyinMFC+TetX6zx2XNJPSPiNuC2DTtFM7PGs/Vee/HG\nc8/x1PXX0/+446Dir+Tn7ryTv912G9N/+EMAVrzzDgtfeIGX7ruPwWPGlI/fe2+23mefVcdU/pX+\n6E9/yl8nTwZg4UsvseDpp9nugAPo1acP/Y89FoBthgzhhT/+sVNzf2HKFOY1N3Pt/vtDBMuXLGGT\nbbZZbZ9/zp3L/McfZ9KRR0IEsXIlfbfbDoBSxBOZdC3lf5+Gpn/YW/w6/bwe+HF6fASwe9aauW2a\nqjRHUE4YWs77RjtTPjeTTkiPdwB2BR4GlpYifp/GH03nAzgMOD2dM4CFwMJMmp9J+wDbAs2liAXr\nDFbZSOCzHTy/1sfcSxHPt3W9TDoKODJVokQ5YdkV+HMHr3M5cEsafwN4O5OuBH5H+fegXd0mqVH5\nN3wo8HHgTmC8pN8AmwKPqlzyOxZYAuwL3C9pNrBfRJyjNspvETFNa5S3IpW3zKwY3FOTTzU9NS0+\nPGIE955/Pqfecw9vz5/f+kQEx998M/123bXjE7TR9/Xivffy4t13c9pDD9GrTx9uGD581TJVj969\nV+3Xo2dPVi5fXtU8175ssOeZZ3LIhRd2uM9We+3FZ+6/v71d9gYWANusMR5tPO5BOflZVrljJrXX\n+KaKfQ6lnKQMLUUszaSplP/9gvLyS4sVtP4b3t55rwRGU04yftnOPqvJpIFAz1LEjIrhlygvpf09\nk3oC7y1F/LPK6wn4bilitTLbOl7nkpScUYpYkUkHUF6KOhn4cnrcpu60/HQ8cEdEvAi8KmlQRBwP\nLI6IwRExKe23fUQcFBGltN3ym3kxcE+sXn4DGB0V5S21lrfMzKwKLVWVvT7/eQ4aO5at9txztec/\n+IlP0Hzxxau2X505E4AdPv7xVcs8rz3+OK/NmrXWuZe+8QZ9+vWjV58+/OOpp3h5WmuC9W7dHHbn\nww/nLzfdxOLXXgNgyYIFvPnCC6vts+Vuu/H2a6/x93T9lcuXM/+JJwDIpBOBfpT/0/2zTHpvxaEt\nlZeRlHtvAO4AxrTskKoXAHcBZ1eMb5EevpOSBYDNKS9pLc2kjwAHVlyrvRsBTgH+PZ2zR8X8JgNH\nU+7huaPiuk+2cx4or5Rcv8bYbcCZ6fHJwN3tHNvW9e4APp8qVWTSBzJp62pfZzpui1JEE/BVYGAH\nc+9WSc0oyg1XAJPSNqz9mziJth0GXA4QZQvT+LmSZgLTaC1vmVlBuKcmn2p7agA22357Bn/5y2s9\nf9A3v8nKZcu4auBArtp7b+7/1rcA2PdLX2LZW28xYc89eWDcOLbZb7+1zrnL0UezctkyJuy5J3++\n4AK2O+igtfbJ6327787Hvv1tbjrqKCbusw+TjjqKRa+8sto+PXv3ZsRNN3Hff/4nE/fdl6sHDeLl\nBx8kk94HfAf4Qinir5QbfS+qOLRfJj0GnAOcl8bGUO4deSyTHgdaPpZ1IbBlJs3OpBnAsDR+BTA7\nk64B/gD0zqQ56botiRK0X5E5FxieSbOAR4DdAVKlaCpwY0vlI72ejpzM2knNL4CtMunpdK2vt3Vg\nW9crRdwF/Ap4MM1vEuUVmKYqX+dmwO0pxvfRGuM2dYuvSUjVk5eAVym/mJ6Uc5MPSloYEZul/SYA\nt0XELWn7TGBIRHxF0jxgh6go96lc3vof4MiIWKpyeWtsRNy35hw6KAua1YVG/Uh3ljV5CSqHLGui\n9NY0f01C+9rNrNKnn4a0sxRTc5nUg3LvzUmliL+lseOAXUoRa32CqSuut6F1l0rNycDVEbFLRPSP\niJ2BZyUdsh7nWFV+k9RD5fLb5sCClNCsWd4yswJwQpOP45dLt/2fRCbtDjwN3FWZYJQiftdFCU2b\n19vQukuj8KnAmh/ZvpnyElTlTXc6egOdC1wh6QuUO6e/RLm89UWVy1tzWb28ZWZm1mmliP61nkN7\nShFPAh8q6vXa0y2Wn7oDLz9ZvfPyk3WGl5/Wyd/SXUe6y/KTmZmZWS6u1LRyIMysMY0b50pN+1yp\nqSOu1JiZmVkhOKlJfK+LfBy/fBy/znPs8nH8rEic1JiZmVkhuKemlQNhZo3JPTUdcU9NHXGlxszM\nzArBSU3ideV8HL98HL/Oc+zycfysSLz8ZGZmZoXgSo2ZmZkVgpMaMzMzKwQnNWZmZlYITmrMzMys\nEBoyqZHUR9JDkmZImiPpO2m8n6Q7Jc2VdIekzWs91+5KUg9JzZJ+m7YduypJek7SY+n993Aac/yq\nJGlzSZMkPZn+/A51/KojaUB63zWnn29I+orjZ0XRkElNRCwFhkfEIGAgcJikg4GvA3+MiN2Au4Fv\n1HCa3d0Y4ImKbceueiuBYRExKCIOSGOOX/UuAn4fEbsD+wBP4fhVJSL+kt53g4EhwCLgVhw/K4iG\nTGoAImJxetiHchwWAMcDE9P4ROCEGkyt25O0A3AscGXFsGNXPbH2nz3HrwqS3gscEhETACJieUS8\ngePXGUcAf4uIF3H8rCAaNqlJyyczgFeAeyLiCWCbiJgHEBGvAO+v5Ry7sZ8A57P6V0s4dtUL4C5J\n0yWdlcYcv+rsAsyXNCEtoVwhaRMcv844FfhVeuz4WSE0bFITESvT8tMOwCGShrH29z/5zoRrkHQc\nMC8iZtLxd6I4du07OJX/jwXOlnQIfu9VqxcwGLg0xXAR5aUTx289SOoNjAAmpSHHzwqhYZOaFhHx\nJvB7YD9gnqRtACRtC7xay7l1UwcDIyQ9A1xPuR/pGuAVx646EfFy+vkaMBk4AL/3qvUS8GJEPJK2\nb6ac5Dh+6+cY4NGImJ+2HT8rhIZMaiRt1dLdL2lj4EhgBvBb4HNptzOB39Rkgt1YRFwQETtFRH9g\nJHB3RJwO3IZjt06SNpG0aXrcFzgKmI3fe1VJSyQvShqQhg4H5uD4ra9RlP9T0sLxs0JoyO9+krQ3\n5Wa4loZP7YloAAAAkUlEQVTNayIik7QlcCOwI/A8cEpEvF67mXZvkg4FvhYRIxy76kjahfKnTYLy\nUsp1EfE9x696kvah3KTeG3gGGA30xPGrSupBeh7oHxEL05jff1YIDZnUmJmZWfE05PKTmZmZFY+T\nGjMzMysEJzVmZmZWCE5qzMzMrBCc1JiZmVkhOKkxMzOzQnBSY2ZmZoXw/wEKfrQjJU7fbgAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize the plot first, take the ax\n", "fig, ax = plt.subplots(figsize=(7,3))\n", "\n", "# Pass the ax to the .plot function\n", "df.groupby(\"Continent\")['life_expectancy'].median().plot(kind='barh', color=['darkred', 'gray', 'gray', 'gray', 'darkred', 'gray'], ax=ax, linewidth=0, width=0.4)\n", "ax.set_ylabel(\"\")\n", "\n", "# ax.xaxis.grid takes all the same options as ax.grid\n", "# but only applies to one of the axes\n", "ax.xaxis.grid(which=\"major\", color='MidnightBlue', linestyle=':', linewidth=1)\n", "# Turn on a minor grid, a smaller grid, a more frequent grid\n", "ax.xaxis.grid(which=\"minor\", color='darkred', linestyle=\":\", linewidth=0.5)\n", "# Get rid of this line, and the minor grid lines disappear\n", "#ax.minorticks_on()\n", "\n", "ax.set_axisbelow(True)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labeltop='on', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "plt.tick_params(\n", " which='minor', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labeltop='off', # top label is on\n", " labelbottom='off') # bottom label is on\n", "\n", "median = df['life_expectancy'].median()\n", "ax.plot([median, median], [-1, 10], c='red', linestyle=\"-\", linewidth=0.5)\n", "\n", "# Use ax.annotate to add text\n", "ax.annotate(s=\"Median life expectancy, 70 years\", xy=(71,0), color='darkred')\n", "\n", "ax.set_xlim((30,79))\n", "plt.savefig(\"life.pdf\", transparent=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# FiveThirtyEight scatterplot of countries' GDP and life expectancy" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt81PWd7/HXJySTDIRwsRFt1QTxbkXB0ta1XYMC3dqt\nenqR5eyeaqUeXLVyPG0VtR5va1fdbV22VvFWYbsVdY+21d22QSqptT2WVPDSBqi3IFqFqVdUICF8\nzh/f35BJMklmkrmG9/PxyCMzv8zvN58M5Pv5fe/m7oiIiGSiotgBiIhI+VDSEBGRjClpiIhIxpQ0\nREQkY0oaIiKSMSUNERHJWEGShpktNLNnoq8LomMTzGyFmW0ws2YzG1eIWEREZOjynjTM7EhgPvAR\n4Bjgr81sCrAIWOnuhwKPAJfkOxYRERmeQtQ0Dgd+6+473L0LeBT4HHAKsCx6zTLgtALEIiIiw1CI\npPF74JNRc9Ro4GRgf2CSu28GcPfXgL0LEIuIiAxDZb7fwN3Xm9n1wMPAu8BaoCvdS/Mdi4iIDE/e\nkwaAu98F3AVgZtcCm4DNZjbJ3Teb2T7AlnTnmpmSiYjIELi75fqahRo9VR99PwD4b8DdwIPAmdFL\nzgB+0t/57l7yX1dccUXRYxgpcZZDjIpTcZb6V74UpKYB3G9mE4FO4Fx3fydqsrrPzM4CNgKnFygW\nEREZokI1T/1lmmNvALMK8f4iIpIbmhGeI01NTcUOISPlEGc5xAiKM9cUZ3mwfLZ95YKZeanHKCJS\naswML9eOcBERGRmUNEREJGNKGiIikjElDRERyZiShoiIZExJQ0REMqakISIiGVPSEBGRjClpiIhI\nxpQ0REQkY0oaIiKSMSUNERHJmJKGiIhkTElDREQypqQhIiIZU9IQEZGMKWmIiEjGlDRERCRjShoi\nIpIxJQ0REcmYkoaIiGRMSUNERDKmpCEiIhlT0hAZQCKRoLW1lUQiUexQREqCkoZIP5Yvv5eGhsOY\nPfscGhoOY/nye4sdkkjRmbsXO4YBmZmXeowy8iQSCRoaDmPbtlXAVOBp4vGZbNy4nvr6+mKHJzIo\nM8PdLdfXLUhNw8wuMbM/mNnTZvZDM4uZ2QQzW2FmG8ys2czGFSIWkUy0t7cTizUSEgbAVKqqGmhv\nby9eUCIlIO9Jw8wagLOBae4+FagE5gGLgJXufijwCHBJvmMRyVRjYyMdHe3A09GRp+ns3EhjYyOg\nvg7ZcxWipvEO0AGMMbNKIA68ApwKLItesww4rQCxiGSkvr6eO++8mXh8JrW1R1Fd/Umuvvoy2tvb\nufXW23Pa16EEJOWkIH0aZnY28B3gfWCFu/8PM3vT3SekvOYNd5+Y5lz1aUjeJRIJ2tvbaWxs7NFn\nceutt7Nw4UWY7cf27c9TXV3Pjh0J4HF693UAaa8xkOXL72X+/HOJxULN5s47b2bevLm5/wVlj5Ov\nPg3cPa9fwIFAGzARGAU8APwt8Eav173ez/kukoktW7b46tWrfcuWLVmdd/fd93g8PtHHjZvu8fhE\nv/vue3ZfLx6f6PCUg0ffxzscGT0PX3V10/yaa65Ne42B4kp3/Xh8Ytbxi6QTlZ05L9Mrc56F+voI\n8Gt3fwPAzH4E/AWw2cwmuftmM9sH2NLfBa688srdj5uammhqasprwFJ+hnrHnkgkmD//XLZtW8W2\nbaHmMH/+TGbNOnF3Z3g4DqFm0Qi8QOjrCK/v6HiRb33r22mvsXLlI/3Gle76yc52jdCSbLW0tNDS\n0pL/N8pHJkr9Ao4GngFqAAOWAucB1wMXR6+5GLiun/NzmXylzKW7ax/OHfvq1at93LjpfWoOyfeI\nxcb1qmmMc7jcIe5jxx7j8fhEv+aaa9Neo7m5ecC4VNOQfCJPNY28d4S7+1PAvwFPAE9FieO2KGnM\nNrMNwEnAdfmORcpL7w7idJPtEokEP/3pT6msbGAow2MHGyXl3gU0AdOj79upqfkuS5Ys5he/uI2N\nG9ezYMHZaa8BDDhsN7Wzva5uOvH4TO688+ai1zLUMS8DykcmyuUXqmnskXr3MyxZclufu/JYbJzX\n1Iz3sWOPcogP+Y49+V51ddN69Ed010K2OKx22OJjxkz15ubmjK7R1tbm1dXjU+Ja5dXVdd7W1tbj\n3Ez7YobaZ5ON/vp3pPyQp5pG0ZPCoAEqaexx0jXbVFfX+dix03o0AcEUhx9Gj6/v0WSUbWE3cLPX\nqihprPJ4fKK3tbX127GdPJ4sfOPxyQ5xr6o6wCHu8fhRQ4qvEIW5mstGFiUN6Vch7kALKV0/Q23t\nh3vdtT/lMDqqBYTX1NQc5kuXLh3S59DfZ3j++QujWswhDnGfM+fTHo9P9LFjp3l19XhfsuS2tNfq\nWfj+aFg1oUIV5gP170huFPJvVUlD0hqJzQn9FZLJJqq6umleUzPBoSqqaWyJXhvv0/STieyG3Maj\nmkf3896Jo2/huzpKOkMrjAtVmKumkV+F/ltV0pA+RvIf+ZIlt3l1dZ3X1n64T0G+evVqX7To0qim\ncVD0vdZrahqzLkgH+gzTFdZwcJQEks+nenV13SCjuVaVRU3Dvf/+HRmeYvytKmlIH0O5Ay2Hpqxk\nwdVfE1B/k+5qasZn/XsNNuR28JrGRK+t/XCfz7x30jv//AuGVRgXsjAvh/8j5aYYTX9KGnu4XMxP\nKPWmrC1btnhzc7PX1Iwf8HdKXwOY4tdcc+2Q3nOgz7B3YX3WWWdHiWOqw0SH6/t0jveX9IZbGGd7\nvgr//BjK56qahpJGQQ1U2Gd6B1rqTVnJ32PMmKOj5qZ7+r0jy/XvMthn2LuQ6FuLWNjj36eqqrbo\nn3Op3yCUq+F8roVu+lPS2ENlUkBmcudTrJExmcS2ZcuWqHaR2qk9YffjdIVurv8Ah3oX39bWlqYJ\nq+eorkKPQCr1G4RylYvPVaOnlDTyLleFfTEKkkzvyq655tqooJ0eNfnc4zDFx4w5ZNDaU+ofYDGa\nY/prKuueP1L4ArsUh86OhKayUvxcB6KksYfKZWFf6M7UTOJO39k8wWtqxntzc3PWs7oL3RyTLv7k\nTPVijUAqtZrGSGkqK7XPdTBKGnuwXBb2hbrjy/SuLBed2sX+Y07371PsO+tSGTpb7H+bXCuVzzUT\nShp7uP4KoWIXTv0ZTk0j20KlFJoNSvHfoRRiKoV/m1wrhc81E0oae7D+/pMOVu0vZqK5++57olFE\nox2meCw2rt+7suHevY20u9mRRP82xaOksYfKZomLdPMLep9X+IXvtjj8cNCJd9kksnSvLadmgz2N\n/m2KQ0ljhBt48t4qT11ltb8lLgaayZycgJZtYT4U+WySGCjplUuzwZ5I/zaFp6QxgvVXEK5evdrj\n8QOjYajTHcZ7LLbv7lFF/dU0+iu0ly5dGh2/J+Wao4c0k3og+WqSKKWmDhWCUuqUNMpQphPb+isI\n29ravHuhu3s8THib4jU1E/zuu+/pt9o/UE0jTKKbkPZnuSwE89EkUSqdqiNlCKmMbEoaZSbTgmWg\ngjDUNI6KmpLSJ5bBOsl7F9pf/OJcD5PPut+vpmayV1eP7xFrLu6kc303Xgo1jVKIQSQTShplJJuC\nJd0SGqkJIfzsaoejehT0Y8ceM+iGQ+lmTIfr9dyCtPey3bHYOK+urvMxYw71mprxGc/ILoRid6oW\no7ajpjAZCiWNMpJNwXL33fd4LDbOk/tCVFXV7i4Iu3eNmxJ9v353wR62Ns1u69DuuJJ9GtMcqr26\n+sgescI+DuOiPo8JXlVVm/Vw33wqZiFa6JqGmsJkqJQ0ykguJrb17M/oThRjxhzZJ4FkWmi1tbV5\ndXVdVLsIo6eqq+t6xbAqzfuO9ubm5qx/v5GqULWdPf1zluHJV9KoRHKuvr6eO++8mfnzZ1JV1UBn\n50buvPNm6uvre7yuvb2dWKyRbdumRkemUlXVQHt7O21tbcD+QPfPYD/+5m8+zn33VbB160V9zul9\nfYBEIkF7eztr1jzJhRcuoqKiATiZmppJmL3DnXfeBrA71h07nmfHjg/1et99M447XQzZSMbb2NiY\n0bWyfX0uzJs3l1mzTsz7++bzcxYZsnxkolx+UYY1jaTBmlHCnX/6DYf6q2k89NBDKbWFge8+k3fE\ntbXH9KmdVFeP77GfdjLWtra2qLmsZx9H+vkjubkDTr53cg/wTJtiRnrTjWoaMhyoeaq89U4gyQIv\nHp/sEPd4/MN9Cr7zz78gKuwPdoj7nDmfjs45yiHuNTWN/RaW6VePnejJfR4G6rzt3hBpar+jqXLV\nRNO9y91RfZLkQAXknlKgFrvjX8qXkkYZ631HnLyj7p6ZfYvHYrU97vyT2trafOnSpf7YY4/1KSRj\nsXH+2GOPpX3PsEfFQb06uKd6mFk+eAGbmiQGWsqkubk5qyXMe79H9++02uHojAYPuJfOnI1C0Ogp\nGQoljTKV7o64unp8dGed+czs9EuIH+zV1XV97j5DE1OtQ12f5i0IczIyvWMd6I5+uM1DPX+n/uei\nZBuXiChplK3uCXrdhX119aFeWRn3MKw1s7kczc3N/TQ3da9HtWXLFr/mmmujfpJDHGqjRDE1eu3l\nXl1dl7ZGM1D86e7o08WTbaHdt+C/3sNQ4mOy6tNQ041IX0oaZapvh3YoGGOxwz0sG37P7sJ47Nhj\ndjdDJL8vWXKbV1fX+dixR3lVVa1XVdVFfRzJbVG3+Jgxh/iiRZdGE/dG90osYx3GOKTv/xis6aO/\nO/rm5uacNA/1LviXLLltSHt1q4Yh0pOSRpkKNY3JUSH/Ye87ImqCJ2eCQ9w/+9n/trvJJySImIfZ\n4OMcvuY1NeOjpqelDudGxw+Krnt+1NTlKV8HeyxW69dcc+2QJ+j1tzNdrpqHVPCL5F7ZJg3gEGAt\nsCb6/jZwATABWAFsAJqBcf2cn+OPsrB6Lm++NGoqSi3Up0SFfmg+GiypVFTs5UccMdWhJk2tYqL3\nXCKk79DavnFl3oegPSxEykfZJo0ebwYVwJ8Is9auBy6Kjl8MXNfPOTn8GIuje75EuprGaId7HZqj\nr0N6JZVpHkYWeZRwqqOvq6Ofpb52qsO1nlwNNzlMN51cjT5SLUGkNOUraVi4dmGY2Rzgcnf/pJmt\nB05w981mtg/Q4u6HpTnHCxljvqxbt46VK1fy2GO/5r77HgIOBTYC24AaYDLwPNABPE6Yif000ESo\njL0KzASqgK3AFOC5Xq/9ODAJeBO4CPgL4GTa2p7g8MMP7xFPIpGgoeEwtm1btfv8eHwmGzeu12xj\nkRHAzHB3y/V1C72MyFzg7ujxJHffDODur5nZ3gWOpWCWL7+XM844m87OLuCDwC7geOCHhIK+he6C\n/zjgBGAvQqWsC5gFvAycB/wz3Ynihuj8DwJvED7eR4BngWTBvx+rV6/ukzQyXepERCRVwWoaZlZF\nKAUPd/c/m9kb7j4x5eevu/teac7zK664YvfzpqYmmpqaChFyTiQSCQ444BC2bzd6JoePU1OzN9u3\nVxEK+QTQDsylqmoL7rBz538SEssPCInhT4QaybqUd5hMSCgPE2oZx9K79pGuppEaX6HXbhKR3Gtp\naaGlpWX386uuuiovNY1s+iMeAD4DVAylHQw4Bfh5yvN1hNoGwD7Aun7OG17DXpGtXr3ax4w5tM+o\npljscK+sHBP1aVwfdWIf7RD3Cy5Y6GPHpvZXtHl19QF+yimn9ekTqamZsHuGeegziUV9GtMcJvio\nUaPV3yCyByJPfRoVWeSXm4H/DjxrZteZ2aFZ5qd5wPKU5w8CZ0aPzwB+kuX1ykJjYyNdXZuBFwl3\n/gBP09HRHtUk/gW4ElgFPAk8zs03f5+tW9elvL6THTsSrFr1PJWVFVRVfZKxY6cRj8/k+9+/hQUL\nzmbjxvXcdNPXGTv2SEIfyK3ABsaMOZT29vYC/sYiMpJl3TxlZuMICeAyYBNwO/Dv7t45wDmjCb2+\nB7r71ujYROA+wkiqjcDp7v5WmnM92xhLTejT+AqdnbuAfamqSlBZuRfbtr0AtAILCCOSkw4mNDlV\nAwcQOryvJHRuP01NzQn85Cf3Mm3atB5NSpl2bqtJSmTky1dHeDY1DcxsL0Lt4CuEOReLgemEBvV+\nufv77l6fTBjRsTfcfZa7H+ruc9IljJFi3ry5vPLKCzQ3/4jm5pt56qnHcX+TMCagltCX0V0LCZ3a\nPwMMOJuwn0X3/hmx2GQmTJjQp8BPdm7H4zOpq5tOPD6zT+f28uX30tBwGLNnn0NDw2EsX35vHn9z\nERlpMq5pmNmPCONEfwAsdfdXU372O3f/SF4CHAE1jd6WL7+XM89cQEdHPfAKZl2MGhVj5859gdeB\n64BjgLOALwGXAz8nDL8dfGhsfzUJDbMV2XOUwpDbf3X3Vel+kK+EMRIlEgnmzz+Xjo5HCWMB/h73\nvTDbwqhRm+jq+gawiNBq9yxwBbHYgXR0pO62N/DQ2Pr6+rQ/105wIjJc2SSNI8xsbbIZycwmAPPc\n/eb8hDYyrV27loqK/QlNTjMJg9LG0Nn5HnAy8E/Ab6OfHwq00NERagXuJ7BmzW/6HT47mMbGRjo6\n2glNYOGanZ0baWxsHOZvJSJ7imz6NM5O7Xfw0Ch/du5DGlnWrVvHsmXLWLduHcuX38upp87lvfee\nJXQDjQc+D5wTff9A9DWV0M+xH6l7dVdU7Me777475Fgy6fOQ/EokErS2tpJIJIodisiQZFPTGGUp\nHQxmNgqI5SeskeGrX/1f3HTTbYSmpk1UVDi7dv0M+A3wPwkzw3svA+LR41rCqKnuWsG2bc9TW1s7\nrJjmzZvLrFknavRUESxffi/z559LLBZqfHfeeTPz5s0tdlgiWcmmI/yfgAbCBAAI40Q3ufvX8hRb\n8n3LsiN83bp1HHFE39nZYRjtgYSEsDeh3yLpSEaNepFYLE5FxQd47713CGtRNQAbqamp49FH72PG\njBkF/V1k+DQIQQqtFIbcXkyYgfb30dcv6B4HKr2sXr2aUMPobl4KS4F8D3iCMJfxFXoOtX2R731v\nMRs3rueBB75LPN4B3E/I0/dj9o76H8pUchBC6v+H5CAEkXKScfOUu+8Cbom+ZBCJxOuEuY/dzUth\npdrZ0SuaGDVqLyorT9jdXLF48WIWLAjdRHPmzIkWFPy8FhQcATQIQUaKbJqnjidMS24gJBsjrG1y\nYN6iozybp7qbIv4K+BGhQ/vl6KfdzVXx+EyeeOIx3n333X77FzR7e+RI9mmk3gSoT0PyJV/NU9kk\njfXAhYS2la7kcXd/PddB9Xrfsksara2tzJ59Dm+//QRhLsZqqqv/gZ07X6Gry4B9icX+zNKlt+al\n0FCiKV36t5FCKYXJfW+7+89yHcBIVFtby/btL9DdFNFJRcUbPPPME2zatAmgz7pRuaIROqWtv4mX\nIuUim5rGdcAowmy0Hcnj7r6m35NyoNxqGslCG8axbdtrhM7vV6mqqmDZsjvyWoBrhI6IJJVC81S6\nJUTc3U/MbUh93rdskkbPQntfwmq1NxM6v1/tU4DnuqmiZ7NYUFc3nZUrb9UwXZE9TNGH3Lr7zDRf\neU0Y5abnsMp2wj7e/52w9WrPIZb5WG225wgd0AgdEcm1rPbTMLPPAEcCNclj7n51HuJKfc8yrmmE\ntaN6NxUBeWtG0ggdEYES6Ag3syXAaMIqe3cAXwBW5zqgcpZc22n+/JlUVTWwbVsnZn9JLLY/nZ0v\nceON/0x9fT2tra1UVn6I0DWUIJerzWqZEBHJp2z6NJ5296kp32uBn7n7J/MaYBnVNJLWrVvH6tWr\n+ehHP8qjjz7GwoUXEYtNZufOcOf/zjvvcM45C4FDCBMALyYev1477IlIzhS9pgFsi76/b2YfJOwW\ntG+uAyp3yeahysoGOjpepKurk507f8OOHaEZ6qyzTsCsgt5rUt144+I+O+xp6KyIlJpsahqXA98F\nTiIsoOTAHe5+ef7CK6+aRrohr2GRwsUkV5EfM+ZQdu6sYseO3+8+r7r6SH71q6W7Rzhp6KyIDFfR\nR08BN7j7W+5+P2EpkcOAf8h1QOWsvb2dysoGei5SeBDwvwgzw5+mq2sLO3YkJ/4BPM2OHS/yy1/+\nqsd1tLidiJSibJLG/0s+cPcd7v526jFJDnl9kZ4r1z4HTAI+Aszgs5/9FNXVkwjjCaZH3+v55jev\n2r0xj4bOikipGjRpmNk+ZnYsEDezaWY2PfpqIoymkkh9fT2LF99AaJKaGn2/EniBkF9H89BDzbi/\nQeqS5/AuVVUH7K5JaIc9ESlVg/ZpmNkZwJmEW+VWwuq2AO8Ay9z9gbwGWEZ9Gknf+MbFfOc7i9m1\n64OEhJE0nTFj3uOrX/0C1113I2HG+Mto9JSI5FopLCPy+ag/o6DKLWnMmXMyDz/cQpgFnqDnKKkm\namqcl176Iw888GMWLvw6VVUH0NX1J42OEpGcKoUht8ea2S/c/a0ooAnA19z9m7kOqlz9+te/jhJG\nMlEkm6rCooXQxWWX/R/q6+tZsOBsPve501STEJGykk1H+KeTCQPA3d8ETs59SOVrxYoVhA2XkqOe\nLgL2AY4HjOrq6t0780Hou5gxY4YShoiUjWySxigzq04+MbM4UD3A6/c4c+bMIfRRpI6eeg1YBOzD\nN795sRKEiJS1bJLGD4FfmNl8M5sPPAwsy09Y5en4449nzpwmQpPUwdH3s4FO4vE3e9QyRETKUbar\n3P4VMCt6+rC7N2d43jjCIocfBnYBZwF/BO4lTBRsB06P5n70PresOsIh9G18+9s38tOfPkx19RQ6\nOzdy443XMX36MbvnWqgvQ0Tyqeijp6IgGoCD3X2lmY0GRrn71gzOWwr80t3vMrNKYAxwKfC6u99g\nZhcDE9x9UZpzyy5pJCWHzK5Z8yQXXriIWKyRbduex72L0aMP0ZpSIpI3RU8aZnY28D+Bie4+xcwO\nBpa4+0mDnFcHrHX3Kb2OrwdOcPfNZrYP0OLuh6U5v6yTxtq1aznttHm91qNqAjaQbje/UqE5IiLl\nrRTWnjqPMAzoHQB3fxbYO4PzJgN/NrO7zGyNmd0W1VImufvm6FqvZXitspHcme9zn7uAbdsm0nM9\nqv2BtZTqmlL52FVQREaGbOZp7HD3DrOQuKJmpkyqAJWERZbOc/ffmdmNhOFEvc/t91pXXnnl7sdN\nTU00NTVlEXbhJRIJ5s8/t9cOfk/TXdN4DpgLXFJya0qlxr5tW4h3/vyZzJp1omocIiWspaWFlpaW\nvL9PNknjl2Z2KWENqtnAucBDGZz3MrDJ3X8XPb+fkDQ2m9mklOapLf1dIDVplIPkKrWh0AW4BTiO\nkEDeAL4PHE66fTSKrW/sudtVUETyp/cN9VVXXZWX98mmeWoRYV2MZ4AFwE+BQWeDR01Qm8zskOjQ\nScAfgAcJa1oBnAH8JItYSlrPVWoTQBdVVcbo0aMIfRlzgamMHXso06cfU8RI+9IKuyIykIxrGu6+\ny8yWAb8lNCVtyKKH+gLgh2ZWRVjB78vAKOA+MzsL2AicnlXkJe7SS7/G1Vd/gs7OLsIyIhXs3LmZ\nsJxIPfA0O3e+VHKFce99zjs7N2qFXRHZLZvRU58BlgDPE1a6nQwscPef5S+88hs91b3d64fYuvU5\nUhcsrKo6nsrKWI/CuFSH22r0lEh5K4Uht+uBv3b356LnU4D/SjdMNpfKKWn03KZ1B6FCdRdQC7xL\nbe1Z3H//t5kwYYIKYxHJq1JY5XZrMmFEXgAGndi3JwlDZz9EqFncTviITgc2Awfy7rsv8OKLG6M1\nqkREyk82NY1bCEt+3Efo0/gi8BKwEiBfmzGVU01j3bp1HHHEsYQxAp8nDBT7PNA9sa9UJ/OJyMhS\nCpP7agi3zCcQpjQngDjwWeCvcx1YOXr33XeJx/chfBx7EVZLaSR1Yl8pTuYTEclUNqOnvtz7mJnF\n3L0jtyGVr8bGRjo7twA7CdNO3iOsxdg9sW/79hdKbsSUiEimMq5pmFmLmTWmPJ9B2DNc+jgMuJXQ\nNFVHWCL9SKAJ965iBiYiMizZNE/9I/BzMzvXzK4FbiMMD5JIe3s78fiBwCbCjO/1wLWEKSk3AhuI\nxw9W85SIlK1smqeazewcwuZLfwamRQsNSqSxsZGdO18BLgZmErZ+fRb4OjAHza4WkXKXTfPU5cB3\ngb8ErgRaogl/Elm58hF27uwArgLqqKx8nvnz/5Z4/HvU1U0nHp+Z89nViUSC1tZWEolEzq4pItKf\nbIbc/gtwibtvi543AHe4++w8xlc2Q257TuzbF3iYmprzeOmlPwL52akvOfs8FmvUhk4i0kPRZ4Sn\nBDLa3d/PdSADvF9ZJI3W1lZmzz6Ht9/+OWHEVCNjxszigQf+KaPJfNku29EzSWkOiIj0VPR5GmZ2\nnJm1EXp3MbOjzezmXAdUrhobG3n//WcJe2ecAxzKe+9t4NRT5w66idFQNj1KLmGuOSAiUkjZjJ76\nF+BTwOsA7v4UoX9DgAce+DGdnTuBFuCJ6HsN27f/iPnzz+23zyF106O3336CbdtWDfj6JC1hLiLF\nkE3SwN039TqkSQeEgn/hwq8Dh9BzW9cDgTED1gCGWmNILmEej8/MWye7iEhv2SxYuMnM/gLwaF+M\nhcC6/IRVXkLB38COHZvoua3rRuC9AWsAPWsM4bxMawzz5s1l1qwTtYS5iBRMNknjHGAxYRnXV4AV\nwHn5CKrc9J2fsQ/wItXVk6io+PyANYDhbnpUX1+vZCEiBZP16Kl+L2R2ibv/Y04u1vO6ZTF6Kjn8\ntaJibzo6NnHppRfxmc98OqvRUKoxiEiulMyQ234vZLbG3afn5GI9r1sWSQPg1ltvZ+HCi4jFJrNz\nZ2nvzCciI1s5JI217j4tJxfred2ySBqaNyEipaTo8zQyUPolex6lGwVVUbEfa9euLWJUIiK5lcuk\nkfOMVk7SzZt4773nMprcJyJSLnKZNP4jh9cqO92LFR4HHAR8Evg+27f/st/JelpsUETKTTbLiBxi\nZr8ws99Hz6ea2TeTP3f3b+UjwHKQSCQ488wFdHb+mrDu1NWEj/ZE+mumGsrSISIixZbNKre/BL4B\n3Jrs8Da7SM+UAAAR+UlEQVSz37v7h/MYX1l0hK9YsYJPfeo8wt4ZSUcDdwDVwHHU1MT4/veXMG/e\nXHWai0jelUJH+Gh3X93r2M5cBlPe/kRqf0ZIIKcDTfRuptJigyJSrrKZEf5nM5tCNErKzL4AvJqX\nqMrMtGnTqKhwdu36OGG3vpeBnYwePYr3398AhNpDMjEMZ+kQEZFiyiZpnEfYF/wwM3sFeBH427xE\nVYYqK2N0dPwY6ABeAC6ko+M1Ql6tJzUxDHfpEBGRYhk0aZjZQndfDOzr7rPMbAxQ4e5b8x9eeWhv\nb6e6+kA6Op4FLgImAxV0de2kpuYEYrHJfRJDMRYb1FIlIjJcg3aEm9mT7n7McJYJMbN24G1gF9Dp\n7h81swnAvUADYcjR6e7+dppzS74jPJFIsM8+jeza5cDjdK9yexwXXHA2f/d3f1v0glpbw4rsWYq2\njIiZLQc+AnwQeD71R4C7+9S0J/a8xgvAse7+Zsqx64HX3f0GM7sYmODui9KcWxZJY999J9PVdRDw\nMMntXuE4YrHNvPzyC0VNGBqtJbLnyVfSGLR5yt3nmdk+QDNwyhDfx+g7UutU4ITo8TLCVnd9kkY5\naG9vZ/ToA9m69QXCdq+TCV0+24nFptDe3l7Uwjk5Wmvbtr6jtZQ0RCQbGXWEu/trhIkHQ+XAw2bW\nRZjncQcwyd03J69vZnsP4/pF1djYSGfnJkJubKG7eeoT7Nz5ctFHRWm0lojkSiYd4fe5++lm9gw9\nFyXMuHkKON7dXzWzemCFmW2g7wKH/bZBXXnllbsfNzU10dTUlMFbFk59fT2XXfYNLr/8Lnpu97o3\nl112FgCtra1F69fQaC2Rka+lpYWWlpa8v08mfRr7RgV+Q7qfu/vGrN7Q7ArgXeArQJO7b46av1a5\n++FpXl/yfRrQf7/BjTdex4UXLiqJDmiNnhLZc5T8fhr9voHZaMIQ3Xej4borgKuAk4A33P36cu8I\nT/rqVxdy0023k5zgd9ZZf8fy5fdn1AGtAl1EcqmYo6e2kr7pKNk8VTfI+ZOBH0XXqAR+6O7XmdlE\n4D5gf2AjYcjtW2nOL4uk0V3TuB8YA7xHdfWpxGJT2Lp1ze7X1dVNZ+XKW5kxY8buYxoOKyK5VrY1\njeEql6TR2trKSSctYOvWZpJDbmtrT6Sz82V27Pgl/dU0NBxWRPKhFBYslAGsWfMkW7e2EYbcngMc\nyo4d7SxefAPx+Ezq6qYTj8/s0wGtxQtFpJyoppEDiUSCAw44hO3bdwG/IlljqKr6JK+88hxAv/0V\nA9U0BjpPRGQgqmmUsPb2dkaNmgQcQO89wpMT6GbMmJG24E8Oh+1dG1m58hFt0iQiJUc1jRwIy4g0\n0tXVe+2pj/PYYw9z/PHHZ3SNZK0CUD+HiAyLaholzsyAvYGZwPTo+3hOOunkjGoJqbUR9XOISKlS\n0siB9vZ24vEDga3A/cCt0fdt7NhxPWeddQ6JRCLj6/Vc9gO07IeIlAoljRxobGxk585XgIuBzxMm\nu59M2A33drZv7+A737kx4+v118+hpikRKTb1aeTA8uX3csYZX6GzcxehiepPQBXwG1L7N5YsWcyC\nBWdnfF3NEheRodLkvhLVc8jsb4GvAWOBOPBcyiuPprq6nU2bnlMCEJG8U0d4ierutN6XsB3IY8CT\nwBuk9knAy1RVHaDObBEpa0oaw9Tdaf0wYbe+qUA9cAtwHHAUYSTVxXR1/Yk333wzq05xEZFSoqQx\nTMlO65qa84D1dNcuDqeysoJYrJ3a2g8Si32LnTs7OP30SzRZT0TKlvo0ciSRSHDrrbfzrW99u8dG\nR7NmncjatWs59dS5bN/e/8KFIiK5pI7wMpFuxFNrayuzZ5/D228/sft16ZZIFxHJlXwljYz2CJfM\n1dfX96k9aI9uERkp1KeRY4lEgtbW1h6d3ZqsJyIjhZqncii5A19Fxf7s2rWpzw58mqwnIoWiPo0S\nl0gk2G+/g+noeJRkE1Qs9pe8/PKzShAiUnCa3Ffi1q5dS0dHPakr03Z0fIC1a9cWMywRkZxS0sip\nP9FzFvirRYxFRCT31DyVI4lEgg996EA6O6sIM8Pbqarq5JVXXlDzlIgUnJqnSlx9fT3Llt1BTY0z\nZsx71NQ4y5bdoYQhIiOKaho5phFSIlIKNLmvTCQTRXI1WyUOERlJ1DyVY8uX30tDw2HMnn2OFiYU\nkRFHzVM51HNDJi1MKCLFo47wMtC9IVP3XI2qqgZtvCQiI4aSRg71XJgQtDChiIw0BUsaZlZhZmvM\n7MHo+QQzW2FmG8ys2czGFSqWfNHChCIy0hWsT8PMLgSOBerc/RQzux543d1vMLOLgQnuvijNeWXT\np5GkYbciUmxlvWChme0H3AVcC/zvKGmsB05w981mtg/Q4u6HpTm37JKGiEixlXtH+I3AN4DU0n+S\nu28GcPfXgL0LFIuIiAxR3pOGmX0G2OzuTwIDZT1VJ0RESlwhZoQfD5xiZicDcWCsmf0AeM3MJqU0\nT23p7wJXXnnl7sdNTU00NTXlN2IRkTLT0tJCS0tL3t+noJP7zOwE4GtRn8YNhI7w60daR7iISLGV\ne59GOtcBs81sA3BS9FxEREqYlhERERmBRmJNY8RJJBK0traSSCSKHYqISF4oaeSIVrcVkT2Bmqdy\nQKvbikipUfNUCdPqtiKyp1DSyAGtbisiewoljRzQ6rYisqdQn0YOaXVbESkVZb3K7XCUU9IQESkV\n6ggXEZGiU9IQEZGMKWmIiEjGlDRERCRjShoiIpIxJQ0REcmYkoaIiGRMSUNERDKmpCEiIhlT0hAR\nkYwpaYiISMaUNEREJGNKGiIikjElDRERyZiShoiIZExJQ0REMqakISIiGVPSEBGRjClpiIhIxpQ0\nREQkY3lPGmZWbWa/NbO1ZvYHM/tWdHyCma0wsw1m1mxm4/Idi4iIDE/ek4a77wBmuvs0YCpwopkd\nDywCVrr7ocAjwCX5jiWfWlpaih1CRsohznKIERRnrinO8lCQ5il3fz96WB2955vAqcCy6Pgy4LRC\nxJIv5fIfqRziLIcYQXHmmuIsDwVJGmZWYWZrgdeAFndvAya5+2YAd38N2LsQsYiIyNBVFuJN3H0X\nMM3M6oBmM2sCvPfLChGLiIgMnbkXtqw2s8uBbcB8oMndN5vZPsAqdz88zeuVTEREhsDdLdfXzHtN\nw8w+AHS6+9tmFgdmA1cBDwJnAtcDZwA/SXd+Pn5pEREZmrzXNMzsKEJHtxH6UH7g7v9sZhOB+4D9\ngY3A6e7+Vl6DERGRYSl485SIiJSvgs8IN7MvmNnvzazLzKb3+tklZvasma0zszkpx6eb2dNm9kcz\n+5eU4zEzuyc65/+Z2QEpPzsjev0GM/tSHn+fvzKz9dF7XZyv9+n1nnea2WYzezrlWL+TJXP5uWYR\n435m9kg0ofMZM7ugROPMevJpMeJMuVaFma0xswdLNU4zazezp6LPdHUJxznOzP4jet8/mNnHSi1O\nMzsk+hzXRN/fNrMLihqnuxf0CzgUOJgwoW96yvHDgbWEfpZG4Dm6a0K/BWZEj38KfCp6/PfAzdHj\nucA90eMJwPPAOGB88nEefpeKKM4GoAp4EjisAJ/hJ4BjgKdTjl0PXBQ9vhi4Lnp8RK4+1yxj3Ac4\nJnpcC2wADiu1OKNzR0ffRwGPA8eXYpzR+RcC/w48WIr/7tG5LwATeh0rxTiXAl+OHlcSyouSizMl\n3grgT4Qm/aLFmdfCbZAPYBU9k8Yi4OKU5z8DPkYofNpSjv8NcEv0+OfAx6LHo4AtvV8TPb8FmJuH\n3+HjwM/6+x3y/Pk10DNprCfMfSH6zNbn8HNN5CDeHwOzSjlOYDSwOvrDK7k4gf2Ah4EmupNGKcb5\nIrBXr2MlFSdQBzyf5nhJxdkrtjnAr4odZyktWPghYFPK81eiYx8CXk45/nJ0rMc57t4FvG2hg72/\na+U75tTYCm1vTz9ZMhef61vR5zokZtZIqBk9Tv+TOosWp2U3+bSYn+eNwDfoOaepFON04GEzazWz\nr5RonJOBP5vZXVHTz21mNroE40w1F7g7ely0OPMy5NbMHgYmpR4i/Ee6zN0fysd7pryPBD74SzI2\n5M/VzGqB/wssdPd3re+8m6LH6YWffJp1nGb2GWCzuz8Zxdefon+ewPHu/qqZ1QMrzGxDmriKHWcl\nMB04z91/Z2Y3Eu7SSy3OcKJZFXAKoSkKihhnXmoa7j7b3aemfB0VfR8oYbxCaKtL2i861t/xHueY\n2Sigzt3fiI4f0M85uVSo98nEZjObBGBhsuSW6HguP9esmFklIWH8wN2T83BKLs4kd3+H0Nb7kRKM\n83jgFDN7AVhOWPjzB8BrJRYn7v5q9D1BaJb8KKX3eb4MbHL330XP7yckkVKLM+nTwBPu/ufoedHi\nLHbzVGpGexD4m6gnfzJwELA6qnq9bWYfNTMDvkT3RMAHCRMDAb5I6FwHaAZmR6MjJhAmFDbnIf5W\n4CAzazCzGKGd8ME8vE86Rt/P78zo8Rn0/Ixy9blm6/uEdtTFpRqnmX0gOfLEuiefri21ON39Unc/\nwN0PJPw/e8Td/wfwUCnFaWajo9olZjaG0A7/DKX3eW4GNpnZIdGhk4A/lFqcKeYRbhaSihfncDpm\nhtiZcxqh/Wwb8Co9O5IvIfT2rwPmpBw/lvAf71lgccrxasIEwWcJ7eWNKT87Mzr+R+BLefx9/oow\nMuhZYFGBPsO7CaModgAvAV8mjBhbGcWyAhifj881ixiPB7oII8rWAmuiz2piicV5VBTbWuAp4OvR\n8ZKKs1fMJ9DdEV5ScRL6CpL/5s8k/yZKLc7oOkcTbvyeBB4gjJ4qxThHAwlgbMqxosWpyX0iIpKx\nYjdPiYhIGVHSEBGRjClpiIhIxpQ0REQkY0oaIiKSMSUNERHJmJKGiIhkTElDSp6Z7W1mPzSz56JF\n8H5tZqea2Qlm9paZPWFhT5OWaI2m5HlXmNnL0YJ0T5vZZ4v5ewyVme1rZvdFj482s08XOybZcylp\nSDn4MWH12YPcfQZhGY39op896u7HuvthwELgJjObmXLud9x9OnA6YVmTnIvW68kbd3/V3U+Pnh4D\nnJzP9xMZiJKGlDQzOxHY4e63J4+5+yZ3/17v17r7U8DVwPlpfrYe2GlmH+jnfe4ys1uimsz6ZI3F\nwrLpN1jY3e9JMzs7On6CmT1qZj8hrFnUX/xfsu5d7JZFx/7azB6PakgrotVgkzWjfzOz31jYke0r\n0fEGC7sfVka/3+lR7emLZjYjev0TZvaYmR2c4UcrMiR5WRpdJIeOJKwNlak1wNd7HzSzjwFd3r1K\naDoN7j7DzA4CVpnZFMJCbm+5+8eiRSl/bWYrotdPA45095fSXczMjgAuBY5z9zfNbHz0o1+5+8ej\n18wHLiLskwFhLayPAWOBtWb2n9Fxd/edZvZ/gGPdPbl9bi3wCXffZWYnAf8IfGGQz0hkyJQ0pKyY\n2U2E7W476C5oe7yk1/P/bWZ/B2wlNFEN5D4Ad3/OzJ4nbE87BzjKzL4YvaaOsF1xJ2H10LQJI3Ii\n8B/u/mZ03bei4/tHfRT7ErYJfjHlnJ+4ewfwupk9QlhW/KkB3mM88G9RDcPR37TkmZqnpNT9gbA6\nJwDufj5hGet60m88M52wumfSd9x9uruf4O6/GeS9Uq+X3DjMgK+6+7Toa4q7r4xe816Wv0vSd4F/\ndfepwDlAzSAxDOQawjLpRwGf7XUtkZxT0pCS5u6PANVmtiDl8Bi6C9PdNQszmwp8E7hpiG/3RQum\nEJb43kDYh+XcqD8BMzvYwragmXgkuubE6NwJ0fE6wtL20L2PQdKp0V4IexGWQG/t9fOt0flJdXRv\npvPlDOMSGTIlDSkHpwFNZva8mT0O3EXY9tKATySH3BLu4M9395Yhvs9LwGrgv4AFUTPRHUAbsMbM\nngGWABmNlvKw1/i1wC8t7EH+7ehHVwH/18xaCfskpHoaaAF+A1ztYfOcVKuAI5Id4cANwHVm9gT6\ne5YC0H4aIoTRU8BD7v5AEWO4Atjq7t8pVgwig9GdiUiguyeRDKimIXsUM7uUsA9yspPbCSOc/nEY\n15wI/IKe/SwOnJQcOSUyUihpiIhIxtQ8JSIiGVPSEBGRjClpiIhIxpQ0REQkY0oaIiKSsf8PlneL\n6Vs9jI4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "# I already made a chart, I'm going to send it to you\n", "df.plot(kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax)" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 103, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2YXHV5//H3Jw9LlpDEpC5ghe4CAsH+hCQ0oKJmAwlS\nH9CrrdK0/VnplkKRllKroK0mWmwBL0FrG0WSYrSyBioW7YNBJIutiqxJIBQIRXBjwkOyIOQXypIE\ncv/+OGeTyWZ298zszJyZ2c/ruubKzJk5c+4dmHPP+d7fB0UEZmZmWUzIOwAzM2scThpmZpaZk4aZ\nmWXmpGFmZpk5aZiZWWZOGmZmltmkah9A0gnAaiAAAccCHwNmAhcA29OXfjQivlPteMzMrHyq5TgN\nSROArcDpwB8AOyPi2poFYGZmY1Lr5qlFwKMRsSV9rBof38zMxqDWSeM8oLvg8SWS7pW0QtKMGsdi\nZmYlqlnzlKTJwBPAayOiX1Ib8HREhKQrgVdFRFdNgjEzs7JUvRBe4NeBdRHRDzD4b+oG4NvFdpLk\nybHMzMoQERUvAdSyeWoJBU1Tko4seO43gP8ebseIqKvb0qVLc4/BMTVXXI7JMVX6Vi01udKQdChJ\nEfyPCjZfI2kOsBfoAy6sRSxmZla+miSNiHgBaBuy7X21OLaZmVWOR4SXobOzM+8QDuKYsqvHuBxT\nNo4pfzUd3FcOSVHvMZqZ1RtJRIMXws3MrME5aVhT6O/vp7e3l/7+/tFfbGZlc9KwhtfdvZr29tks\nXnwR7e2z6e5enXdIZk3LNQ1raP39/bS3z2ZgYC1wMrCR1taFbN68iba2ttF2N2tarmmYFdHX10dL\nSwdJwgA4mcmT2+nr68svKLMm5qRhDa2jo4Pdu/uAjemWjezZs5mOjo78gjJrYk4a1tDa2tpYuXI5\nra0LmT59Hq2tC1m5crmbpsyqxDUNawr9/f309fXR0dHhhGFG9WoaThpmTchJ1FwIN7NM3AW5OdTr\n2CNfaZg1EXdBbg7d3avp6rqYlpako8fKlctZsuS8kt7DVxpmNip3QW58/f39dHVdzMDAWnbsWMfA\nwFq6ui6umysOJw2zOlRu04S7IDe+ek/8ThpmdWYsNQl3QW589Z74XdMwqyOVqkm491RjG6xpTJ7c\nzp49m+uqpuGkYVZHent7Wbz4InbsWLdv2/Tp87jjjuuZP39+jpFZrY018VcradRkuVczy+bAponk\nSqOemiasdtra2uryKrHqNQ1JJ0jaIGl9+u8OSX8qaaak2yU9LGmNpBnVjsWs3rkmYfWups1TkiYA\nW4HTgUuAZyLiGkmXAzMj4ooi+7h5ysYd1yRsrJqipiHpbOBjEfFmSZuABRGxTdKRQE9EzC6yj5OG\nmVmJmmVw33nATen9IyJiG0BEPAUcXuNYml69TkNgZo2rZklD0mTgXOCWdNPQywdfTlSQ5x8ys2qo\nZe+pXwfWRcTT6eNtko4oaJ7aPtyOy5Yt23e/s7OTzs7OasbZ8AqnIRgYSHrgdHUtZNGiM90+btak\nenp66OnpqfpxalbTkNQNfCciVqWPrwZ+ERFXuxBeWe7rb2YNXdOQdCiwCLi1YPPVwGJJDwNnAVfV\nIpbxoN6nISiXazRm+atJ0oiIFyKiLSJ2Fmz7RUQsiogTI+LsiHiuFrGMB83Y1981GrP64GlEmlgj\n9fUfKVavEWFWuoZunrJ8tLW1MX/+/Lo/sY52FVHvU0WbjSe+0rBcZbmK8JWGWel8pWE1U8uCc5ar\niGas0Zg1Kl9p2AEqsTZxKUq5imikGo1Z3ppi7qlyOGnUTl7NQJVYcMbMDuT1NKzqBpuKklHkUNhU\nVM2ksWTJeSxadKavIswagJOG7ZPnAkD1uuCMmR3IhXDbxwVnMxuNaxp2EBeczRqfC+FmZpaZx2mY\nmVnunDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMqtJ0pA0Q9Itkh6S9ICk\n0yUtlbRV0vr0dk4tYjEzs/LVZES4pC8Dd0XEjZImAVOBPwN2RsS1o+zrEeFmZiVq2KnRJU0H3hwR\n7weIiJeAHZIAKv4HmZlZ9dSieeoY4GlJN6bNUF+SdGj63CWS7pW0QtKMGsRiZmZjUIv1NCYB84AP\nRMRPJH0WuAL4PPDJiAhJVwLXAl3F3mDZsmX77nd2dtLZ2VntmM3MGkpPTw89PT1VP07VaxqSjgB+\nFBHHpo/fBFweEe8seE078O2IOLnI/q5pmJmVqGFnuY2IbcAWSSekm84CHpR0ZMHLfgP472rHYmZm\nY1Or3lOnACuAycBjwPkkzVNzgL1AH3BhmmCG7usrDTOzEnkRJjMzy6xhm6fMzKx5OGmYmVlmThp1\nqL+/n97eXvr7+/MOxczsAE4adaa7ezXt7bNZvPgi2ttn0929Ou+QzMz2cSG8jvT399PePpuBgbXA\nycBGWlsXsnnzJtra2vIOz8waiAvh40BfXx8tLR0kCQPgZCZPbqevry+/oMzMCjhp1JGOjg527+4D\nNqZbNrJnz2Y6OjryC8rMrICTRh1pa2tj5crltLYuZPr0ebS2LmTlyuVumjKzuuGaRh3q7++nr6+P\njo4OJwwzK4tHhJuZWWYuhJuZWe6cNMzMLDMnDTMzy8xJw8zMMnPSMDOzzDInDUm3Snq7JCcaM7Nx\nqpQEsBz4HeARSVdJOrFKMZmZWZ0qeZyGpBnAEuAvgS3ADcA/RcSeyofncRpmZuWoi3Eakn4JeD/w\nh8AG4HPAPOC7lQ7MzMzqTyk1jW8C/wkcCrwzIs6NiNUR8SfAYaPsO0PSLZIekvSApNMlzZR0u6SH\nJa1Jr2DMzKyOZW6ekrQwItaWdRDpy8BdEXGjpEnAVOCjwDMRcY2ky4GZEXFFkX3dPGVmVqJ6aJ56\nraRXFAQ0U9LFo+0kaTrw5oi4ESAiXoqIHcC7gFXpy1YB7y4hFjMzy0EpSeOCiHhu8EFEPAtckGG/\nY4CnJd0oab2kL0k6FDgiIral7/UUcHgpgY8nXjPcrHz+/lTWpBJeO1EFbUWSJgItGY8xD/hARPxE\n0nXAFcDQNqdh26CWLVu2735nZyednZ0lhN3YurtX09V1MS0tyQJNK1cuZ8mS8/IOy6whjKfvT09P\nDz09PVU/Tik1jU8D7cD16aYLgS0R8cFR9jsC+FFEHJs+fhNJ0jgO6IyIbZKOBNZGxElF9h+3NQ2v\nGW5WvvH+/amHmsblwFrgj9Pb94APj7ZT2gS1RdIJ6aazgAeAb5F03wX4feC2EmIZF7xmuFn5/P2p\njszNUxGxF/hCeivVnwJfkzQZeAw4H5gI3CzpD4DNwHvLeN+mduCa4ckvJa8ZbpaNvz/VkTlpSDoD\nWEbSRDUJEBCDzU4jiYj7gPlFnlqU9fjj0eCa4V1dC5k8uZ09ezZ7zXCzjPz9qY5SahqbgMuAdcDL\ng9sj4pnqhLbvuOO2pjHIa4ablW+8fn9yXyNc0o8j4vRKB5DhuE2bNMbr/8xmVn31UAhfK+nTkt4g\nad7grdIBjRfd3atpb5/N4sUX0d4+m+7u1XmHZGY2qlKuNIpNIRIRcWZlQzrouE13pTHeuwKaWfVV\n60qjlN5TCyt98PFqsCvgwMD+roCTJv0KfX19JSUNN2+ZWa2VOjX62yV9WNLHB2/VCqyZHdgVEGAj\nO3c+zPr19x702uGmQHDzlpnloZTmqS+STIu+EFgB/BZwT0R0VS+85myeArj++hu46KJLgeOBrcDl\ntLZefUAT1XBTILh5y8xGUw+F8DdGxPuAZyPiE8AbgBNG2ceGMW/eHKZNew1J/t0EfPiA0ar9/f10\ndV3MwMBaduxYx8DAWrq6Lt7XJOWRrmaWh1KSxkD67wuSfhnYA7yq8iGNDx0dHbz00uPAIUAbQ0er\njpQYijVveaSrmdVCKUnjX9P1ND4NrAf6gO5qBDUeDI5WnTJlAVOnnsiUKQsOGK06UmIY3Le1dSFT\np55Ca+tCj3Q1s5ooZWr0ayJiF/ANSf8KTAFerE5Y44c0AWhN/90vyxQIyXRgu9J/zcyqr5RC+PqI\nmDfatkpr1kJ41mJ2sW61LoSb2WhyG6eRrnXxaqBV0lySiQoBppP0prIyFBurMVizKDzxt7W1HZQI\nsu5rZlZpWZqn3kqy7sVRwGfYnzT+H/DR6oTV/MYybbOnfDazvIyaNCJiFbBK0m9GxDdqEFNTGtrM\nNJZpmz3ls5nlpZSaxt+QFMOfSx/PBD4YEX9VxfiaoqYx0jrFY5kKxNOI1Df/97E81cPU6BsiYu6Q\nbS6Ej8JF6/FppB8KZrVQDyPCJ0o6pCCgVpKRaTYCj94ef0YazW/W6EpJGl8DviepS1IX8F1gVXXC\nah4evT3++IeCNbPMSSMirgauBE5Kb38dEddk2VdSn6T7JG2QdE+6bamkrZLWp7dzyvkD6l3h6O3p\n0+eNOnp7uFltG1Ez/S2l8A8Fa2oRkfkGtAOL0vuHAtMy7vcYMHPItqXAn2fYNxrd9u3bY82aNbFm\nzZrYvn37sK+76aavR2vrrJgxY160ts6Km276eg2jrKxm+lvKMfj3T58+d1z+/Za/9NxZ0jk+y62U\nQvgFwB8BsyLiOEnHA1+MiLMy7Psz4Nci4pmCbUuB5yPiM6PsG1ljrEdZC6LNVDBvpr9lLNx7yvJU\nD4XwDwBnkAzqIyIeAQ7PuG8A35XUmyafQZdIulfSCkkzSoilIZRSEG2mdvBm+lvGoq2tjfnz5zth\nWFMpZcLCXRGxW0oSl6RJJMkgizMi4klJbSTJ4yFgOfDJiAhJVwLXAkUXdFq2bNm++52dnXR2dpYQ\ndn5Kme6jmUZ5N9PfYtYoenp66Onpqf6BsrZjAdeQTBuyCVgMfBP4VKntYRSpZZDUSjYO8/oxt+3l\nZfv27dHaOivgvoAIuC9aW2cNW9dopnbwZvpbzBoRdVDTmEByJXA2yfxTa4AVMcobSDoUmBARz0ua\nCtwOfCJNEk+lr7kMmB8Rv1Nk/9EOUdcGaxqF032MNMirmdrBm+lvMWs0uY8IT4NoAWaTNEs9HBG7\nM+xzDMlVSZA0h30tIq6S9BVgDrCXZEGnCyNiW5H9GzppgE+eZlZ7uScNSW8Hvgg8SnKlcQzJif4/\nKh3UkOM2fNIwM6u1ekgam4B3RMRP08fHAf8WEbMrHdSQ4zZd0vCVh5lVWz10ud05mDBSjwE7KxxP\n0+vuXk17+2wWL76I9vbZdHevzjskM7PMSrnS+AJJL6ebSeoT7wF+DtwBEBG3ViXAJrrS8KA3M6uV\nerjSmAJsAxYAnUA/0Aq8E3hHpQNrRh70ZmaNLvPgvog4f+g2SS1ZelBZIuugN9c8zKxeZb7SkNQj\nqaPg8XygtwoxNa0sM9665mFm9ayUmsZbgc8Bfwe8Gngb0BUR66sXXnPVNAYNdyXhmoeZVUq1ahql\nNE+tkXQRyeJLTwNzB0d028FGamJqa2srmgRKmasqL246MxvfSmme+hjweeAtwDKgJx3wZ0MMNjEt\nXHhBSU1M9b54j5vOzKyU5qnPAh+JiIH0cTvJ3FOLqxhfwzVP9ff3c9RRx7N79/cZbGJqaXkLW7c+\nkumXeda5qmr9i99NZ2aNJfcutxHxZxExkE5ASERsrnbCaEQbNmxg9+42CrvV7t79SjZs2JBp/yVL\nzmPz5k3cccf1bN68qWjCyOMXv7sLmxmU1jz1BkkPkkyNjqRTJC2vWmQN7QkKm5jgyZL2HmnxnlIW\ndqqkem86M7PaKGVw32eBtwLPAETEfST1DSswd+5cJk+eQDL+cR6wgIkTg6OPProi75/XL/4s3YXN\nrPmVkjSIiC1DNr1cwViaQltbG6tWrWDKlKClZRvwIi0tr+HUU9+0rxmpv7+f3t7esq4O8vzFn6Xp\nzMyaWylJY4ukNwIhabKkvwAeqlJcDW3JkvNYv/6HSC8AP2ZgYOO+ZqTrr79hTPWIvH/xe91rs/Gt\nlN5TryQZ3LeIZD2N24FLI+KZ6oXXeL2nBvX29rJ48UXs2LFu37Zp0+aya9dP2b37epIVc58suweS\nx0uY2UjqoffU0xHxuxFxREQcHhG/V5gwJH2k0sE1so6ODnbtegy4iWRux4288MIj7N69F/gMyQKI\nD5Vdj/AvfjPLQ0k1jVG8p4Lv1fDuuONO9u4NYCnQwaRJb2TChInAj4B1wFrgj3nxxUc57LDD8gzV\nbFhjqb9Zc6pk0qj4ZVCjGuwWmwzwewT4ERMnTmTKlOMo7PUEs5AOO6BIblYvPAOAFZO5pjHqG0nr\nI2LeMM/1ATuAvcCeiDhN0kxgNcnCTn3AeyNiR5F9G66mUayecdhhr2PPnq3s2nUXgyOqk6VJ/oex\n1DbMqsEzADS+3GsaGYwU3F6gMyLmRsRp6bYrgDsi4kTgTqBpaiLFusW+/PITXHnlxzjkkDdz6KG/\nCrwB+CKQjB736GqrJ54BwIZTyaRxywjPqcix3gWsSu+vAt5dwVhyVaxbbFfX/+XjH/8ULS3H8fLL\nTzBpkoCT0j08utrqi2cAsOGU0uX2BOALwBER8X8knQycGxFXZtj3MeA5ksGA10fECknPRsTMgtf8\nIiJmFdm34ZqnBg12iz3ssKRuUXip39LyFiZMEC0tx4w4MaFZXrJOnmn1Kff1NIAbgA8B1wNExEZJ\nNwGjJg3gjIh4UlIbcLukh4GhmWDYzLBs2bJ99zs7O+ns7Cwh7PwMrpvR29t70DoZU6Ycyy23XMXM\nmTM91sLq0pIl57Fo0ZkeD9Qgenp66OnpqfpxSrnS6I2I+ZI2RMTcdNu9ETGnpANKS4HngT8kqXNs\nk3QksDYiTiry+oa90hhUraKiB/iZ2XDqoRD+tKTjSK8IJP0WGaZvlXSopMPS+1OBs4H7gW8B709f\n9vvAbSXE0lAKaxzTps3lkEMWcN11V43pRO/ukGaWh1KuNI4FvgS8EXgW+BnwuxGxeZT9jgG+SZJs\nJgFfi4irJM0CbgaOBjaTdLl9rsj+DX+lMej662/g0kv/gpaWdl566fGy24jdHdLMRlOtK41Rk4ak\nSyPic5LOiIgfpFcLEyJiZ6WDGeb4TZE0KnmiLzYOZPr0edxxx/XMnz+/soGbWUPKs3nq/PTfzwNE\nxP/WKmE0k0r2e2+U7pCegsKs+WRJGg9JegQ4UdLGgtv9kjaOurcBlT3R5z09ehauuZg1p0w1jbR3\n0xrg3KHPjVbTGKtGa54aqUdTpfu912vvKddczPKX6ziNiHgKOKXSB282g0mhpSW5qhiaFJYsOY85\nc07mnnvu4bTTTuOkkw7qYVySwXEg9WawKa5wXMpgU1w9xmtm2WUphN8cEe+VdD8HDsATEBFx8jC7\nVibABrnSyPLrerSk0ix8pWGWvzyvNC5N/31HpQ/eTEb6dQ2wYcMGurouZmBgbfqajXR1LWTRojOb\n7kQ6WHPp6lp4QFNcJf/Oem2aM2t2oyaNiHgy/beqtYtGd2Ch+2Sgh127HuWuu/6TBQvOYcKENgYG\nZlGs91QznvSqOQXFeLliM6tHWZqndlJ8XqjB5qnp1Qis4PgN0TwF+09mETN48cWnmDKlgxdf7APu\nBl4FnAj0UKzJxr+cs3HTl1k2uY3TiIhpETG9yG1atRNGo1my5DzWrfsvIp4F7ubFF1cBJ5Cc3NpI\nJgl+A1OnnnJAN1l3T83O6zyY5auS62kY8PzzzzNlyrEkJ7UOYAv7x2acxJQpLdx666fZvHkTS5ac\nt29p2IGBtezYsY6BgbV0dV3sAXHDaJSBjWbNykmjwg48qbUBlwOvZ9q0ubS2LuQf//GLnH322fua\nUvzLuTSNMLDRrJmVsp6GZVCs59B1132OefPmHFSv6O/v59lnnx1SQC/+y9k1j/28zoNZfjLPcpuX\nRiiEFzuhj3aSL+wB9MIL/4M0kSlTji06Unxob6HrrruqaBIyMxuU2yy3eav3pFFO989iPYCmTFnA\nbbetZu7cuQddjQx9bdLc9ZoxTa9uZs2tHhZhsiGyFrGHzvZarI7R0nIMM2fOPOjKodhr4Xh27lzp\normZ1ZyTxhhkKWIX605bSg+gYq+FrSQ9s1w0N7PactIYg9FO/sNdiQCZewANXSoWXk/SI6vtoOOZ\nmVWbe0+NwWhzLI00H1UpPYAKX7t+/b1cdtkVTJ789arM6WRmNhIXwitguJ5S1Zrywt1vzWw0Dd97\nStIEYB2wJSLOlbQUuADYnr7koxHxnSL71X3SGEmlF14qlxON2fjSDEnjMuBUYHpB0tgZEdeOsl9D\nJw3I/4TtWWHNxp+GThqSjgJuBD4F/HlB0ng+Ij4zyr4NnzTy5FlhzcanRh+ncR3wIQ6eYv0SSfdK\nWiFpRo1iGVc8t5WZVVLVe09JejuwLSLuldRZ8NRy4JMREZKuBK4Fuoq9x7Jly/bd7+zspLOzs9jL\nrIiDF4dyN12zZtTT00NPT0/Vj1P15ilJfwP8HvAS0ApMA26NiPcVvKYd+Hax9cbdPDV29VKMN7Pa\naeiaxr6DSQuAD6Y1jSMj4ql0+2XA/Ij4nSL7OGlUQN7FeDOrrWoljTwH910jaQ6wF+gDLswxlqrL\n+6Td1tbmZGFmY+bBfTUw2Dw0YcLR7N27xc1DZlZ1TdE8VY5GTxr9/f0cddTx7N79fQYL0S0tb2Hr\n1kf8y9/MqqbRu9yOWxs2bGD37jYKu7zu3v1KNmzYkGdYZmZlcdKoiSc4cGrzJ3OMxcysfG6eqrL+\n/n5e/epj2bNnMskaGH1MnryHxx9/zM1TZlY1bp5qUG1tbaxatYIpU4KpU/+XKVOCVatWOGGYWUPy\nlUaN5N3l1szGF/eeMjOzzNw8ZWZmuXPSMDOzzJw0zMwsMyeNHPX399Pb20t/f3/eoZiZZeKkkZPu\n7tW0t89m8eKLaG+fTXf36rxDMjMblXtP5cBLsJpZtbn3VBPxEqxm1qicNHJw4BKs4CVYzaxROGnk\noK2tjZUrl9PaupDp0+fR2rqQlSuXu2nKzOqeaxo58tQiZlYtnkbEzMwya/hCuKQJktZL+lb6eKak\n2yU9LGmNpBm1isXMzMpTy5rGpcCDBY+vAO6IiBOBO4GP1DAWMzMrQ02ShqSjgLcBKwo2vwtYld5f\nBby7FrGYmVn5anWlcR3wIaCwOHFERGwDiIingMNrFIuZmZWp6klD0tuBbRFxLzBSUcbVbjOzOjep\nBsc4AzhX0tuAVmCapK8CT0k6IiK2SToS2D7cGyxbtmzf/c7OTjo7O6sbsZlZg+np6aGnp6fqx6lp\nl1tJC4APRsS5kq4BnomIqyVdDsyMiCuK7OMut2ZmJWr4LrdFXAUslvQwcFb62MzM6pgH95mZNaFm\nvNIwM7MG46RhZmaZOWmYmVlmThpV4vW/zawZOWlUgdf/NrNm5d5TFeb1v82sHrj3VIPw+t9m1syc\nNCrM63+bWTNz0qgwr/9tZs3MNY0q8frfZpYnrxFuZmaZuRBuZma5c9IwM7PMnDTMzCwzJw0zM8vM\nScPMzDJz0jAzs8ycNMzMLDMnDTMzy6zqSUPSIZJ+LGmDpAck/U26famkrZLWp7dzqh2LmZmNTdWT\nRkTsAhZGxFySqV/PlHRG+vS1ETEvvX2n2rFUSk9PT94hHMQxZVePcTmmbBxT/mrSPBURL6R3D0mP\n+Wz6uOJD3GuhHv8ncUzZ1WNcjikbx5S/miQNSRMkbQCeAnoi4sH0qUsk3StphaQZtYjFzMzKV6sr\njb1p89RRwFskLQCWA8dGxBySZHJtLWIxM7Py1XyWW0kfA16IiM8UbGsHvh0RJxd5vae4NTMrQzVm\nuZ1U6TccStIrgT0RsUNSK7AY+ISkIyPiqfRlvwH8d7H9q/FHm5lZeaqeNIBXAaskiaQ57KsR8T1J\nX5E0B9gL9AEX1iAWMzMbg7pfhMnMzOpHriPCJV0j6aG0B9U3JE0veO4jkh5Jnz+7YPs8SRsl/Y+k\nzxZsb5H09XSfH0n6lSrEe46kTemxL6/0+w851lGS7kwHRN4v6U/T7TMl3S7pYUlrCnudlfqZjSG2\nCemAzG/VUUwzJN2SHucBSafnHVd6jAfS9/ta+v9oTWOStFLSNkkbC7ZVLIZyvnfDxJT7uaBYXAXP\nfVDSXkmz8v6s0u1/kh73fklX1fSziojcbsAiYEJ6/yrgb9P7rwU2kDSfdQA/Zf9V0Y+B+en9fwfe\nmt7/Y2B5ev884OsVjnVCGkc7MBm4F5hdxc/mSGBOev8w4GFgNnA18OF0++XAVeV+ZmOI7TLgn4Bv\npY/rIaYvA+en9ycBM/KMK/3/5DGgJX28Gvj9WscEvAmYA2ws2FaxGCjjezdMTLmfC4rFlW4/CvgO\n8DNgVrrtpBw/q07gdmBS+viVNY1pLF/USt6Ad5PUOwCuAC4veO4/gNNJTqQPFmz/beAL6f3vAKen\n9ycC/RWO7/XAfxQ8PiDGGnw+/5J+sTYBR6TbjgQ2lfuZlRnHUcB30/9xB5NG3jFNBx4tsj23uICZ\n6fFnpl/ib+X1348kgRWedCoWQ7nfu6ExDXkut3NBsbiAW4DXcWDSyO2zIvkBcmaR19UkpnqasPAP\nSDIgwKuBLQXPPZ5uezWwtWD71nTbAftExMvAc4WXkhUwNKbCY1eVpA6SXxt3k3zZtwFE0vvs8GHi\ny/KZleM64ENAFGzLO6ZjgKcl3aik2exLkg7NM66IeBb4DPDz9P13RMQdecZU4PAKxlCN713dnAsk\nnQtsiYj7hzyVZ1wnkIx3u1vSWkmn1jKmWkxY+N20LW3wdn/67zsLXvOXJN1yuyt56Aq+V24kHQb8\nM3BpRDzPgSdrijyuZixvB7ZFxL2M/PnWLKbUJGAe8A8RMQ/4X5JfXXl+VseSNOO1A78MTJX0u3nG\nNIJKxjCm7109nQuUDBH4KLC0grEccIgy95sEzIyI1wMfJrkSqpRRY6p6l9uIWDzS85LeD7wNOLNg\n8+PA0QWPj0q3Dbe9cJ8nJE0EpkfEL8YU/IEeBwqLRIXHrgpJk0gSxlcj4rZ08zZJR0TENklHAtsL\n4iv1MyvVGcC5kt4GtALTJH0VeCrHmCD55bQlIn6SPv4GSdLI87P6NeAHg/8PSvom8MacYxpUyRgq\n9r2rw3MOYayGAAAFHUlEQVTBcSS1gfskKT3GekmnMfz5oBZxbQFuBYiIXkkvS/qlmsWUta2vGjfg\nHOAB4JeGbB8sfrWQND0UFnTuBk4jyYj/DpyTbr+Y/QWd36byhfCJ7C+Et5AUwk+q8ufzFZKZgAu3\nXU3abknxImbmz2yMsS1gf03jmrxjAu4CTkjvL00/p9w+K+AU4H5gSvpeXwY+kEdMJCe++6vx/xBl\nfu+KxFQX54KhcQ157mckv/Dz/qz+CPhEev8EYHMtY6raCS/jh/EIsBlYn96WFzz3kfSPfgg4u2D7\nqSRfxkeAzxVsPwS4Od1+N9BRhXjPIenF9AhwRZU/mzOAl0mS04b08zkHmAXckcZxO/CKcj+zMcZX\nmDRyj4nkJN2bfl63kvSeyjUuktrPA8BGYBVJr7uaxgTcBDwB7CKpr5xPUpyvSAzlfO+GiSn3c0Gx\nuIY8/xhpITznz2oS8NX0GD8BFtQyJg/uMzOzzOqp95SZmdU5Jw0zM8vMScPMzDJz0jAzs8ycNMzM\nLDMnDTMzy8xJw8zMMnPSsLon6XAl61H8VFKvpB9IepekBZKek7ROyTonPen8WIP7LZW0NZ3E8ID5\nzhqJpFdJujm9f4qkX887Jhu/nDSsEfwL0BMRr4mI+STTHRyVPvf9iDg1ImYDlwJ/L2lhwb7XRjKJ\n4XuBf6xGcOmcPVUTEU9GxHvTh3NI5mcyy4WThtU1SWcCuyLihsFtEbElIv5h6Gsj4j7gk8AlRZ7b\nBLwk6ZXDHOdGSV9Ir2Q2DV6xKFml8BpJP1ayqtwF6fYFkr4v6TaSqUKGi/99ku6TtEHSqnTbO9Jp\nrdcpWUGvLd2+VNJXJP1Qyap6f5hub09nh56U/n3vTa+e3iNpfvr6dZL+S9LxGT9as7JUfZZbszH6\nVZK5iLJaD/zF0I2STgdejoinR9i3PSLmS3oNsFbScSSr7T0XEadLagF+IOn29PVzgV+NiJ8XezNJ\nryWZWvsNEfGspFekT/1nJNNaI6mLZHrrD6XPvY5k4ZxpwAZJ/5puj4h4SdLHgVMjYnD538OAN0XE\nXklnAX8L/NYon5FZ2Zw0rKFI+nuSJTB3s/9Ee8BLhjz+c0m/B+wkaaIayc0AEfFTSY+SLK97NvA6\nSe9JXzMdOB7YA9wzXMJInQncEsmCTETEc+n2o9MaxatIJjH8WcE+t0XEbuAZSXeSzEx63wjHeAXw\nlfQKI/B32qrMzVNW7x4gmaETgIi4BDgLaKP44kHzSGb4HHRtRMyLiAUR8cNRjlX4fkofC/iTiJib\n3o6LZAU+SBZ7Ksfngb+LiJOBi0imTx8phpH8NXBnRLwOeOeQ9zKrOCcNq2sRcSdwiKQLCzZPZf/J\ndN+VhaSTgb8C/r7Mw71HieNI1iN4GFgDXJzWE5B0vJKlZLO4M33PWem+M9Pt00mmu4ak+avQuyS1\npIvqLCCZ7r3QznT/QdPZv6DO+RnjMiubk4Y1gncDnZIelXQ3cCPJ4kEC3jTY5ZbkF/wlEdFT5nF+\nDtwD/BtwYdpMtAJ4kGTFtvuBL5IsyDWqiHgQ+BRwl6QNJGuGA3wC+GdJvUD/kN02Aj3AD4FPRrKG\nd6G1wGsHC+EkC2BdJWkd/j5bDXg9DTOS3lPAtyPi1hxjWArsjIhr84rBbDT+ZWKW8K8nswx8pWHj\niqSPAu9hf5E7SHo4/e0Y3nMW8D0OrLMEcNZgzymzZuGkYWZmmbl5yszMMnPSMDOzzJw0zMwsMycN\nMzPLzEnDzMwy+/9FSZdwqdMa/gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df[df['Continent'] == 'Africa'].plot(kind='scatter', x='GDP_per_capita', y='life_expectancy')" ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 106, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2YXHV5//H3Jw9LlpDEpC5ghe4CAsH+hCQ0oKJmAwlS\nH9CrrdK0/VnplkKRllKroK0mWmwBL0FrG0WSYrSyBioW7YNBJIutiqxJIBQIRXBjwkOyIOQXypIE\ncv/+OGeTyWZ298zszJyZ2c/ruubKzJk5c+4dmHPP+d7fB0UEZmZmWUzIOwAzM2scThpmZpaZk4aZ\nmWXmpGFmZpk5aZiZWWZOGmZmltmkah9A0gnAaiAAAccCHwNmAhcA29OXfjQivlPteMzMrHyq5TgN\nSROArcDpwB8AOyPi2poFYGZmY1Lr5qlFwKMRsSV9rBof38zMxqDWSeM8oLvg8SWS7pW0QtKMGsdi\nZmYlqlnzlKTJwBPAayOiX1Ib8HREhKQrgVdFRFdNgjEzs7JUvRBe4NeBdRHRDzD4b+oG4NvFdpLk\nybHMzMoQERUvAdSyeWoJBU1Tko4seO43gP8ebseIqKvb0qVLc4/BMTVXXI7JMVX6Vi01udKQdChJ\nEfyPCjZfI2kOsBfoAy6sRSxmZla+miSNiHgBaBuy7X21OLaZmVWOR4SXobOzM+8QDuKYsqvHuBxT\nNo4pfzUd3FcOSVHvMZqZ1RtJRIMXws3MrME5aVhT6O/vp7e3l/7+/tFfbGZlc9KwhtfdvZr29tks\nXnwR7e2z6e5enXdIZk3LNQ1raP39/bS3z2ZgYC1wMrCR1taFbN68iba2ttF2N2tarmmYFdHX10dL\nSwdJwgA4mcmT2+nr68svKLMm5qRhDa2jo4Pdu/uAjemWjezZs5mOjo78gjJrYk4a1tDa2tpYuXI5\nra0LmT59Hq2tC1m5crmbpsyqxDUNawr9/f309fXR0dHhhGFG9WoaThpmTchJ1FwIN7NM3AW5OdTr\n2CNfaZg1EXdBbg7d3avp6rqYlpako8fKlctZsuS8kt7DVxpmNip3QW58/f39dHVdzMDAWnbsWMfA\nwFq6ui6umysOJw2zOlRu04S7IDe+ek/8ThpmdWYsNQl3QW589Z74XdMwqyOVqkm491RjG6xpTJ7c\nzp49m+uqpuGkYVZHent7Wbz4InbsWLdv2/Tp87jjjuuZP39+jpFZrY018VcradRkuVczy+bAponk\nSqOemiasdtra2uryKrHqNQ1JJ0jaIGl9+u8OSX8qaaak2yU9LGmNpBnVjsWs3rkmYfWups1TkiYA\nW4HTgUuAZyLiGkmXAzMj4ooi+7h5ysYd1yRsrJqipiHpbOBjEfFmSZuABRGxTdKRQE9EzC6yj5OG\nmVmJmmVw33nATen9IyJiG0BEPAUcXuNYml69TkNgZo2rZklD0mTgXOCWdNPQywdfTlSQ5x8ys2qo\nZe+pXwfWRcTT6eNtko4oaJ7aPtyOy5Yt23e/s7OTzs7OasbZ8AqnIRgYSHrgdHUtZNGiM90+btak\nenp66OnpqfpxalbTkNQNfCciVqWPrwZ+ERFXuxBeWe7rb2YNXdOQdCiwCLi1YPPVwGJJDwNnAVfV\nIpbxoN6nISiXazRm+atJ0oiIFyKiLSJ2Fmz7RUQsiogTI+LsiHiuFrGMB83Y1981GrP64GlEmlgj\n9fUfKVavEWFWuoZunrJ8tLW1MX/+/Lo/sY52FVHvU0WbjSe+0rBcZbmK8JWGWel8pWE1U8uCc5ar\niGas0Zg1Kl9p2AEqsTZxKUq5imikGo1Z3ppi7qlyOGnUTl7NQJVYcMbMDuT1NKzqBpuKklHkUNhU\nVM2ksWTJeSxadKavIswagJOG7ZPnAkD1uuCMmR3IhXDbxwVnMxuNaxp2EBeczRqfC+FmZpaZx2mY\nmVnunDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMqtJ0pA0Q9Itkh6S9ICk\n0yUtlbRV0vr0dk4tYjEzs/LVZES4pC8Dd0XEjZImAVOBPwN2RsS1o+zrEeFmZiVq2KnRJU0H3hwR\n7weIiJeAHZIAKv4HmZlZ9dSieeoY4GlJN6bNUF+SdGj63CWS7pW0QtKMGsRiZmZjUIv1NCYB84AP\nRMRPJH0WuAL4PPDJiAhJVwLXAl3F3mDZsmX77nd2dtLZ2VntmM3MGkpPTw89PT1VP07VaxqSjgB+\nFBHHpo/fBFweEe8seE078O2IOLnI/q5pmJmVqGFnuY2IbcAWSSekm84CHpR0ZMHLfgP472rHYmZm\nY1Or3lOnACuAycBjwPkkzVNzgL1AH3BhmmCG7usrDTOzEnkRJjMzy6xhm6fMzKx5OGmYmVlmThp1\nqL+/n97eXvr7+/MOxczsAE4adaa7ezXt7bNZvPgi2ttn0929Ou+QzMz2cSG8jvT399PePpuBgbXA\nycBGWlsXsnnzJtra2vIOz8waiAvh40BfXx8tLR0kCQPgZCZPbqevry+/oMzMCjhp1JGOjg527+4D\nNqZbNrJnz2Y6OjryC8rMrICTRh1pa2tj5crltLYuZPr0ebS2LmTlyuVumjKzuuGaRh3q7++nr6+P\njo4OJwwzK4tHhJuZWWYuhJuZWe6cNMzMLDMnDTMzy8xJw8zMMnPSMDOzzDInDUm3Snq7JCcaM7Nx\nqpQEsBz4HeARSVdJOrFKMZmZWZ0qeZyGpBnAEuAvgS3ADcA/RcSeyofncRpmZuWoi3Eakn4JeD/w\nh8AG4HPAPOC7lQ7MzMzqTyk1jW8C/wkcCrwzIs6NiNUR8SfAYaPsO0PSLZIekvSApNMlzZR0u6SH\nJa1Jr2DMzKyOZW6ekrQwItaWdRDpy8BdEXGjpEnAVOCjwDMRcY2ky4GZEXFFkX3dPGVmVqJ6aJ56\nraRXFAQ0U9LFo+0kaTrw5oi4ESAiXoqIHcC7gFXpy1YB7y4hFjMzy0EpSeOCiHhu8EFEPAtckGG/\nY4CnJd0oab2kL0k6FDgiIral7/UUcHgpgY8nXjPcrHz+/lTWpBJeO1EFbUWSJgItGY8xD/hARPxE\n0nXAFcDQNqdh26CWLVu2735nZyednZ0lhN3YurtX09V1MS0tyQJNK1cuZ8mS8/IOy6whjKfvT09P\nDz09PVU/Tik1jU8D7cD16aYLgS0R8cFR9jsC+FFEHJs+fhNJ0jgO6IyIbZKOBNZGxElF9h+3NQ2v\nGW5WvvH+/amHmsblwFrgj9Pb94APj7ZT2gS1RdIJ6aazgAeAb5F03wX4feC2EmIZF7xmuFn5/P2p\njszNUxGxF/hCeivVnwJfkzQZeAw4H5gI3CzpD4DNwHvLeN+mduCa4ckvJa8ZbpaNvz/VkTlpSDoD\nWEbSRDUJEBCDzU4jiYj7gPlFnlqU9fjj0eCa4V1dC5k8uZ09ezZ7zXCzjPz9qY5SahqbgMuAdcDL\ng9sj4pnqhLbvuOO2pjHIa4ablW+8fn9yXyNc0o8j4vRKB5DhuE2bNMbr/8xmVn31UAhfK+nTkt4g\nad7grdIBjRfd3atpb5/N4sUX0d4+m+7u1XmHZGY2qlKuNIpNIRIRcWZlQzrouE13pTHeuwKaWfVV\n60qjlN5TCyt98PFqsCvgwMD+roCTJv0KfX19JSUNN2+ZWa2VOjX62yV9WNLHB2/VCqyZHdgVEGAj\nO3c+zPr19x702uGmQHDzlpnloZTmqS+STIu+EFgB/BZwT0R0VS+85myeArj++hu46KJLgeOBrcDl\ntLZefUAT1XBTILh5y8xGUw+F8DdGxPuAZyPiE8AbgBNG2ceGMW/eHKZNew1J/t0EfPiA0ar9/f10\ndV3MwMBaduxYx8DAWrq6Lt7XJOWRrmaWh1KSxkD67wuSfhnYA7yq8iGNDx0dHbz00uPAIUAbQ0er\njpQYijVveaSrmdVCKUnjX9P1ND4NrAf6gO5qBDUeDI5WnTJlAVOnnsiUKQsOGK06UmIY3Le1dSFT\np55Ca+tCj3Q1s5ooZWr0ayJiF/ANSf8KTAFerE5Y44c0AWhN/90vyxQIyXRgu9J/zcyqr5RC+PqI\nmDfatkpr1kJ41mJ2sW61LoSb2WhyG6eRrnXxaqBV0lySiQoBppP0prIyFBurMVizKDzxt7W1HZQI\nsu5rZlZpWZqn3kqy7sVRwGfYnzT+H/DR6oTV/MYybbOnfDazvIyaNCJiFbBK0m9GxDdqEFNTGtrM\nNJZpmz3ls5nlpZSaxt+QFMOfSx/PBD4YEX9VxfiaoqYx0jrFY5kKxNOI1Df/97E81cPU6BsiYu6Q\nbS6Ej8JF6/FppB8KZrVQDyPCJ0o6pCCgVpKRaTYCj94ef0YazW/W6EpJGl8DviepS1IX8F1gVXXC\nah4evT3++IeCNbPMSSMirgauBE5Kb38dEddk2VdSn6T7JG2QdE+6bamkrZLWp7dzyvkD6l3h6O3p\n0+eNOnp7uFltG1Ez/S2l8A8Fa2oRkfkGtAOL0vuHAtMy7vcYMHPItqXAn2fYNxrd9u3bY82aNbFm\nzZrYvn37sK+76aavR2vrrJgxY160ts6Km276eg2jrKxm+lvKMfj3T58+d1z+/Za/9NxZ0jk+y62U\nQvgFwB8BsyLiOEnHA1+MiLMy7Psz4Nci4pmCbUuB5yPiM6PsG1ljrEdZC6LNVDBvpr9lLNx7yvJU\nD4XwDwBnkAzqIyIeAQ7PuG8A35XUmyafQZdIulfSCkkzSoilIZRSEG2mdvBm+lvGoq2tjfnz5zth\nWFMpZcLCXRGxW0oSl6RJJMkgizMi4klJbSTJ4yFgOfDJiAhJVwLXAkUXdFq2bNm++52dnXR2dpYQ\ndn5Kme6jmUZ5N9PfYtYoenp66Onpqf6BsrZjAdeQTBuyCVgMfBP4VKntYRSpZZDUSjYO8/oxt+3l\nZfv27dHaOivgvoAIuC9aW2cNW9dopnbwZvpbzBoRdVDTmEByJXA2yfxTa4AVMcobSDoUmBARz0ua\nCtwOfCJNEk+lr7kMmB8Rv1Nk/9EOUdcGaxqF032MNMirmdrBm+lvMWs0uY8IT4NoAWaTNEs9HBG7\nM+xzDMlVSZA0h30tIq6S9BVgDrCXZEGnCyNiW5H9GzppgE+eZlZ7uScNSW8Hvgg8SnKlcQzJif4/\nKh3UkOM2fNIwM6u1ekgam4B3RMRP08fHAf8WEbMrHdSQ4zZd0vCVh5lVWz10ud05mDBSjwE7KxxP\n0+vuXk17+2wWL76I9vbZdHevzjskM7PMSrnS+AJJL6ebSeoT7wF+DtwBEBG3ViXAJrrS8KA3M6uV\nerjSmAJsAxYAnUA/0Aq8E3hHpQNrRh70ZmaNLvPgvog4f+g2SS1ZelBZIuugN9c8zKxeZb7SkNQj\nqaPg8XygtwoxNa0sM9665mFm9ayUmsZbgc8Bfwe8Gngb0BUR66sXXnPVNAYNdyXhmoeZVUq1ahql\nNE+tkXQRyeJLTwNzB0d028FGamJqa2srmgRKmasqL246MxvfSmme+hjweeAtwDKgJx3wZ0MMNjEt\nXHhBSU1M9b54j5vOzKyU5qnPAh+JiIH0cTvJ3FOLqxhfwzVP9ff3c9RRx7N79/cZbGJqaXkLW7c+\nkumXeda5qmr9i99NZ2aNJfcutxHxZxExkE5ASERsrnbCaEQbNmxg9+42CrvV7t79SjZs2JBp/yVL\nzmPz5k3cccf1bN68qWjCyOMXv7sLmxmU1jz1BkkPkkyNjqRTJC2vWmQN7QkKm5jgyZL2HmnxnlIW\ndqqkem86M7PaKGVw32eBtwLPAETEfST1DSswd+5cJk+eQDL+cR6wgIkTg6OPProi75/XL/4s3YXN\nrPmVkjSIiC1DNr1cwViaQltbG6tWrWDKlKClZRvwIi0tr+HUU9+0rxmpv7+f3t7esq4O8vzFn6Xp\nzMyaWylJY4ukNwIhabKkvwAeqlJcDW3JkvNYv/6HSC8AP2ZgYOO+ZqTrr79hTPWIvH/xe91rs/Gt\nlN5TryQZ3LeIZD2N24FLI+KZ6oXXeL2nBvX29rJ48UXs2LFu37Zp0+aya9dP2b37epIVc58suweS\nx0uY2UjqoffU0xHxuxFxREQcHhG/V5gwJH2k0sE1so6ODnbtegy4iWRux4288MIj7N69F/gMyQKI\nD5Vdj/AvfjPLQ0k1jVG8p4Lv1fDuuONO9u4NYCnQwaRJb2TChInAj4B1wFrgj3nxxUc57LDD8gzV\nbFhjqb9Zc6pk0qj4ZVCjGuwWmwzwewT4ERMnTmTKlOMo7PUEs5AOO6BIblYvPAOAFZO5pjHqG0nr\nI2LeMM/1ATuAvcCeiDhN0kxgNcnCTn3AeyNiR5F9G66mUayecdhhr2PPnq3s2nUXgyOqk6VJ/oex\n1DbMqsEzADS+3GsaGYwU3F6gMyLmRsRp6bYrgDsi4kTgTqBpaiLFusW+/PITXHnlxzjkkDdz6KG/\nCrwB+CKQjB736GqrJ54BwIZTyaRxywjPqcix3gWsSu+vAt5dwVhyVaxbbFfX/+XjH/8ULS3H8fLL\nTzBpkoCT0j08utrqi2cAsOGU0uX2BOALwBER8X8knQycGxFXZtj3MeA5ksGA10fECknPRsTMgtf8\nIiJmFdm34ZqnBg12iz3ssKRuUXip39LyFiZMEC0tx4w4MaFZXrJOnmn1Kff1NIAbgA8B1wNExEZJ\nNwGjJg3gjIh4UlIbcLukh4GhmWDYzLBs2bJ99zs7O+ns7Cwh7PwMrpvR29t70DoZU6Ycyy23XMXM\nmTM91sLq0pIl57Fo0ZkeD9Qgenp66OnpqfpxSrnS6I2I+ZI2RMTcdNu9ETGnpANKS4HngT8kqXNs\nk3QksDYiTiry+oa90hhUraKiB/iZ2XDqoRD+tKTjSK8IJP0WGaZvlXSopMPS+1OBs4H7gW8B709f\n9vvAbSXE0lAKaxzTps3lkEMWcN11V43pRO/ukGaWh1KuNI4FvgS8EXgW+BnwuxGxeZT9jgG+SZJs\nJgFfi4irJM0CbgaOBjaTdLl9rsj+DX+lMej662/g0kv/gpaWdl566fGy24jdHdLMRlOtK41Rk4ak\nSyPic5LOiIgfpFcLEyJiZ6WDGeb4TZE0KnmiLzYOZPr0edxxx/XMnz+/soGbWUPKs3nq/PTfzwNE\nxP/WKmE0k0r2e2+U7pCegsKs+WRJGg9JegQ4UdLGgtv9kjaOurcBlT3R5z09ehauuZg1p0w1jbR3\n0xrg3KHPjVbTGKtGa54aqUdTpfu912vvKddczPKX6ziNiHgKOKXSB282g0mhpSW5qhiaFJYsOY85\nc07mnnvu4bTTTuOkkw7qYVySwXEg9WawKa5wXMpgU1w9xmtm2WUphN8cEe+VdD8HDsATEBFx8jC7\nVibABrnSyPLrerSk0ix8pWGWvzyvNC5N/31HpQ/eTEb6dQ2wYcMGurouZmBgbfqajXR1LWTRojOb\n7kQ6WHPp6lp4QFNcJf/Oem2aM2t2oyaNiHgy/beqtYtGd2Ch+2Sgh127HuWuu/6TBQvOYcKENgYG\nZlGs91QznvSqOQXFeLliM6tHWZqndlJ8XqjB5qnp1Qis4PgN0TwF+09mETN48cWnmDKlgxdf7APu\nBl4FnAj0UKzJxr+cs3HTl1k2uY3TiIhpETG9yG1atRNGo1my5DzWrfsvIp4F7ubFF1cBJ5Cc3NpI\nJgl+A1OnnnJAN1l3T83O6zyY5auS62kY8PzzzzNlyrEkJ7UOYAv7x2acxJQpLdx666fZvHkTS5ac\nt29p2IGBtezYsY6BgbV0dV3sAXHDaJSBjWbNykmjwg48qbUBlwOvZ9q0ubS2LuQf//GLnH322fua\nUvzLuTSNMLDRrJmVsp6GZVCs59B1132OefPmHFSv6O/v59lnnx1SQC/+y9k1j/28zoNZfjLPcpuX\nRiiEFzuhj3aSL+wB9MIL/4M0kSlTji06Unxob6HrrruqaBIyMxuU2yy3eav3pFFO989iPYCmTFnA\nbbetZu7cuQddjQx9bdLc9ZoxTa9uZs2tHhZhsiGyFrGHzvZarI7R0nIMM2fOPOjKodhr4Xh27lzp\normZ1ZyTxhhkKWIX605bSg+gYq+FrSQ9s1w0N7PactIYg9FO/sNdiQCZewANXSoWXk/SI6vtoOOZ\nmVWbe0+NwWhzLI00H1UpPYAKX7t+/b1cdtkVTJ789arM6WRmNhIXwitguJ5S1Zrywt1vzWw0Dd97\nStIEYB2wJSLOlbQUuADYnr7koxHxnSL71X3SGEmlF14qlxON2fjSDEnjMuBUYHpB0tgZEdeOsl9D\nJw3I/4TtWWHNxp+GThqSjgJuBD4F/HlB0ng+Ij4zyr4NnzTy5FlhzcanRh+ncR3wIQ6eYv0SSfdK\nWiFpRo1iGVc8t5WZVVLVe09JejuwLSLuldRZ8NRy4JMREZKuBK4Fuoq9x7Jly/bd7+zspLOzs9jL\nrIiDF4dyN12zZtTT00NPT0/Vj1P15ilJfwP8HvAS0ApMA26NiPcVvKYd+Hax9cbdPDV29VKMN7Pa\naeiaxr6DSQuAD6Y1jSMj4ql0+2XA/Ij4nSL7OGlUQN7FeDOrrWoljTwH910jaQ6wF+gDLswxlqrL\n+6Td1tbmZGFmY+bBfTUw2Dw0YcLR7N27xc1DZlZ1TdE8VY5GTxr9/f0cddTx7N79fQYL0S0tb2Hr\n1kf8y9/MqqbRu9yOWxs2bGD37jYKu7zu3v1KNmzYkGdYZmZlcdKoiSc4cGrzJ3OMxcysfG6eqrL+\n/n5e/epj2bNnMskaGH1MnryHxx9/zM1TZlY1bp5qUG1tbaxatYIpU4KpU/+XKVOCVatWOGGYWUPy\nlUaN5N3l1szGF/eeMjOzzNw8ZWZmuXPSMDOzzJw0zMwsMyeNHPX399Pb20t/f3/eoZiZZeKkkZPu\n7tW0t89m8eKLaG+fTXf36rxDMjMblXtP5cBLsJpZtbn3VBPxEqxm1qicNHJw4BKs4CVYzaxROGnk\noK2tjZUrl9PaupDp0+fR2rqQlSuXu2nKzOqeaxo58tQiZlYtnkbEzMwya/hCuKQJktZL+lb6eKak\n2yU9LGmNpBm1isXMzMpTy5rGpcCDBY+vAO6IiBOBO4GP1DAWMzMrQ02ShqSjgLcBKwo2vwtYld5f\nBby7FrGYmVn5anWlcR3wIaCwOHFERGwDiIingMNrFIuZmZWp6klD0tuBbRFxLzBSUcbVbjOzOjep\nBsc4AzhX0tuAVmCapK8CT0k6IiK2SToS2D7cGyxbtmzf/c7OTjo7O6sbsZlZg+np6aGnp6fqx6lp\nl1tJC4APRsS5kq4BnomIqyVdDsyMiCuK7OMut2ZmJWr4LrdFXAUslvQwcFb62MzM6pgH95mZNaFm\nvNIwM7MG46RhZmaZOWmYmVlmThpV4vW/zawZOWlUgdf/NrNm5d5TFeb1v82sHrj3VIPw+t9m1syc\nNCrM63+bWTNz0qgwr/9tZs3MNY0q8frfZpYnrxFuZmaZuRBuZma5c9IwM7PMnDTMzCwzJw0zM8vM\nScPMzDJz0jAzs8ycNMzMLDMnDTMzy6zqSUPSIZJ+LGmDpAck/U26famkrZLWp7dzqh2LmZmNTdWT\nRkTsAhZGxFySqV/PlHRG+vS1ETEvvX2n2rFUSk9PT94hHMQxZVePcTmmbBxT/mrSPBURL6R3D0mP\n+Wz6uOJD3GuhHv8ncUzZ1WNcjikbx5S/miQNSRMkbQCeAnoi4sH0qUsk3StphaQZtYjFzMzKV6sr\njb1p89RRwFskLQCWA8dGxBySZHJtLWIxM7Py1XyWW0kfA16IiM8UbGsHvh0RJxd5vae4NTMrQzVm\nuZ1U6TccStIrgT0RsUNSK7AY+ISkIyPiqfRlvwH8d7H9q/FHm5lZeaqeNIBXAaskiaQ57KsR8T1J\nX5E0B9gL9AEX1iAWMzMbg7pfhMnMzOpHriPCJV0j6aG0B9U3JE0veO4jkh5Jnz+7YPs8SRsl/Y+k\nzxZsb5H09XSfH0n6lSrEe46kTemxL6/0+w851lGS7kwHRN4v6U/T7TMl3S7pYUlrCnudlfqZjSG2\nCemAzG/VUUwzJN2SHucBSafnHVd6jAfS9/ta+v9oTWOStFLSNkkbC7ZVLIZyvnfDxJT7uaBYXAXP\nfVDSXkmz8v6s0u1/kh73fklX1fSziojcbsAiYEJ6/yrgb9P7rwU2kDSfdQA/Zf9V0Y+B+en9fwfe\nmt7/Y2B5ev884OsVjnVCGkc7MBm4F5hdxc/mSGBOev8w4GFgNnA18OF0++XAVeV+ZmOI7TLgn4Bv\npY/rIaYvA+en9ycBM/KMK/3/5DGgJX28Gvj9WscEvAmYA2ws2FaxGCjjezdMTLmfC4rFlW4/CvgO\n8DNgVrrtpBw/q07gdmBS+viVNY1pLF/USt6Ad5PUOwCuAC4veO4/gNNJTqQPFmz/beAL6f3vAKen\n9ycC/RWO7/XAfxQ8PiDGGnw+/5J+sTYBR6TbjgQ2lfuZlRnHUcB30/9xB5NG3jFNBx4tsj23uICZ\n6fFnpl/ib+X1348kgRWedCoWQ7nfu6ExDXkut3NBsbiAW4DXcWDSyO2zIvkBcmaR19UkpnqasPAP\nSDIgwKuBLQXPPZ5uezWwtWD71nTbAftExMvAc4WXkhUwNKbCY1eVpA6SXxt3k3zZtwFE0vvs8GHi\ny/KZleM64ENAFGzLO6ZjgKcl3aik2exLkg7NM66IeBb4DPDz9P13RMQdecZU4PAKxlCN713dnAsk\nnQtsiYj7hzyVZ1wnkIx3u1vSWkmn1jKmWkxY+N20LW3wdn/67zsLXvOXJN1yuyt56Aq+V24kHQb8\nM3BpRDzPgSdrijyuZixvB7ZFxL2M/PnWLKbUJGAe8A8RMQ/4X5JfXXl+VseSNOO1A78MTJX0u3nG\nNIJKxjCm7109nQuUDBH4KLC0grEccIgy95sEzIyI1wMfJrkSqpRRY6p6l9uIWDzS85LeD7wNOLNg\n8+PA0QWPj0q3Dbe9cJ8nJE0EpkfEL8YU/IEeBwqLRIXHrgpJk0gSxlcj4rZ08zZJR0TENklHAtsL\n4iv1MyvVGcC5kt4GtALTJH0VeCrHmCD55bQlIn6SPv4GSdLI87P6NeAHg/8PSvom8MacYxpUyRgq\n9r2rw3MOYayGAAAFHUlEQVTBcSS1gfskKT3GekmnMfz5oBZxbQFuBYiIXkkvS/qlmsWUta2vGjfg\nHOAB4JeGbB8sfrWQND0UFnTuBk4jyYj/DpyTbr+Y/QWd36byhfCJ7C+Et5AUwk+q8ufzFZKZgAu3\nXU3abknxImbmz2yMsS1gf03jmrxjAu4CTkjvL00/p9w+K+AU4H5gSvpeXwY+kEdMJCe++6vx/xBl\nfu+KxFQX54KhcQ157mckv/Dz/qz+CPhEev8EYHMtY6raCS/jh/EIsBlYn96WFzz3kfSPfgg4u2D7\nqSRfxkeAzxVsPwS4Od1+N9BRhXjPIenF9AhwRZU/mzOAl0mS04b08zkHmAXckcZxO/CKcj+zMcZX\nmDRyj4nkJN2bfl63kvSeyjUuktrPA8BGYBVJr7uaxgTcBDwB7CKpr5xPUpyvSAzlfO+GiSn3c0Gx\nuIY8/xhpITznz2oS8NX0GD8BFtQyJg/uMzOzzOqp95SZmdU5Jw0zM8vMScPMzDJz0jAzs8ycNMzM\nLDMnDTMzy8xJw8zMMnPSsLon6XAl61H8VFKvpB9IepekBZKek7ROyTonPen8WIP7LZW0NZ3E8ID5\nzhqJpFdJujm9f4qkX887Jhu/nDSsEfwL0BMRr4mI+STTHRyVPvf9iDg1ImYDlwJ/L2lhwb7XRjKJ\n4XuBf6xGcOmcPVUTEU9GxHvTh3NI5mcyy4WThtU1SWcCuyLihsFtEbElIv5h6Gsj4j7gk8AlRZ7b\nBLwk6ZXDHOdGSV9Ir2Q2DV6xKFml8BpJP1ayqtwF6fYFkr4v6TaSqUKGi/99ku6TtEHSqnTbO9Jp\nrdcpWUGvLd2+VNJXJP1Qyap6f5hub09nh56U/n3vTa+e3iNpfvr6dZL+S9LxGT9as7JUfZZbszH6\nVZK5iLJaD/zF0I2STgdejoinR9i3PSLmS3oNsFbScSSr7T0XEadLagF+IOn29PVzgV+NiJ8XezNJ\nryWZWvsNEfGspFekT/1nJNNaI6mLZHrrD6XPvY5k4ZxpwAZJ/5puj4h4SdLHgVMjYnD538OAN0XE\nXklnAX8L/NYon5FZ2Zw0rKFI+nuSJTB3s/9Ee8BLhjz+c0m/B+wkaaIayc0AEfFTSY+SLK97NvA6\nSe9JXzMdOB7YA9wzXMJInQncEsmCTETEc+n2o9MaxatIJjH8WcE+t0XEbuAZSXeSzEx63wjHeAXw\nlfQKI/B32qrMzVNW7x4gmaETgIi4BDgLaKP44kHzSGb4HHRtRMyLiAUR8cNRjlX4fkofC/iTiJib\n3o6LZAU+SBZ7Ksfngb+LiJOBi0imTx8phpH8NXBnRLwOeOeQ9zKrOCcNq2sRcSdwiKQLCzZPZf/J\ndN+VhaSTgb8C/r7Mw71HieNI1iN4GFgDXJzWE5B0vJKlZLO4M33PWem+M9Pt00mmu4ak+avQuyS1\npIvqLCCZ7r3QznT/QdPZv6DO+RnjMiubk4Y1gncDnZIelXQ3cCPJ4kEC3jTY5ZbkF/wlEdFT5nF+\nDtwD/BtwYdpMtAJ4kGTFtvuBL5IsyDWqiHgQ+BRwl6QNJGuGA3wC+GdJvUD/kN02Aj3AD4FPRrKG\nd6G1wGsHC+EkC2BdJWkd/j5bDXg9DTOS3lPAtyPi1hxjWArsjIhr84rBbDT+ZWKW8K8nswx8pWHj\niqSPAu9hf5E7SHo4/e0Y3nMW8D0OrLMEcNZgzymzZuGkYWZmmbl5yszMMnPSMDOzzJw0zMwsMycN\nMzPLzEnDzMwy+/9FSZdwqdMa/gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+cXHV97/HXG/KDhRAMdvkhP3ZFwaA15IcBlfhgAyRi\nvUIeXIWmtiiNXCjQUm5rAa030XpbxAKl9UJRUsQW02CrAlYFUrK2F0UCCQSQ8HsXUIgLQoTehYTk\nc/84Z5LZZZI9s5kzc87s+/l47GNnvnPOnM8ewnzm+1sRgZmZWRa7tDoAMzMrDycNMzPLzEnDzMwy\nc9IwM7PMnDTMzCwzJw0zM8usKUlD0kWSHpS0VtL1kiZKWizpGUmr058TmhGLmZmNnvKepyGpC1gJ\nTI2IjZKWA98HuoGXI+KyXAMwM7OGaUZN49fARmAPSeOA3YGfp6+pCdc3M7MGyT1pRMSLwKXAUyTJ\n4qWIWJG+fK6keyVdI2mvvGMxM7Odk3vSkHQIcD7QBbwFmCTpd4ArgUMiYjrwHOBmKjOzghvXhGu8\nB7gjIn4FIOnbwPsj4ptVx3wNuLnWyZK8OJaZ2ShERMO7AJrRp/Ew8F5Ju0kScBzwkKT9qo45GXhg\ne28QEYX/Wbx4cctjaJc4yxCj43ScRf/JS+41jYi4T9I3gHuAzcBq4KvAUknTgS1AH3Bm3rGYmdnO\naUbzFBHxZeDLw4pPa8a1zcyscTwjvEF6enpaHUImZYizDDGC42w0x1kOuU/u21mSougxmpkVjSSi\npB3hZmbWJpw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzM\nLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNsx0YGBhg1apVDAwMtDoUs0Jw0jDbjmXLltPVNZV5\n886iq2sqy5Ytb3VIZi3nTZjMahgYGKCrayqDgyuBacBaOjrm0t+/js7OzlaHZzYib8Jk1kR9fX1M\nmNBNkjAApjF+fBd9fX2tC8qsAJw0zGro7u5m48Y+YG1aspZNm/rp7u5uXVBmBeCkYVZDZ2cnS5de\nSUfHXCZPnklHx1yWLr3STVM25rlPw2wHBgYG6Ovro7u7e0jC2F65WVGUuk9D0kWSHpS0VtL1kiZI\nmiLpVkkPS7pF0l7NiMWsHp2dncyePXtIYvCoKhvLcq9pSOoCVgJTI2KjpOXA94F3Ai9ExCWSLgCm\nRMSFNc53TcMKw6OqrCzKXNP4NbAR2EPSOKAD+DlwEnBdesx1wIImxGK2Uzyqysa63JNGRLwIXAo8\nRZIsNkTECmDfiFifHvMcsE/esZjtLI+qsrEu96Qh6RDgfKALeAtJjePjwPA2J7dBWeF5VJWNdeOa\ncI33AHdExK8AJH0HeD+wXtK+EbFe0n7AL7f3BkuWLNn6uKenh56enlwDNtuRhQtP5fjjj/XoKSuU\n3t5eent7c79OMzrCjwD+CZgNvAZcC6wCDgZ+FRFfcke4mVlj5dUR3pR5GpI+DXwS2AysAT4F7Anc\nABwE9AOnRMRLNc510jAzq1Opk8bOcNIwM6tfmYfcmplZm3DSsFLzJklmzeWkYaXl5TzMms99GlZK\nY3E5Dy+SaPVwn4ZZlbG2nIdrVVYUrmlYKY2lmsZY+lutcVzTMKsylpbzGGu1Kis21zSs1MZCO79r\nGjYarmmYDTMWEgaMrVqVFZ9rGlZKy5YtZ9Gis5kwIVmqfOnSK1m48NRWh5WrsZIkrTG8jIhZys01\nZiNz85RZyh3DZq3jpGGl493zzFrHScNKxx3DZq3jPg0rLXcMWyuU5d+dO8LNzFqsTKP2nDTMzFqo\nbKP2PHrKSsn7XVi78Ki9hJOG5abZK7M6QVmePGov4aRhuRgYGGDRorMZHFzJhg33MDi4kkWLzs7t\nA91LhxdbOyR0j9pLuE/DcrFq1SrmzTuLDRvu2Vo2efJMVqy4mtmzZzf0WmVrax5rytR5nMVYHz3l\nmobloplVebc1F1eza5zN0NnZyezZswudMPLkpGG5aGZV3m3NxeWE3n5yb56SdBiwHAhAwCHA54Ap\nwBnAL9NDPxMRP6xxvpunSqxZVflKE8j48V1s2tRf+iaQduGmw9Zpi3kaknYBngGOAn4feDkiLhvh\nHCcNy6Qsbc1jjRN6a7RL0pgPfC4iPiBpMfBKRFw6wjlOGmYl54TefHkljXGNfsMRnAosq3p+rqTf\nA+4G/iQiNjQ5HjNrgs7OTieLNtG0pCFpPHAicGFadCXwhYgISV8ELgMW1Tp3yZIlWx/39PTQ09OT\na6xmZmXT29tLb29v7tdpWvOUpBOBsyPihBqvdQE3R8S0Gq+N+eYpV+2H8v0wG1k7zNNYSFXTlKT9\nql47GXigibGUhmc6D+X7YdZaTalpSNod6AcOiYiX07JvANOBLUAfcGZErK9x7pitaXi44lBFuh+u\n7VjRlbqmERH/LyI6KwkjLTstIqZFxPSIWFArYYx1nhg1VFHuh2s7NpZ5RniOdnaRNs90HqoI96Md\nl8Uwq4eTRk4a8W3Uq2oOVYT7UZTajlmreJXbHDS67d3t50O18n4UqV/FbEfaZXLfmFD5Njo4+MZv\no7U+WEb6EPTEqKFaeT8qtZ1Fi+YOWRbD/31srHBNIwf1fBttt70Gxopm1nZc07TRaIu1p0ajjEkD\nsi3S5qYOG4m/VNhoOWmU0EjfEJu5u12WeKxY/KXCdkbL52lI+rakD6fLm1sGI+3w1cwhpJ5bUD4e\nqWVFVE8CuBL4HeBRSRdLekdOMY0ZzRpC6rkF5VSEeSlmw2VOGhGxIiI+DswkWfZjhaQfSzo9XcHW\nRmHhwlPp71/HihVX09+/Lpf26jJ9Y93ZCZHtpAjzUsyGq6tPQ9Kbgd8Ffg/4BXA9MAd4d0T05BJg\nifs0iqIsbePu9K3NfVE2Gi3vCJf0HeAdwD8CX4+IZ6teuzsi3tPo4NL3btuk0cwPgyJvuTkwMMCa\nNWtYsGBh4RObWVkUIWnMjYiVjQ4gw3XbMmm04lt1Eb+xVu7DLrt08l//tRl4dOtreY4kM2t3RUga\n5wDXR8RL6fMpwMKIuLLRQQ27btsljaHNRfsDt7Hbbufw1FOPFObDvBneeB/eAfTimobZzmv5kFvg\njErCAIiIF4EzGh3QWLCtY/ohYCpwKa++upGrr/5aawNrsqEd9J3AVcD72GOPI9zpa1ZQ9dQ07gem\nVb72S9oVWBsR78oxvrataRx88GG8+qoYy9+sa3XQ77bbMdx443JmzJgxZu6DWR6KUNP4IbBc0nGS\njiPZuvWHjQ5oLOjs7OSzn/008GbKMAw2L7WGlP7DP/w98+fPd8IwK6h6ahq7AGcCx6VFtwHXRMTm\nnGKrXLctaxpr1qzhpJNO5dVXf8RYrWlUFLGD3qzsWt4R3irtljSqR00NDj5OxGY6Og7d4aKGO/pA\n9QeumdXS8uYpSUdLuk3SI5KekPSkpCcaHVA7G76cx8aN/8G4cRP42tcu5LvfXcbxxx875PiR1ovy\nelJm1mz1NE+tA84H7gG2NklFxAv5hLb1um1T06i1qm1Hx7vZsuUpdtvt7UPma4w0i7sss7zNrDVa\nXtMANkTEDyLilxHxQuWn0QG1s1oL0A0OPs5rr934hoUER1ovqkzrSZlZ+6gnaayU9GVJ75M0s/KT\nW2RtaPhooYkTj6GjYz+gJz1i2wf/SCucegVUM2uFevYIPyr9Xb3GVADH1jh2K0mHAcvTYwUcAnyO\nZA2r5UAXyaq5p0TEhjriKaWFC0/l+OOPpa+vj0mTJjFr1hySD/6kianywT/SXtTeq9rMWqGpo6fS\nYbvPkCSgc4EXIuISSRcAUyLiwhrntE2fRi0jLSRYa3RUdRng0VNm9gaFGHIr6cPAu4DdKmUR8YU6\nzp8PfC4iPpB2rB8TEesl7Qf0RsTUGue0ddKA+obNevlwM8ui5UlD0t8DuwNzgWuAjwJ3RcSizBeT\nlgJ3R8RVkl6MiClVr/0qIvaucU7bJ42sPGLKzLLKK2nU06fx/oiYJmltRHxe0qXAD7KenO7udyJw\nQVo0PBNsNzMsWbJk6+Oenh56enqyXratVEZMDQ6+ccRUddLwhD+zsae3t5fe3t7cr1NPTeOnEXGU\npDuBk4EXgAcj4u0Zzz8RODsiTkifPwT0VDVPrYyIw2uc55pGKktNw81XZgbFmKfxPUlvAr4MrCYZ\n8bSsjvMXDjv+JuCT6eNPADfW8V5tod79sEfaM3r4jPPqeR9mZo1QT01jYkS8VnlM0hn+aqVshHN3\nB/qBQyLi5bRsb+AG4KD0tVOq9+uoOrctaxo7UyPYXvNTrRnn3v3ObGwqQkf46oiYOVJZo7Vj0sir\nQ9sd5WZW0bKO8LS/4QCgQ9IMkgl6AJNJRlNZnbJ2aNfLE/7MLG8j1jQkfYKk7+E9wCq2JY1fA9dF\nxLdzDdA1jVG9v0dPmY1tRWie+u8R8a+NDiDDddsuacDIM8HNzHZGEZLGXwKXVDqrJU0B/iQi/rzR\nQQ27blsmDXCNwMzyU4SksSYiZgwrc0e4mVkBFWGexq7pUNtKQB3AxB0cb2ZmbaaeZUSuB/5d0rXp\n89OB6xofkpmZFVW9q9yeAByfPr0tIm7JJaqh13TzlJlZnYqwYCHAQ8DrEbFC0u6S9qzM8DYzs/aX\nuU9D0hnAvwBXp0UHAN/NIygzMyumejrCzwGOJpnUR0Q8CuyTR1DtrN5FCs3MiqSepPFaRGysPJE0\njh3sgWGJ6iSxbNlyurqmMm/eWXR1TWXZsuWtDs/MrC71zNO4BHgJOA34Q+Bs4GcR8dn8wit3R/jw\nlWxff30jmzbdgRcTNLO8FWGexoXAAHA/cCbwfSDX2eBlVmtvi02btgDjSZbw2n/rIoVmZmWRefRU\nRGyRdB3wU5JmqYdLWwVoglor2cL+wFHAocCTDA5uoru7u1UhmpnVrZ7RUx8GHgf+FvgK8JikD+UV\nWNl1dydNUrA2LVkL/IJkw8J7gF6kXVsUnZnZ6NTTPHUpMDcieiLiGGAucHk+YZVfZ2cnl19+MRMn\nHsOee85g4sRj6OjYD+hJj5jGbrsd4uYpMyuVepLGyxHxWNXzJwBP7NuOZcuWc/75FzJhwkFs3PgE\nX/zi54ANVNc8Nm3qd/OUmZVKPaOnrgK6SPb1DuBjwFPACoC8NmMq4+ip7W2ydPnlF3P++Rd6Dw0z\ny10RlhHZDVgPHJM+HwA6gI+QJJFcd/Ark+1t5zpz5nT6+9d5Dw0zK626Fix8w8nShOoJf3lop5qG\n52SYWbO0fJ6GpF5J3VXPZ5NMOLBhOjs7Wbr0Sjo65jJ58kw6OuaydOmVThhmVnr19Gl8ELiCZMjt\nAcBvAYsiYnV+4ZW3ptHX18ekSZN45ZVXmt4U5W1kzazlNY1074yzSBLH7wMfypowJO0l6VuSHpL0\noKSjJC2W9Iyk1enPCaP7E4qlen2pWbPmsHr1vfT19TVtgUKvb2VmeaqnpvE54BTgf5A01J8P/ElE\n/FuGc78O/Cgirk0XOtwD+GOSYbyXjXBuaWoab+zLuARYwp57TuX11/MfLeW+FDOraHlNA3gzcGRE\n/CQirgY+SPLBv0OSJgMfiIhrASLi9YjYUHm53oCLrDJqKvnAHgC+BNzJyy+vZnBwJYsWnZ1rjWPo\n9aEyassTCM2sUeppnvrjiBiUtHv6vD8i5mU49a3A85KuTZuhvlp5D+BcSfdKukbSXqOIv1CGLh3S\nBxxEMz/Aay1d4gmEZtZImedpSHofsBSYBBws6QjgzIg4O8M1ZgLnRMTdkv6GZMXcvwO+EBEh6YvA\nZcCiWm+wZMmSrY97enro6enJGnZTVUZNLVo0l113fQuvvPI4yQd40lSU9wd49fWrJxC6acqs/fX2\n9tLb25v7derp0/gp8FHgpoiYkZY9EBG/OcJ5+wI/iYhD0udzgAsi4iNVx3QBN0fEtBrnl6ZPo6Iy\nemn16ntbMgPco6fMrAgzwomIp6UhMWzOcM56SU9LOiwiHgGOA34mab+IeC497GTggXpiKbLOzk46\nOzuZPXs2J5+8oOkf4JXrm5k1Wj1J42lJ7wdC0njgPOChjOf+EXB9et4TwOnA30maDmwh6QA4s45Y\nSsMf4GbWTuppnvoNkjkax5OMeroVOC8iXsgvvHI2T2XhJiQzy1PLh9xGxPMR8fGI2Dci9omI361O\nGJIuanRw7WJgYIBVq1ZtHW7rCXhmVlY7tWDhkDeSVkfEzIa82dD3LV1No7oWsWLF7SxadDYTJiTD\nYSvLo3sCnpnlqRAd4SNoq4l6o7Vs2fIhSeL11zeyadMd6TLpaznvvA8wYcLbqDV/Y3jScBOWmRVN\nPTPCR1Ku6kAOBgYGWLTobAYHV7Jhwz0MDq5k06YtwP7pEdMYP/5gNm58kpEm4LkJy8yKqJFJY8zX\nNGot45EkjNvS52vZvPkXXHHFJTtcNr1W8sl7CRIzsywa2Tz1rQa+VykNXcYjaY6aMOF5dtnlHCZM\n+OshE/x2NH9jezv/1WrCMjNrpnqG3B4GXAXsGxG/KWkacGJEfDHXAEvWEV7p06ieBT59+jTuuusu\njjzySA4//PAR38Or1ZrZzmr5kFvga8BFwCaAiFgL/HajAyq7hQtPpb9/HStWXE1//zoAZs2aw3nn\n/S2zZs3J1Dfhnf/MrKjqqWmsiojZktZUrT11b0RMzzXAktU0qu1sjcGjp8xstIow5PZ5SW8jHSUl\n6aPAs40OqJ3sbN+ElyAxs6KpJ2mcA3wVmCrp58CTwMdziapN1OoY9/4WZlZmI/ZpSDovfbh/RBwP\ndAJTI2JORPTnGl1J3XHHHSxevJhHHnmEyy+/mIkTj2HPPWe4b8LMSm/EPo1Kv0Vey4SMpGx9GvPn\n/xa33dYLHAg8g7SFSZMOY+PGfq644q8588wzWhyhmY0FefVpZEkay4D3AG8BHq9+CYhaGyc1UpmS\nxh133MGcOfOAO6k0R8F7SSb37elhs2bWNC3rCI+IhZL2A24BTmx0AO3k1ltvJalhVM8IPwD4ILDU\nE/TMrPQyzdOIiOci4oiI6B/+k3eAZTJ//nzgGarXlYKfA/8E/AEbNz7pTnAzK7UsHeE3pL/vl7S2\n6ud+SWtHOn8sOfroo5k/v4ekSerQ9PcZwAJgbz772U+7lmFmpZalT2P/iHhWUlet1/OubZSpT6Pi\ne9/7HgsWnMLmzd8kSRheBsTMmqtlHeGtVsakAbXXoFq48NRWh2VmY0QrR0+9TO29MiqjpyY3Oqhh\n1y9l0gAvA2JmreOahpmZZVaEVW7NzGyMa+QmTLYD1U1VgJutzKyUmlLTkLSXpG9JekjSg5KOkjRF\n0q2SHpZ0i6S9mhFLK1Tv933ggYdywAGHeO9vMyulpvRpSPo68KOIuFbSOGAP4DPACxFxiaQLgCkR\ncWGNc0vdp1FrTw3oAR4GnvVQXDPLRWn7NCRNBj4QEdcCRMTrEbEBOAm4Lj3sOpIJDW2nsqfG0KVF\nuoE+qvfXMDMrg2Y0T72VZAOnayWtlvRVSbuT7DW+HpJlSoB9mhBL0w3dU4P0dx9J4vD+GmZWLs3o\nCB8HzATOiYi7JV0OXMgb535stw1qyZIlWx/39PTQ09PT+ChzUtnve9GiuYwf38Wrrz5BxGY6Oj64\nddKfm6bMbGf19vbS29ub+3Vy79OQtC/wk4g4JH0+hyRpvA3oiYj16Sq6KyPi8Brnl7pPo6IyemrS\npEk8/fTTAMyYMcMJw8xyUdo+jbQJ6mlJh6VFxwEPAjcBn0zLPgHcmHcsrdTZ2cljjz3BrFlzOOWU\ni1iwYCErVtze6rDMzOrSrNFTRwDXAOOBJ4DTgV2BG4CDgH7glIh4qca5bVPTGD6KyiOnzCwvLduE\nqREi4j5gdo2Xjm/G9YugMopqcHDbKCpvymRmZeNlRJqk1igqj5wys7Jx0miSyiiqjo65TJ48k46O\nuR45ZWal41Vum8zLpZtZM3hpdDMzy6y0Q27NzKx9OGmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ\nWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZ\nmWXmpGFmZpk5aZiZWWZOGmZmlllTkoakPkn3SVoj6a60bLGkZyStTn9OaEYsZmY2euOadJ0tQE9E\nvDis/LKIuKxJMZiZ2U5qVvOUtnMtNen6TTEwMMCqVasYGBhodShmZrloVtII4DZJqySdUVV+rqR7\nJV0jaa8mxZKLZcuW09U1lXnzzqKrayrLli1vdUhmZg2niMj/ItL+EfGspE7gNuBc4GHg+YgISV8E\n9o+IRTXOjcWLF2993tPTQ09PT+4x12NgYICurqkMDq4EpgFr6eiYS3//Ojo7O1sdnpmNAb29vfT2\n9m59/vnPf56IaHhrTlOSxpALSouBl6v7MiR1ATdHxLQax0ezY6zXqlWrmDfvLDZsuGdr2eTJM1mx\n4mpmz57dwsjMbKySlEvSyL15StLukialj/cA5gMPSNqv6rCTgQfyjiUv3d3dbNzYB6xNS9ayaVM/\n3d3drQvKzCwHzRg9tS/wHUmRXu/6iLhV0jckTScZWdUHnNmEWHLR2dnJ0qVXsmjRXMaP72LTpn6W\nLr3STVNm1naa3jxVrzI0T1UMDAzQ19dHd3e3E4aZtVRezVNOGmZmbai0fRpmZtY+nDTMzCwzJw0z\nM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9Iw\nM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzMY14yKS+oAN\nwBZgU0QcKWkKsBzoAvqAUyJiQzPiMTOz0WlWTWML0BMRMyLiyLTsQmBFRLwDuB24qEmx5KK3t7fV\nIWRShjjLECM4zkZznOXQrKShGtc6CbgufXwdsKBJseSiLP+QyhBnGWIEx9lojrMcmpU0ArhN0ipJ\nn0rL9o2I9QAR8RywT5NiMTOzUWpKnwZwdEQ8K6kTuFXSwySJpNrw52ZmVjCKaO5ntaTFwCvAp0j6\nOdZL2g9YGRGH1zjeycTMbBQiQo1+z9xrGpJ2B3aJiFck7QHMBz4P3AR8EvgS8Angxlrn5/FHm5nZ\n6ORe05D0VuA7JM1P44DrI+JiSXsDNwAHAf0kQ25fyjUYMzPbKU1vnjIzs/Jq+oxwSR+V9ICkzZJm\nDnvtIkmPSnpI0vyq8pmS1kp6RNLfVJVPkPTP6Tk/kXRw1WufSI9/WNJpOf49J0hal17rgryuM+ya\nSyWtl7S2qmyKpFvTv/cWSXtVvdaw+1pHjAdKul3Sg5Lul/RHBY1zoqSfSlqTxvqXRYyz6r12kbRa\n0k1FjVNSn6T70nt6V4Hj3EvSt9LrPijpqKLFKemw9D6uTn9vkPRHLY0zIpr6A7wDOJRkQt/MqvLD\ngTUkTVjdwGNsqwn9FJidPv4+8MH08R8AV6aPTwX+OX08BXgc2At4U+VxDn/LLmmcXcB44F5gahPu\n4RxgOrC2quxLwJ+ljy8ALk4fv7NR97XOGPcDpqePJwEPA1OLFmd67u7p712BO4Gjixhnev75wD8B\nNxXxv3t67hPAlGFlRYzz68Dp6eNxJJ8XhYuzKt5dgF+QNOm3LM5cP9xGuAErGZo0LgQuqHr+A+Ao\nkg+fn1WV/zZwVfr4h8BR6eNdgV8OPyZ9fhVwag5/w3uBH2zvb8j5/nUxNGmsI5n7QnrP1jXwvg40\nIN7vAscXOU5gd+Cu9H+8wsUJHAjcBvSwLWkUMc4ngTcPKytUnMBk4PEa5YWKc1hs84H/bHWcRVqw\n8ADg6arnP0/LDgCeqSp/Ji0bck5EbAY2KOlg39575R1zdWzNtk/UnizZiPv6UnpfR0VSN0nN6E62\nP6mzZXGmTT5rgOeA3oj4WRHjBC4HPs3QOU1FjDPIPpm3VXG+FXhe0rVp089XlYz0LFqc1U4Fvpk+\nblmcuQy5lXQbsG91Eck/pM9GxM15XLPqOpaIkQ/JbNT3VdIk4F+A8yIZdj08rpbHGRFbgBmSJgO3\nSOqpEVdL45T0YWB9RNybxrc9Lb+fNH8y72jiHAfMBM6JiLslXU7yLb1ocSYnSuOBE0maoqCFceZS\n04iIeRExrern3envHSWMn5O01VUcmJZtr3zIOZJ2BSZHxK/S8oO3c04jNes6WayXtC+AksmSv0zL\nG3lf6yJpHEnC+MeIqMzDKVycFRHxa5K23vcUMM6jgRMlPQEsA46V9I/AcwWLk4h4Nv09QNIseSTF\nu5/PAE9HxN3p838lSSJFi7PiQ8A9EfF8+rxlcba6eao6o90E/Hbak/9W4O3AXWnVa4OkIyUJOI1t\nEwFvIpkYCPAxks51gFuAeenoiCnAvLSs0VYBb5fUJWkCSTvhTTlcpxbxxvv3yfTxJxh6jxp1X+v1\nDyTtqFcUNU5Jv1EZeSKpg+TfypqixRkRn4mIgyPiEJJ/Z7dHxO8BNxcpTkm7p7VLtG0y7/0U736u\nB56WdFhadBzwYNHirLKQ5MtCRevi3JmOmVF25iwgaT8bBJ5laEfyRSS9/Q8B86vKZ5H8w3sUuKKq\nfCLJBMFHSdrLu6te+2Ra/ghwWo5/zwkkI4MeBS5s0j38JskoiteAp4DTSUaMrUhjuRV4Ux73tY4Y\njwY2k4woWwOsTu/V3gWL891pbGuA+4A/TcsLFeewmI9hW0d4oeIk6Suo/De/v/L/RNHiTN/nCJIv\nfvcC3yYZPVXEOHcHBoA9q8paFqcn95mZWWatbp4yM7MScdIwM7PMnDTMzCwzJw0zM8vMScPMzDJz\n0jAzs8ycNMzMLDMnDSs8SftIul7SY+kieHdIOknSMZJeknSPkj1NetM1mirnLZb0TLog3VpJH2nl\n3zFakvaXdEP6+AhJH2p1TDZ2OWlYGXyXZPXZt0fEbJJlNA5MX/uPiJgVEVOB84CvSJpbde5lETET\nOIVkWZOGS9fryU1EPBsRp6RPpwO/lef1zHbEScMKTdKxwGsR8bVKWUQ8HRH/Z/ixEXEf8AXg3Bqv\nrQNel/Sh5lN5AAAC8UlEQVQb27nOtZKuSmsy6yo1FiXLpl+iZHe/eyWdkZYfI+k/JN1IsmbR9uI/\nTdt2sbsuLftvku5Ma0i3pqvBVmpG35D0YyU7sn0qLe9SsvvhuPTvOyWtPX1M0uz0+Hsk/V9Jh2a8\ntWajksvS6GYN9C6StaGyWg386fBCSUcBm2PbKqG1dEXEbElvB1ZKehvJQm4vRcRR6aKUd0i6NT1+\nBvCuiHiq1ptJeifwGeB9EfGipDelL/1nRLw3PWYR8Gck+2RAshbWUcCewBpJ30vLIyJel/S/gFkR\nUdk+dxIwJyK2SDoO+CvgoyPcI7NRc9KwUpH0FZLtbjey7YN2yCHDnv9PSb8LvEzSRLUjNwBExGOS\nHifZnnY+8G5JH0uPmUyyXfEmktVDayaM1LHAtyLixfR9X0rLD0r7KPYn2Sb4yapzboyIjcALkm4n\nWVb8vh1c403AN9IaRuD/py1nbp6yonuQZHVOACLiXJJlrDupvfHMTJLVPSsui4iZEXFMRPx4hGtV\nv19l4zABfxgRM9Kft0XEivSY/6rzb6n4O+BvI2IacBaw2wgx7MhfkCyT/m7gI8Pey6zhnDSs0CLi\ndmCipDOrivdg24fp1pqFpGnAnwNfGeXlPqbE20iW+H6YZB+Ws9P+BCQdqmRb0CxuT99z7/TcKWn5\nZJKl7WHbPgYVJ6V7IbyZZAn0VcNefzk9v2Iy2zbTOT1jXGaj5qRhZbAA6JH0uKQ7gWtJtr0UMKcy\n5JbkG/y5EdE7yus8BdwF/BtwZtpMdA3wM2C1pPuBvwcyjZaKZK/x/w38SMke5JemL30e+BdJq0j2\nSai2FugFfgx8IZLNc6qtBN5Z6QgHLgEulnQP/v/ZmsD7aZiRjJ4Cbo6Ib7cwhsXAyxFxWatiMBuJ\nv5mYJfztySwD1zRsTJH0GZJ9kCud3EEywumvduI99wb+naH9LAEcVxk5ZdYunDTMzCwzN0+ZmVlm\nThpmZpaZk4aZmWXmpGFmZpk5aZiZWWb/HwLrynMzAROFAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG5ZJREFUeJzt3X+cXHV97/HXm/zADRgMdgkIdIYAuuolJJEfrUKZSEO5\n9Qo+vAJirZWmNFxEufZ6JVi9SamtgCW3FJsLwl4utLgGKipYBEQytlXRQALLryBiN/woxOFXTHUv\nCfDpH+dMMlk2yZnNnJkzu+/n47GPnfmeX5852c1nv9/v+X6/igjMzMyy2K3TAZiZWfdw0jAzs8yc\nNMzMLDMnDTMzy8xJw8zMMnPSMDOzzNqSNCSdL+lBSYOSrpO0u6Qlkp6UtDr9OrEdsZiZ2dgp73Ea\nkkrASqAvIjZJWgHcApSBjRGxLNcAzMysZdpR0/gFsAnYQ9JkYBrwVLpNbbi+mZm1SO5JIyJeAC4B\nHidJFi9GxB3p5nMk3SvpKkl75R2LmZntmtyThqRZwCeBEvAmYE9JHwKWA7MiYg7wDOBmKjOzgpvc\nhmscAXw/Ip4HkHQj8M6I+ErDPlcCN492sCRPjmVmNgYR0fIugHb0aTwC/Iak10kScDzwsKR9G/Z5\nP/DA9k4QEV37tWTJko7HMFHj7+bYHX/nv7o9/rzkXtOIiPskXQvcA7wCrAa+DPRLmgO8CgwBi/KO\nxczMdk07mqeIiC8CXxxR/JF2XNvMzFrHI8JzVqlUOh3CLunm+Ls5dnD8ndbt8ecl98F9u0pSFD1G\nM7OikUR0aUe4mZmNE04aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ\nWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZ\nmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWWVuShqTzJT0oaVDSdZKm\nSpoh6XZJj0i6TdJe7YjFzMzGLvekIakEnAnMjYjZwGTgdGAxcEdEvAW4Ezg/71jMzGzXtKOm8Qtg\nE7CHpMlAD/AUcDJwTbrPNcD72hCLmRkAtVqNVatWUavVOh1KV8k9aUTEC8AlwOMkyWJDRNwBzIyI\n9ek+zwD75B2LmRnAwMAKSqU+Fiw4i1Kpj4GBFZ0OqWsoIvK9gDQL+BZwDLABuAH4GnBZROzdsN9z\nEfHGUY6PvGM0s4mjVqtRKvUxPLwSmA0M0tMzn3Xr1tLb29vp8FpGEhGhVp93cqtPOIojgO9HxPMA\nkr4OvBNYL2lmRKyXtC/w8+2dYOnSpVteVyoVKpVKrgGb2fg1NDTE1KllhodnpyWzmTKlxNDQUFcn\njWq1SrVazf067ahpHA78PXAk8BJwNbAK+HXg+Yi4SNJ5wIyIWDzK8a5pmFnLuKaxa9rRp3EfcC1w\nD3AfIODLwEXAAkmPAMcDF+Ydi5lZb28v/f3L6emZz/Tp8+jpmU9///JxlTDylHtNY1e5pmFmeajV\nagwNDVEul8dlwsirpuGkYWY2DnVt85SZdY7HIlirOWmYjVMei2B5cPOU2Tg0UZ4Qsu1z85SZZVYf\ni5AkDGgci2C2K5w0zMahcrnMpk1DwGBaMsjmzesol8udC8rGBScNs3HIYxEsL+7TMBvHxvtYBNs+\nj9MwM7PM3BFuZmYd56RhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZ\nZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ\nWWZOGmZmltnkvC8g6c3ACiAAAbOAzwEzgDOBn6e7fiYibs07HjMzGztFRPsuJu0GPAkcDfwhsDEi\nlu3kmGhnjGZm44EkIkKtPm+7m6d+G3gsIp5I37f8A5mZWX7anTROAwYa3p8j6V5JV0naq82xmJlZ\nk3Lv06iTNAU4CVicFi0HLoiIkPR5YBmwcLRjly5duuV1pVKhUqnkGquZWbepVqtUq9Xcr5O5T0PS\njUA/8O2IeLXpC0knAWdHxImjbCsBN0fE7FG2uU/DzKxJRejTWA58CHhU0oWS3tLktU6noWlK0r4N\n294PPNDk+czMrM2afnoq7Xs4HfhT4AngSuDvI2LzDo6ZBqwDZkXExrTsWmAO8CowBCyKiPWjHOua\nhplZk/KqaTSVNCS9Efgw8PvAvwHXAccAh0VEpdXBpdd00jAza1JeSSNzR7ikrwNvAf4OeG9EPJ1u\nWiHp7lYHZmZmxdNMR/j8iFiZczyjXdc1DTOzJhWhI/xtkt7QENAMSWe3OiAzMyuuZmoa90bEnBFl\nayJibi6Rbb2GaxpmZk0qQk1jkqQtAUiaBExtdUBmZlZczYwIv5Wk0/uK9P2itMzMzCaIZpqndiNJ\nFMenRd8BroqIV3KKrX5dN0+ZmTWpEOM0OsFJw8yseUUYp/EuYClQSo8TEBExq9VBmZlZMTXTPLUW\n+CRwD7ClSSoinssntC3XdU3DzKxJHa9pABsi4tutDsDMzLpHMzWNC4FJwI3AS/XyiFidT2hbruua\nhplZkzreES5ptClEIiLe3dqQXnNdJw0zsyZ1PGl0ipOGmVnzitCngaT3AG8HXlcvi4gLWh2UmZkV\nU+ZpRCRdDpwGfJzkcdtTSB6/NTOzCaKZPo3BiJjd8H1PkvXCj801QDdPmZk1rQgTFg6n338l6U3A\nZmC/VgdkZmbF1UyfxrfS9TS+CKwGArgql6jMzKyQmmme2j0iXqq/JukM///1sry4ecrMrHlFaJ76\nYf1FRLwUERsay8zMbPzbafOUpH2B/YEeSXNJnpwCmA5MyzE2MzMrmCx9Gr8DfBQ4ALiErUnjF8Bn\n8gnLzMyKqJk+jf8aEV/LOZ7RrtuVfRq1Wo2hoSHK5TK9vb2dDsfMJpgi9Gm8I316qh7QDEmfb3VA\n48HAwApKpT4WLDiLUqmPgYEVnQ7JzKwlmqlprImIuSPKVkfEvFwi23qNrqpp1Go1SqU+hodXArOB\nQXp65rNu3VrXOMysbYpQ05iUPmpbD6gH2H0H+09IQ0NDTJ1aJkkYALOZMqXE0NBQ54IyM2uRZgb3\nXQd8V9LV6fszgGtaH1J3K5fLbNo0BAxSr2ls3ryOcrnc0bjMzFohc00jIi4CPg+8Nf3684i4eGfH\nSXqzpDWSVqffN0j6RNoncrukRyTdJmmvsX+M4ujt7aW/fzk9PfOZPn0ePT3z6e9f7qYpMxsXmlpP\nQ1IJODQi7pA0DZgUERubOH434EngaOAc4LmIuFjSecCMiFg8yjFd1adR56enzKyTOr4Ik6QzgT8G\n9o6IgyUdClweEcdnvph0AvC5iDhW0lrguIhYnw4grEZE3yjHdGXSMDPrpCJ0hH8MeBfJoD4i4lFg\nnyavdxrwlfT1zIhYn57rmTGcy8zM2qyZjvCXImKTlCQuSZNJZrrNRNIU4CTgvLRo5LHbPdfSpUu3\nvK5UKlQqlayXNTObEKrVKtVqNffrNNM8dTHwIvARktX7zgYeiog/zXj8ScDZEXFi+v5hoNLQPLUy\nIt46ynFunjIza1IRmqcWAzXgfmARcAvw2SaOPx0YaHh/E8mcVgB/AHyziXN1XK1WY9WqVdRqtU6H\nYmbWNs0+PTUV6CNpSnokIjZlPG4asA6YVX/aStLewPXAgem2UyPixVGOLVxNY2BgBQsXns3UqcmY\njP7+5Zx++mmdDsvMbIsiPD31HuBy4DGSmW4PAhZFxLdbHdSI6xYqaXiaEDPrBnkljWY6wi8B5kfE\nT9OADgb+Ecg1aRRNfZqQ4eHXThPipGFm410zfRob6wkj9TMg88C+8WLbaULA04SY2UTSTE3jbkm3\nkPRDBHAKsErS+wEi4sYc4iuc+jQhCxfOZ8qUEps3r/M0IWY2YTTTp3H1DjZHRPxha0J6zXUL1adR\n52lCzKzIOt4RPurB0tSsT1DtwjUKmTTMzIqs4+M0JFUllRveHwmsanVAZmZWXM30aXwBuFXS3wD7\nA79LsqaGmZlNEM0O7qsA3wGeBeamEw3mys1TZmbNK0Lz1OeAy4DfApYC1XTAn5mZTRDNNE+9ETgq\nIoaBH0q6FbiKZICfmZlNAE0/PSVpWkT8Kqd4RrteoZqn/KitmXWDIjRP/aakh4C16fvDJS1vdUBF\ndsUVV3LggYdw/PELKZX6GBhY0emQzMzaqpnBfT8CPgDcFBFz07IHIuI/5RhfYWoaV1xxJWeddS7w\nZuAJ4Dx6ei5qeqJC11TMrB06XtMAiIgnRhS90sJYCqtWq3HuuZ8G7gLuBVYCFzFp0psYGhrKfJ6B\ngRWUSn0sWHCWaypm1pWaSRpPSHonEJKmSPoU8HBOcRVKMrPtQSRToZN+P4DNmx/PPFFhrVZj4cKz\nGR5eyYYN9zA8vJKFC8/2Ik5m1lWaSRpnAR8jGdj3FDAnfT/ulctlXn55HY0z28KjXHrpX2VuYqpP\nqd6YeOpTqpuZdYvMSSMino2I34uImRGxT0R8OCKeq2+XdH4+IXZefWbbnp75vP71c9l99+O4/PJL\nWbTozMzn8JTqZjYe7NKEhducSFodEfNacrJtz1uIjnDY9U7s+jKxjVOqe5lYM8tDIWe53eZE0pr6\nU1WtVKSk0Qp+esrM2qEbksa4r2mYmXWLQjxyuxMtD87MzIqllUnjhhaey8zMCqiZaUTeLOm7kh5I\n38+W9Nn69oj4yzwCNDOz4mimpnElcD6wGSAiBoEP5hGUmZkVUzNJY1pE/HhE2cutDMbMzIqtmaTx\nrKSDgQCQ9AHg6VyiMjOzQmpmlttZwJeBdwIvAP8K/F5ErMsvPD9ya2Y2Fnk9crvTlfsknRsRlwL7\nRcRvS9oD2C0iNrY6GDMzK7YszVNnpN8vA4iIXzabMCTtJekGSQ9LelDS0ZKWSHpS0ur068Rmgzcz\ns/baafOUpAHgCOBNwGONm4CIiNmjHrjtOf4f8L2IuFrSZGAP4L8DGyNi2U6OdfOUmVmTOtY8FRGn\nS9oXuA04qdkLSJoOHBsRH03P9zKwQRJ4FLmZWVfZadIAiIhngMPHeI2DSJ68ujo9x90ktQyAcyT9\nflr2PyJiwxivYWZmbZClI/z6iDhV0v2kj9vWN5GteWoyMA/4WETcLemvgcUkfSQXRERI+jywDFg4\n2gmWLl265XWlUqFSqews7JbxrLRm1g2q1SrVajX362Tp09gvIp6WVBpt+84euZU0E/hhRMxK3x8D\nnBcR723YpwTcPFoC6mSfRn39i6lTkwWUvP6FmXWLwk+NvsOLSN8DzoyIn0haAkwD/nfa7IWkTwJH\nRsSHRjm2I0mjVqtRKvUxPLySZInWQXp65rNu3VrXOMys8Do5TmMj2zZLbdlE0jw1PcN1PgFcJ2kK\n8DOSx3gvkzQHeBUYAhZlDbod6mt6Dw+/dk1vJw0zm6jaUtPYFa5pmJk1rxsWYRpXent76e9fTk/P\nfKZPn0dPz3z6+5c7YZjZhOaaxk746Skz60Zd3RG+KzqdNMzMupGbp8zMrOOcNMzMLDMnDTMzy8xJ\nw8zMMnPSMDOzzJw0zMwss3GfNGq1GqtWraJWq3U6FDOzrjeuk8bAwApKpT4WLDiLUqmPgYEVnQ7J\nzKyrjdvBfZ47yswmMg/ua1J9ltokYUDjLLVmZjY24zZplMvJwkkwmJYMsnnzOsrlcueCMjPrcuM2\naXiWWjOz1hu3fRp1nqXWzCYiz3JrZmaZuSPczMw6zknDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPM\nzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzNqSNCTtJekGSQ9LelDS0ZJmSLpd0iOSbpO0\nVztiMTOzsWtXTeNS4JaIeCtwOLAWWAzcERFvAe4Ezm9TLGZmNka5z3IraTqwJiIOHlG+FjguItZL\n2heoRkTfKMd7llszsyZ18yy3BwHPSrpa0mpJX5Y0DZgZEesBIuIZYJ82xGJmZrugHUljMjAP+NuI\nmAf8kqRpamT1wdUJM7OCm9yGazwJPBERd6fvv0aSNNZLmtnQPPXz7Z1g6dKlW15XKhUqlUp+0ZqZ\ndaFqtUq1Ws39Om1ZuU/S94AzI+InkpYA09JNz0fERZLOA2ZExOJRjnWfhplZk7p6uVdJhwNXAVOA\nnwFnAJOA64EDgXXAqRHx4ijHOmmYmTWpq5PGrnDSMDNrXjc/PWVmZuOEk4aZmWU27pNGrVZj1apV\n1Gq1TodiZtb1xnXSGBhYQanUx4IFZ1Eq9TEwsKLTIZmZdbVx2xFeq9UolfoYHl4JzAYG6emZz7p1\na+nt7W15nGZmReKO8CYNDQ0xdWqZJGEAzGbKlBJDQ0OdC8rMrMuN26RRLpfZtGkIGExLBtm8eR3l\ncrlzQZmZdblxmzR6e3vp719OT898pk+fR0/PfPr7l7tpysxsF4zbPo26Wq3G0NAQ5XLZCcPMJgyP\nCDczs8zcEW5mZh3npGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll\n5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmbUlaUga\nknSfpDWSfpyWLZH0pKTV6deJ7YjFzMzGrl01jVeBSkTMjYijGsqXRcS89OvWNsXSVtVqtdMh7JJu\njr+bYwfH32ndHn9e2pU0tJ1rtXzR86Lp9h+8bo6/m2MHx99p3R5/XtqVNAL4jqRVks5sKD9H0r2S\nrpK0V5tiMTOzMWpX0nhXRMwDfhf4mKRjgOXArIiYAzwDLGtTLGZmNkaKiPZeUFoCbIyIZQ1lJeDm\niJg9yv7tDdDMbJyIiJZ3AUxu9QlHkjQN2C0i/l3SHsAJwJ9J2jcinkl3ez/wwGjH5/GhzcxsbHJP\nGsBM4OtpjWEycF1E3C7pWklzSJ6sGgIWtSEWMzPbBW1vnjIzs+5V2BHhkk6UtFbSTySd1+l4Gm1n\nsOIMSbdLekTSbY1Pg0k6X9Kjkh6WdEJD+TxJg+ln/Osc4+2XtF7SYENZy+KVNFXSV9Njfijp19sQ\n/3YHhxYpfkkHSLpT0oOS7pf0ibS8K+7/KPF/PC3vlvu/u6Qfpb+rD0r6y7S88Pd/B7F39t5HROG+\nSJLZT4ESMAW4F+jrdFwN8f0MmDGi7CLg0+nr84AL09dvA9aQNM2V089Vr+H9CDgyfX0L8Ds5xXsM\nMAcYzCNe4L8By9PXpwFfbUP8S4A/GWXftxYpfmBfYE76ek/gEaCvW+7/DuLvivufnnNa+n0ScBfw\nri66/6PF3tF7X9SaxlHAoxGxLiI2A18FTu5wTI1GG6x4MnBN+voa4H3p65NI/iFejogh4FHgKEn7\nAq+PiFXpftc2HNNSEfEvwAs5xtt4rn8Ajm9D/DD64NCTKVD8EfFMRNybvv534GHgALrk/m8n/v3T\nzYW//2ncv0pf7k7ye/sC3XP/R4sdOnjvi5o09geeaHj/JFt/UIugcbDiH6VlMyNiPSS/aMA+afnI\nz/JUWrY/yeeqa/dn3KeF8W45JiJeAV6UtHd+oW8x2uDQwsYvqUxSY7qL1v68tDv+H6VFXXH/Je0m\naQ3JeLBqRDxEl9z/7cQOHbz3RU0aRTdysOKxJImkUbc9YdDKeNvxmPTIwaGXtPDcLY9f0p4kf8md\nm/7FnufPSzvi75r7HxGvRsRckhresZIqdMn9HxH7b0k6jg7f+6ImjaeAxg6ZA9KyQoiIp9PvNeAb\nJM1p6yXNBEirgz9Pd38KOLDh8Ppn2V55u7Qy3i3bJE0CpkfE8/mFntz7SBtigStJ/g22iWVEnB2L\nX9Jkkv9w/y4ivpkWd839Hy3+brr/dRHxC5L2/CPoovvfEPs/Akd0+t4XNWmsAg6RVJI0FfggcFOH\nYwKSwYrpX11o62DF+0ni+2i62x8A9f8cbgI+mD6lcBBwCPDjtEq8QdJRkgR8pOGYXEJn278iWhnv\nTek5AE4B7sw7/vQXva5xcGgR4/+/wEMRcWlDWTfd/9fE3y33X9Kv1ZtvJPUAC0g6iwt//7cT+70d\nv/et6uVv9RdwIsmTGo8CizsdT0NcB5E8zbWGJFksTsv3Bu5IY74deEPDMeeTPMnwMHBCQ/k70nM8\nClyaY8xfAf4NeAl4HDgDmNGqeEk66a5Py+8Cym2I/1pgMP23+AZJG3Xh4id52uWVhp+Z1enPdst+\nXjoUf7fc/8PSmNcA9wGfavXva17x7yD2jt57D+4zM7PMito8ZWZmBeSkYWZmmTlpmJlZZk4aZmaW\nmZOGmZll5qRhZmaZOWmYmVlmThpWeJL2kXSdpJ+mk0R+X9LJko6T9KKke5SsvVKV9J6G4xrXHRiU\n9N5Ofo6xkrSfpOvT14dL+s+djskmLicN6wbfIJnh85CIOJJkWpkD0m3/FBHviIg+4FzgS5LmNxy7\nLJLJJU8lmQ6j5dI5e3ITEU9HxKnp2zkkE2WadYSThhWapHcDL0XElfWyiHgiIv525L4RcR9wAXDO\nKNvWAi9L+rXtXOdqSf8nrcmsrddY0qmpL1aygtq9ks5My4+T9E+Svgk8uIP4P6Ktqzxek5b9F0l3\npTWk2yX1puVLJF0r6QdKVpT7o7S8pGTVvMnp5zs1rT2dIunIdP97JP2LpEMz3lqzMZnc6QDMduLt\nJPPvZLUa+NTIQklHA69ExLM7OLYUEUdKOgRYKelgksncXoyIo9PJM78v6fZ0/7nA2yPi8dFOJult\nwGeA34yIFyS9Id30zxHxG+k+C4FPA/8z3XYYcDTwemCNpG+l5RERL0v6X8A7IqK+bOyewDER8aqk\n44EvAB/YyT0yGzMnDesqkr5EsvzrJrb+R7vNLiPe/4mkDwMbSZqoduR6gIj4qaTHSJY1PQE4TNIp\n6T7TgUOBzSQziI6aMFLvBm6IiBfS876Ylh+Y9lHsR7Kc8b82HPPNiNgEPCfpTpJpr+/bwTXeAFyb\n1jAC/05bztw8ZUX3IMkMnQBExDkkS1L2MvrCOfNIZvisWxYR8yLiuIj4wU6u1Xg+pe8FfDwi5qZf\nB0fEHek+v2zys9RdBvxNRMwGzgJet5MYduTPgTsj4jDgvSPOZdZyThpWaBFxJ7C7pEUNxXuw9T/T\nxjU2ZgOfBb40xsudosTBJFPgPwLcBpyd9icg6VBJ0zKe7870nHunx85Iy6eTTPUOW9cyqDs5XQ/h\njcBxJGvLNNqYHl83na0L6pyRMS6zMXPSsG7wPqAi6TFJdwFXA+eRJIxj6o/ckvwFf05EVMd4nceB\nH5OskLYobSa6CngIWC3pfuByINPTUpGs5/wXwPeUrPNcX5bzz4B/kLQKqI04bBCoAj8ALohkAZ1G\nK4G31TvCgYuBCyXdg3+frQ28noYZydNTwM0RcWMHY1gCbIyIZZ2KwWxn/JeJWcJ/PZll4JqGTSiS\nPkOyFnK9kztInnD6wi6cc2/gu2zbzxLA8fUnp8zGCycNMzPLzM1TZmaWmZOGmZll5qRhZmaZOWmY\nmVlmThpmZpbZfwDwA7uUkBHSvgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df[df['Continent'] == 'Africa'].plot(kind='scatter', x='GDP_per_capita', y='life_expectancy')\n", "df[df['Continent'] == 'Asia'].plot(kind='scatter', x='GDP_per_capita', y='life_expectancy')\n", "df[df['Continent'] == 'Oceania'].plot(kind='scatter', x='GDP_per_capita', y='life_expectancy')" ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 109, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2clXWd//HXB2YOHG4GoUbxdkaxxEqSMVKzjUHBylp1\nu4Gl2jRHV1ZLHmwZ3tSqtRm6ayy7ZpKgUemIppX91hJYGNtsi0lALcG8OyMiwikQAQfODHx+f1zX\nGc4MM3DOcG6uM/N+Ph7z4JxrznWdDwe9Pud79/mauyMiIpKNAaUOQEREyoeShoiIZE1JQ0REsqak\nISIiWVPSEBGRrClpiIhI1oqSNMxsppk9E/5cFR4baWZLzOw5M3vMzEYUIxYREem9gicNM3s30AC8\nDzgV+LiZjQGuAZa5+0nAcuDaQsciIiKHphgtjZOB37v7bnffA/wa+ARwPrAofM0i4MIixCIiIoeg\nGEnjj8DfhN1RQ4DzgGOBI9x9E4C7vw4cXoRYRETkEFQU+g3cfZ2Z3QIsBXYAq4E93b200LGIiMih\nKXjSAHD3e4B7AMzsW8B6YJOZHeHum8xsNLC5u3PNTMlERKQX3N3yfc1izZ6qDv88Dvg74D7gEeDi\n8CUXAT/v6Xx3j/zPDTfcUPIY+kqc5RCj4lScUf8plKK0NICHzGwU0AZc4e5vhl1WD5jZJUALMLVI\nsYiISC8Vq3vqQ90c2wJMLsb7i4hIfmhFeJ7U19eXOoSslEOc5RAjKM58U5zlwQrZ95UPZuZRj1FE\nJGrMDC/XgXAREekblDRERCRrShoiIpI1JQ0REcmakoaIiGRNSUNERLKmpCEiIllT0hARkawpaYiI\nSNaUNEREJGtKGiIikjUlDRERyZqShoiIZE1JQ0REsqakISIiWVPSEBGRrClpiIhI1pQ0REQka0oa\nIiKSNSUNERHJmpKGiIhkTUlDRESypqQhIiJZU9IQOYBkMklzczPJZLLUoYhEgpKGSA8aGxdTUzOW\nKVNmUFMzlsbGxaUOSaTkzN1LHcMBmZlHPUbpe5LJJDU1Y2ltXQGMA54mHp9ES8s6qqurSx2eyEGZ\nGe5u+b5uUVoaZnatmf3JzJ42s3vNLGZmI81siZk9Z2aPmdmIYsQiko1EIkEsVkuQMADGUVlZQyKR\nKF1QIhFQ8KRhZjXAZcB4dx8HVADTgWuAZe5+ErAcuLbQsYhkq7a2llQqATwdHnmatrYWamtrAY11\nSP9VjJbGm0AKGGpmFUAc2ABcACwKX7MIuLAIsYhkpbq6moUL7yAen0RVVR3x+CTmzp1DIpFg/vy7\nNNYh/VZRxjTM7DLgO8BbwBJ3/wcz2+ruIzNes8XdR3VzrsY0pGSSySSJRIJVq1Yx66uzqBhZwfYN\n26F9DjAbjXVIVBVqTKMi3xfsysxOAGYBNcA24EEz+yzQNRMoM0jkpBPBxMkTaf1MK4wGXgcW3ATt\nl5A51qGkIf1BwZMG8D7gCXffAmBmPwU+AGwysyPcfZOZjQY293SBG2+8seNxfX099fX1BQ1YJFMi\nkSA2Kkbr6NbgwGhg+EDYmgA2dhrrECmVpqYmmpqaCv4+Be+eMrP3Aj8GJgC7gXuAZuA4YIu732Jm\ns4GR7n5NN+ere0o6pLuLamtri/bNPplMUnNiTZeWBgwb/B727HmNhQvvYPr0aUWJRSRbheqeKtaY\nxtXAxcAeYDVwKTAceAA4FmgBprr7G92cq6QhADQ2NtIwo4HYqBipLSkWzl/I5HMmFyWJNN7fSMPl\nDVSOqqRtSxtz/20udePripq8RHJR1knjUChpCHT/bT/2wxgD9g5h0KATSKUSBf/GX4pWTpTeX8pL\nWS/uEzlU6XEFRocHRkNqUIpdu77Ltm1P0tq6goaGKwq6bqK6upoJEyaU5IatkiYSFUoaUhZqa2tJ\nbUkF4wkQ/LnDgCnhgb67YjuZTNLQcAWtrSuKliBFeqKkIWWhurqahfMXEr8vTtUPqojfG6eCwcBS\nIEnXFdt9iUqaSJRoTEPKyr7Fdmu46qqrSaWqgdeorBzAokUL+uQsJhVPlN4o28V9IvnUsdhu4kdI\npX5N+iZaUTGJyZPPLmlshZIuadLQMInKyhra2lpYuPAOJQwpCSUNKTvp7prW1v27a/rqjXT69GlM\nnny2Zk9FQH+fxaYxDSk7B6tA21eVcvaWBDSLTWMaUmCF+lbW2LiYhoYrOnXX9MXxDImOchtb0joN\nKTuF/FY2ffo0WlrWsWzZfFpa1jF9+jTtcRFhfeHfRrPYQu4e6Z8gRCk3mzdv9nh8lMNTDu7wlMfj\no3zz5s0Feb/77rvf4/FRPmJEncfjo/y+++4vyPtI7vrKv02x/5s+VOG9M//35EJcNK8BKmmUpZUr\nV/qIEXXh/1zBT1XVeF+5cmXe36vc/mfuT/rav006AVZVjY98AixU0tDsKSmIzoPVQf9voQar++Ns\nqnLR1/5tNItNYxpSIN1tl1qotQX9dTZVOeiL/zb9fRabZk9JQRVi9lR319RsqujSv01pqDR6P9bf\nFxNlSt+AYrHa/cqh63OKLv3bFJ+SRj91oJtkfxOlefK6CUrUaZ1GGTrUuekqid1ZVObJa1Ww9GdK\nGgWSjxtLVG6SURGFQVUlcunvlDQKINcbS08tkijcJKOkmDOyelKKRN4XVlNL36GkUQC53FgO1CJZ\nvmwZA9p3YJwBnEgs9qF+XxK7u/IhxVTsRK6uMImcQqwYzOcPZbgiPNtVsAd63ebNm31UPO5PgW8G\nvxf8sMGDD2kl7ebNm33lypVluxo3Koq1KrivraaW4qJAK8LV0iiAbLtRDtQiSSQS1MZijAOqgc8A\nx8dive4GKZdvrOXQFVOs1o7GtCSSCpGJ8vlDGbY00g72zf7ZZ5/1QYMOO2hLw8GfAh8Vj/fqW2bU\nv7GmP6c77/x+nyhsly9R/3eTaEMFC/uWdBdHPH68Q9zj8ffsd6O8/777fFQ87uOrqnxUPO7333df\nTu+Rvhk/9thjRSsemKv05zB8+CkOcd0guyinAnkSLYVKGlrcVwKdF6kdCTxELHY1a9as5OSTT97v\ntb1ZRLa4sZErGhqojcV4afdu3to7qNOe2vlaFHcoi9w6fw67gcuANR2/r6qqY9my+UyYMOGQYix3\nWkgovaHFfX3Ivr7qtcBY4C5Sqb089NBP93ttb4qjJZNJrmhoYEVrK09u28bju3ZR6a15n6q6uLGR\nsTU1zJgyhbE1NSxubMzp/M599rXAejS9eH/9vUCeRItaGiWwdu1aTj31/aRSA4H8fftPfyPdunUr\n106dypPbtnX8rq6qijkPPsjIkSPz8o01mUwytqaGFa2tYfQwKR5nXUtL1tfevyzIrcCNDB9+Eu3t\nr/Trkikih6pQLQ3tp1Fk6VpSZjXAywStjXHAOCoqjuuYGZPujsh83N3NOJ0o1qxaxTWzZlEbi5FI\npUi1t2fsZAEtbW2MHz8+b99WO2Z3tbZC+D41lZU57ZOQnmXW0DCpowLq3LnzqKs7VV0xIlFViIGS\nfP7QhwbCu5sNAyMdNoeP435Jw6Uer4r7iNoRHhsS88rKoT3OJto3iDzeIe5zMmZajYjF/LDBg3s9\niJ7N3yWfs7u0fkQkvyjXgXAzeyewGHDAgBOArwM/Co/XAAlgqrtv6+Z8L3SMxdLc3MyUKTPYtu3J\njKMnEnwsW4AroeKbcCkwGngdWDAY2l8BNnbqvuq24iun08Iuqsl/d1R30oPtNZWVtLS1ccfChUyb\nPj3v7yMiuSvb7il3/zMwHsDMBgCvAj8FrgGWufutZjYbuDY81md1twUqbCT4OMYDCaj6FozeG5ww\nGhgeg60JYEKnhV2PPvooFRU1ZC78GshRJHiJjeS/O6o706ZP5+zJkzWzR6QfKfaYxmTgRXdfb2YX\nABPD44uAJvpw0kiPPcydO4dZs/b14be3D6CtbTTBuu8/wZt7gxZGuqWxPUUwsyiYTbRq1RomTvwI\nFRVHs337C2QmoB1s5JJhw3htzx7uWLiwKDfx6upqJQuRfqTYSWMacF/4+Ah33wTg7q+b2eFFjqVo\nMtdMJFIp5s2dy6l1ddTW1rJs2fJOA8ENDV9i4Q8XUDmqkl2bd+E2kHjVh8NB4jnMmnVNl9lGZ3TM\nNkoPIg8bNowdO3aQTCZ1QxeRvCralFszqwReA05297+Y2RZ3H5Xx+7+6+9u6Oc9vuOGGjuf19fXU\n19cXI+S8ONDUVAhmIQ0bNoz169cDMH78+I7jXWdPJRKJ/cZEhg07hdtv/wrnnXce1dXV2ulPpJ9q\namqiqamp4/lNN91UkDGNXGYxPQx8DBjQmxF34HzgVxnP1xK0NiDojFnbw3mHNoWgxFauXOl1I0bs\nq98BPr6qyr/5zW911FmqjA312JCYj6gd4fGquN/XeF+3M4oOVotItYpEJI0IVLm9g6DY6vNmNsfM\nTsoxP00HMpcMPwJcHD6+CPh5jtcrC7W1tSRSqYx1zvByKsXNN98WbtL0K9r27iH1+RTbLt5G62da\nueiSizjx2GP3W2l9sOq5qooqIoWWc/eUmY0gSADXE9R9uAv4sbu3HeCcIUALcIK7bw+PjQIeAI4N\nfzfV3d/o5lzPNcao6To19cvXXcet//7TsJupGUZOgZn7ZhvbPBi2NfhgT2b/ldY91SLqdhpunmpM\niUh5KdSU25yShpm9Dfgc8A8E4xP3Ah8ETnH3+nwHF75n2ScN6HyjBzoXLKw4Di7d1TFjKr4AHm2H\nTwLrgA9XVTF/2bKsCvelxzTSA+sa0xDpn0qeNMzsp8BJBIvyfuDuGzN+9wd3f1++gwuv3SeSRqbF\njY00XHQxb7UNxDmKgQNfY0CsnT3xNga9CQvbg6ZcHfAV4Eu9qOmktRMi/VsUksYkd1+R7wCyeN8+\nlTQyZ1MdCSwF/mnQIG67/XZmXXklv0ilqCcY+zgTiA0ezJ13362V1iKSkyiURn+XmR2WEdBIM7si\n3wH1datXr6Z6wACOJFjOtx14s303M2+YSaoCPl5ZSV1VFZPica7/5jf57apVnHDiiZHe/lRE+o9c\nksZlmQPV7r6VYNccOYDMPa8bGxdz4YXTeW7naI5jMA3AjArg7fDW1rdIfSDF3sEVzHnwQda1tHD8\nmDGcdsZpTJk6hZoTa2i8P7f9KkRE8i2X7qlngHHpviIzGwg87e7vLmB8Zd091XWhXXt7ira2XwBD\ngQ1Q8XedixMugmFvH8byh5ZTW1tLzYk1tH6mdd8A+X1xWl7IfmxDRPqvKBQs/BWw2Mzmh88vD49J\nN5LJJA0NV9DauoLW1vRa8DOBvyMo9PsCVBmMDhPiaKAK2ra0daz+jo2K0Tq6teP3laNy269CRCTf\nckkaswkSxT+Fz5cCC/IeUR+RSCT2q0Ib7Af+DYI1kk3w5qTOxQm3wLzb53UkhdSWVKffpxOKiEip\nZJ003H0v8L3wRw5i1ao1bN++jv3LoE8JX1FPpR3DgB8niY2KkdqSYt7t87j8Hy8HwtXf8xfScHkD\nlaMqadvSxsL5xalcKyLSk1zGNM4CbiTYNKmCYOcgd/cTChYd5TmmsW9l9mzgFuAY4HkqKwfS1vYE\nmau1n3zyN+zYseOg27lqzYWI5CIKYxoLgVnAk8CefAfSl6RrQLW2fhX4ApBg2LBLmD17OjffPKnT\nau2TTz75gNfqzX4VSjQiUii5tDR+7+6nFzie7t637Foaa9euZfz4D7B79+N0rQEFFPSGrtLoIgLR\nWBE+BxhIUCJ9d/q4u6/Kd1Bd3reskkb6pg0jaG19HTgK2Ehl5QAWLVpQ0Bu4ChaKSFoUkkZ3JUTc\n3c/Ob0j7vW/ZJI3ON+0jgXcQVJSfAmzc7wae726k5ubm/TZpqqqqY9my+VkVOxSRvqPkZUTcfVI3\nPwVNGOWm834WCWAMwfTaarrubdHY2EjNiTV5Xe1dWxt0SZGxe0dbW4um6YpI3uRaGv1jwLuBwelj\n7v6NAsSV+Z5l3NI4CWiiu3GNQq32Vml0EYEIzJ4yszuBIcAkgkV9nwJW5jugcpbeWa+hIZgh1dra\nhtmHiMWOpa3tFebO/Xeqq6tpbm6mYmRFkDAgr6u9p0+fxuTJZ2v2lIgURC5jGk+7+7iMP4cBv3T3\nvylogGXU0khbu3YtK1eu5P3vfz+//vVvmDnzq8Rix9PeHnzzf/PNN5nxxX/sVHequ5aGps6KSG+V\nvKUBhEWQeMvMjgL+StAHIxnS3UMVFTWkUi+zd287bW1PsHt30EV1ySUTMRsA7XNgwU0wfCBs38Hc\n787tlBg0dVZEoiiXlsbXgf8CzgG+CziwwN2/Xrjwyqul0d2U16BIYYJgMByGDj0JiLNz5xogSXrh\n3/Lld3fMcNLUWRE5VCWfPQXc6u5vuPtDBKVExgL/mu+Ayln3RQoPB+4kSBBPs2fPZvbuXU+QUKqB\nQezZ81qnGU6dZ2EF18mceSUiUiq5JI3/Sz9w993uvi3zmKSnvL7Mvimvc6AiASP/BSqOAN7HpZd+\nnoUL7yAen0RVVR3x+CQWLryjUwtCU2dFJKoO2j1lZqOBo4EfEyw6SDd3qoA73X1sQQMso+4pgPnz\n72LGjJkM5XB2VrR03mRpwSAGV8R55ZU/AwcuJ6KpsyJyKEq2ItzMLgIuBt4HNLMvabwJLHL3h/Md\nVJf3L6ukATD76qv5zm230X6Yw8yMX8yrYmhqNCtW/DirFdqaPSUivRWFMiKfDMcziqrcksa5557H\n0qVNwGioeLlLS2MwgysG88orf1YSEJGCisJA+GlmdlhGQCPNTAPhGZ544okwYfwOeCmcVgvMAxYY\ntO/h+uuvVsIQkbKVS9L4qLu/kX7i7luB8/IfUvlasmQJwYZL6VlPs6H9eNj6eWgfwqBBcS6//LIS\nRigicmhySRoDzWxQ+omZxYFBB3h9v3PuuecCr5I56ynol7oGGM3XvjZbrQwRKWu5JI17gf8xswYz\nawCWAosKE1Z5Ouusszj33HrgDIKy6GcAlwFtxONb1coQkbKXa5XbjwCTw6dL3f2xLM8bQdC7/x5g\nL3AJ8GdgMcFCwQQwNVz70fXcshoIh2Bs47bb5vLoo0sZNGgMbW0tzJ07h7q6UzvWWmhWlIgUUsln\nT4VB1ADvcPdlZjYEGOju27M47wfA4+5+j5lVAEOB64C/uvutZjYbGOnu13RzbtkljbT0lNlVq9Yw\na9Y14b7hL+K+hyFD3qmaUiJSMCVPGmZ2GfCPwCh3H2Nm7yBY3HfOQc6rAla7+5gux9cBE919U7iA\nsKm7hYLlnjRWr17NhRdO71KPqh54ju5284sKrRERKW9RmHJ7JXAWwaI+3P15gsJKB3M88Bczu8fM\nVpnZ98NWyhHuvim81utZXqtsLG5sZGxNDVd94hO0to6kcz2qY4HVRLWmVDr2GVOmMLamhsWNh76r\noIj0DbmURt/t7imzIHGF3UzZNAEqgDrgSnf/g5nNJZhO1PXcHq914403djyur6+nvr4+h7CLL5lM\nckVDAytaWzkSOI4N7OJp9rU0XgCmAddGrqZUZuzjWlt5GpjU0MDZkyerxSESYU1NTTQ1NRX8fXJJ\nGo+b2XVA3MymAFcAv8jivFeB9e7+h/D5QwRJY5OZHZHRPbW5pwtkJo1ykEgkqI3FGNcabEFyN7v4\nLGfgHAVsAe4GTgbOYO7ceZG6GXeNfRxQU5mfXQVFpHC6fqG+6aabCvI+uXRPXUNQ3/sZ4HLgUeBr\nBzsp7IJab2bvDA+dA/wJeISgphXARcDPc4gl0mpra0mkUjxN8IE5MKSynSFDBhKMZUwDxjF8+EnU\n1Z1aylD3kxk7BO2ilra2SLWGRKR0sm5puPteM1sE/J7gPvhcDiPUVwH3mlkl8BLwBWAg8ICZXQK0\nAFNzijzivnzddXzgm9/gLW/Dh0PlLqBtA7CRYB+Np2lvfyVyN+Pq6mruWLiQSQ0N1FRW0tLWxh0L\nF6qVISJAbrOnPkawm9CLBJVujwcud/dfFi688ps9tbixkSsaGji6ooJnWrd3KlgY+2GMAXuHEIsd\nH/ly55o9JVLeojDldh3wcXd/IXw+Bvhv7aexTzKZZGxNDStaW9kNTBoJOzNKow+/ezg/uesnjBw5\nUjdjESmoKEy53Z5OGKGXgIMu7OtPEokERxMMHq8Bdm4nKD1F8Of217bT8vLLTJgwQQlDRMpSLi2N\n7xGU/HiAYEzj08ArwDKAQm3GVE4tjbVr13Lau97Fo8AnCaaX/WsFDBsOe7bDDe1wazzOupYWJQ0R\nKagotDQGA5uAiQRLmpNAHPhb4OP5Dqwc7dixg9HxOBcAbwfOB05ph+VboaUdZrNv+qqISDnKZfbU\nF7oeM7OYu6fyG1L5qq2t5S/t7UCwOGUnsIGgfnwwXwpe2rUrcjOmRESylXVLw8yazKw24/kEgj3D\nJcMAM35DsHzvE0AlQYH0UwiaZ3vKpKtNRKQ7uawI/zbwKzP7T+Bogl379mt99GeJRIIx8TjjUinG\nAWcDpwE/IJifXAt8OB7X6moRKVu5dE89ZmYzCDZf+gswPiw0KKHM1dTjCJbx/YWgEuMEtLpaRMpf\nLt1TXwf+C/gQcCPQFC74k9DyZctItbdzJnAi8KFYjMu++EU+GY9TV1XFpHg876urk8kkzc3NJJPJ\nvF1TRKQnuUy5/Q/gWndvDZ/XAAvcfUoB4yubKbeZC/uOJGiOXTl4MH9+5RWgMDv1pVef18ZiJFIp\n7li4kGnTp+ft+iJSvkq+IjwjkCHu/la+AznA+5VF0mhubmbGlCn8ats2EgTjF5OHDuXfHn6Yc889\n96Dn51q2IzNJpQuuT9IaEBEJlXydhpmdaWbPAuvC5+81szvyHVC5qq2t5bmdOxkDNAAnAc/t3Mm0\nCy446CZGvdn0qKOEefg8s4S5iEih5LK47z+ADwN/BXD3pwjGNwR4+OGfsbO9EmcMLzCY2QSrIX+6\naxdXNDT0OOaQuenRk9u2saK19YCvT1MJcxEphVySBu6+vsuhPXmMpWwlk0lmzvwq8Dt28AKt/J6b\nGMyxwFAO3ALobYuho4R5AQfZRUS6ymWdxnoz+wDg4b4YM4G1hQmrvCQSCWKx49m9e9+tfyBH8Qov\nsZMDtwC6TtPNpcUwbfp0zp48WSXMRaRocmlpzACuJFjYtwE4NXze79XW1tLe3gIZnUU7eI0Rgwbx\nyYO0AA61xVBdXa2quSJSNDnPnurxQmbXuvu383Kxztcti9lTjY2LaWi4goEDjyWVSnDttf/Mxz72\n0ZxmQ6nFICL5Epkptz1eyGyVu9fl5WKdr1sWSQPgrvnz+crMmdTEYmxob9e6CREpmXJIGqvdfXxe\nLtb5umWRNLRuQkSipOTrNLIQ/Tt7AXU3C+qYAQNYvXp1KcMSEcmrfCaNvGe0ctLduokXslzcJyJS\nLvKZNB7M47XKTtdihX9DsKfG4wdY3KdigyJSbnIpI/JOM/sfM/tj+HycmX0t/Xt3v7kQAZaDZDLJ\n5RdfzBNtbSSAbxB8sGfTczdVb0qHiIiUWi5Vbh8Hrgbmpwe8zeyP7v6eAsZXFgPhS5Ys4coPf5jn\nM469F1hAsNXrmUBs8GDuvPtupk2frkFzESm4KAyED3H3lV2OteczmHL2GnQaz3gemEqwxWvXbioV\nGxSRcpVLGZG/mNkYwllSZvYpgs3p+r3x48fjAwZwxt69HAO8SpBNBw4ZwnNvvUW67ZBODIdSOkRE\npJRySRpXAt8HxprZBuBl4LMFiaoMxSoq+FkqRQp4CZgFvJ5KsRGopnNi6Cgd0tBATWUlLW1tKjYo\nImXhoEnDzGa6+zzgSHefbGZDgQHuvr3w4ZWHRCLBCYMG8XwqxVeB4wn6/dr37GHi4MEcH4vtlxhK\nUWxQpUpE5FAddCDczNa4+6mHUibEzBLANmAv0Obu7zezkcBioAZIAFPdfVs350Z+IDyZTFI7ejS+\ndy+/Y1+X05nAZVddxWc/97mS36i1NaxI/1KyMiJm1gi8DzgKeDHzV4C7+7huT+x8jZeA09x9a8ax\nW4C/uvutZjYbGOnu13RzblkkjeOPPJIT9+xhKXRs93omsCkW46VXXy1pwtBsLZH+p1BJ46DdU+4+\n3cxGA48B5/fyfYz9Z2pdAEwMHy8CmoD9kkY5SCQSnDBkCC9t385JBN1TLwO7gDGxGIlEoqQ3547Z\nWq2tQOfZWkoaIpKLrAbC3f11gqUHveXAUjPbQ7DOYwFwhLtvSl/fzA4/hOuXVG1tLevb2jCCzJf+\nNv9B4NX29pLPitJsLRHJl2wGwh9w96lm9gydixJm3T0FnOXuG82sGlhiZs+xf4HDHvugbrzxxo7H\n9fX11NfXZ/GWxVNdXc3V11/PPV//eqe1F4cDl1x/PQDNzc0lG9fQbC2Rvq+pqYmmpqaCv082YxpH\nhjf8mu5+7+4tOb2h2Q3ADuBSoN7dN4XdXyvc/eRuXh/5MQ3oedxgzty5XDNrViQGoDV7SqT/iPx+\nGj2+gdkQgim6O8LpukuAm4BzgC3ufku5D4SnzfzSl7jr9ts7Fvh97pJLeKixMasBaN3QRSSfSjl7\najvddx2lu6eqDnL+8cBPw2tUAPe6+xwzGwU8ABwLtBBMuX2jm/PLImmkWxoPtbYyFNgJXDBoEGNi\nMVZt37ekpa6qivnLljFhwoSOY5oOKyL5VrYtjUNVLkmjubmZy885h8e2b++Ycnv2sGG82tbG47t3\n99jS0HRYESmEKBQslANYs2oVz4ZTbmcAJwGJ3bu5dd48JsXj1FVVMSke328AWsULRaScqKWRB8lk\nkncedxx7d+3if9k3rfVvKit5YcMGgB7HKw7U0jjQeSIiB6KWRoQlEgmOGDiQ42C/PcLTC+gmTJjQ\n7Y2/Yzpsl9bI8mXLtEmTiESOWhp5kEwmqT3ySHzPnk61p84Alv7mN5x11llZXSPdqgA0ziEih0Qt\njYgzMw4HJgF14Z+HAeedc05WrYTM1ojGOUQkqpQ08iCRSHBCPM524CFgfvhnK3DL7t3MuOQSkslk\n1tfLLPsBKvshItGhpJEHtbW1bGhvZzbwSYKl7ucR7N53F5DatYu53/lO1tfraZxDXVMiUmoa08iD\nxY2NXHoR/DGWAAANc0lEQVTRRexta+Nwgv3CK4Hf0nl8Y96dd3LZ5ZdnfV2tEheR3tLivojKnDL7\ne+DLwHAgDryQ8br3AolBg3hh/XolABEpOA2ER1R60PpIgs1AfgOsAbZApzGJV4HjNJgtImVOSeMQ\npQetlxKUDhkHVAPfI9i57xSCmVSzgdf27GHr1q05DYqLiESJksYhSg9aXzl4MOvY17o4GRhQUUEi\nFuOoYcO4ORYj1d7OtVOnarGeiJQtjWnkSTKZ5K7587nt5ps7bXR09uTJrF69mmkXXMDju3ZpsZ6I\nFIUGwstEdzOempubmTFlCk9u29bxuu5KpIuI5EuhkkZWe4RL9qqrq/drPWiPbhHpKzSmkWfJZJLm\n5uZOg91arCcifYW6p/IovQPfsQMGsH7v3v124NNiPREpFo1pRFwymeQdxxzDr1Opji6oD8ViPP/q\nq0oQIlJ0WtwXcatXr6Y6TBgQjF28PZVi9erVpQxLRCSvlDTy6DU6rwLfWMJYREQKQd1TeZJMJjnh\n6KOpbGujFkgAbZWVvLRhg7qnRKTo1D0VcdXV1SxYtAgfPJidQ4figwezYNEiJQwR6VPU0sgzzZAS\nkSjQ4r4ykU4U6Wq2Shwi0peoeyrPFjc2MramhhlTpqgwoYj0OeqeyqPMDZlUmFBESkkD4WUgvSFT\n5lqNGm28JCJ9iJJGHmUWJgQVJhSRvqdoScPMBpjZKjN7JHw+0syWmNlzZvaYmY0oViyFosKEItLX\nFW1Mw8xmAacBVe5+vpndAvzV3W81s9nASHe/ppvzymZMI03TbkWk1Mq6YKGZHQPcA3wL+OcwaawD\nJrr7JjMbDTS5+9huzi27pCEiUmrlPhA+F7gayLz7H+HumwDc/XXg8CLFIiIivVTwpGFmHwM2ufsa\n4EBZT80JEZGIK8aK8LOA883sPCAODDezHwGvm9kRGd1Tm3u6wI033tjxuL6+nvr6+sJGLCJSZpqa\nmmhqair4+xR1cZ+ZTQS+HI5p3EowEH5LXxsIFxEptXIf0+jOHGCKmT0HnBM+FxGRCFMZERGRPqgv\ntjT6nGQySXNzM8lkstShiIgUhJJGnqi6rYj0B+qeygNVtxWRqFH3VISpuq2I9BdKGnmg6rYi0l8o\naeSBqtuKSH+hMY08UnVbEYmKsq5yeyjKKWmIiESFBsJFRKTklDRERCRrShoiIpI1JQ0REcmakoaI\niGRNSUNERLKmpCEiIllT0hARkawpaYiISNaUNEREJGtKGiIikjUlDRERyZqShoiIZE1JQ0REsqak\nISIiWVPSEBGRrClpiIhI1pQ0REQka0oaIiKSNSUNERHJWsGThpkNMrPfm9lqM/uTmd0cHh9pZkvM\n7Dkze8zMRhQ6FhEROTQFTxruvhuY5O7jgXHA2WZ2FnANsMzdTwKWA9cWOpZCampqKnUIWSmHOMsh\nRlCc+aY4y0NRuqfc/a3w4aDwPbcCFwCLwuOLgAuLEUuhlMt/SOUQZznECIoz3xRneShK0jCzAWa2\nGngdaHL3Z4Ej3H0TgLu/DhxejFhERKT3KorxJu6+FxhvZlXAY2ZWD3jXlxUjFhER6T1zL+692sy+\nDrQCDUC9u28ys9HACnc/uZvXK5mIiPSCu1u+r1nwloaZvR1oc/dtZhYHpgA3AY8AFwO3ABcBP+/u\n/EL8pUVEpHcK3tIws1MIBrqNYAzlR+7+72Y2CngAOBZoAaa6+xsFDUZERA5J0bunRESkfBV9RbiZ\nfcrM/mhme8ysrsvvrjWz581srZmdm3G8zsyeNrM/m9l/ZByPmdn94Tn/Z2bHZfzuovD1z5nZ5wv4\n9/mIma0L32t2od6ny3suNLNNZvZ0xrEeF0vm83PNIcZjzGx5uKDzGTO7KqJx5rz4tBRxZlxrgJmt\nMrNHohqnmSXM7KnwM10Z4ThHmNmD4fv+ycxOj1qcZvbO8HNcFf65zcyuKmmc7l7UH+Ak4B0EC/rq\nMo6fDKwmGGepBV5gX0vo98CE8PGjwIfDx/8E3BE+ngbcHz4eCbwIjAAOSz8uwN9lQBhnDVAJrAHG\nFuEz/CBwKvB0xrFbgK+Gj2cDc8LH78rX55pjjKOBU8PHw4DngLFRizM8d0j450Dgd8BZUYwzPH8W\n8GPgkSj+u4fnvgSM7HIsinH+APhC+LiC4H4RuTgz4h0AvEbQpV+yOAt6czvIB7CCzknjGmB2xvNf\nAqcT3HyezTj+98D3wse/Ak4PHw8ENnd9Tfj8e8C0AvwdzgB+2dPfocCfXw2dk8Y6grUvhJ/Zujx+\nrsk8xPszYHKU4wSGACvD//EiFydwDLAUqGdf0ohinC8Db+tyLFJxAlXAi90cj1ScXWI7F/jfUscZ\npYKFRwPrM55vCI8dDbyacfzV8Finc9x9D7DNggH2nq5V6JgzYyu2w737xZL5+FzfCD/XXjGzWoKW\n0e/oeVFnyeK03BaflvLznAtcTec1TVGM04GlZtZsZpdGNM7jgb+Y2T1h18/3zWxIBOPMNA24L3xc\nsjgLMuXWzJYCR2QeIvgP6Xp3/0Uh3jPjfSTgB39J1nr9uZrZMOAnwEx332H7r7speZxe/MWnOcdp\nZh8DNrn7mjC+npT88wTOcveNZlYNLDGz57qJq9RxVgB1wJXu/gczm0vwLT1qcQYnmlUC5xN0RUEJ\n4yxIS8Pdp7j7uIyfU8I/D5QwNhD01aUdEx7r6Xinc8xsIFDl7lvC48f1cE4+Fet9srHJzI4AsGCx\n5ObweD4/15yYWQVBwviRu6fX4UQuzjR3f5Ogr/d9EYzzLOB8M3sJaCQo/Pkj4PWIxYm7bwz/TBJ0\nS76f6H2erwLr3f0P4fOHCJJI1OJM+yjwpLv/JXxesjhL3T2VmdEeAf4+HMk/HjgRWBk2vbaZ2fvN\nzIDPs28h4CMECwMBPk0wuA7wGDAlnB0xkmBB4WMFiL8ZONHMaswsRtBP+EgB3qc7xv6f38Xh44vo\n/Bnl63PN1d0E/ajzohqnmb09PfPE9i0+XR21ON39Onc/zt1PIPjvbLm7/wPwiyjFaWZDwtYlZjaU\noB/+GaL3eW4C1pvZO8ND5wB/ilqcGaYTfFlIK12chzIw08vBnAsJ+s9agY10Hki+lmC0fy1wbsbx\n0wj+w3semJdxfBDBAsHnCfrLazN+d3F4/M/A5wv49/kIwcyg54FrivQZ3kcwi2I38ArwBYIZY8vC\nWJYAhxXic80hxrOAPQQzylYDq8LPalTE4jwljG018BTwlfB4pOLsEvNE9g2ERypOgrGC9L/5M+n/\nJ6IWZ3id9xJ88VsDPEwweyqKcQ4BksDwjGMli1OL+0REJGul7p4SEZEyoqQhIiJZU9IQEZGsKWmI\niEjWlDRERCRrShoiIpI1JQ0REcmakoZEnpkdbmb3mtkLYRG8J8zsAjObaGZvmNmTFuxp0hTWaEqf\nd4OZvRoWpHvazP62lH+P3jKzI83sgfDxe83so6WOSfovJQ0pBz8jqD57ortPICijcUz4u1+7+2nu\nPhaYCdxuZpMyzv2Ou9cBUwnKmuRdWK+nYNx9o7tPDZ+eCpxXyPcTORAlDYk0Mzsb2O3ud6WPuft6\nd/9u19e6+1PAN4AvdvO7dUC7mb29h/e5x8y+F7Zk1qVbLBaUTb/Vgt391pjZZeHxiWb2azP7OUHN\nop7i/7zt28VuUXjs42b2u7CFtCSsBptuGf3QzH5rwY5sl4bHayzY/bAi/PtNDVtPnzazCeHrnzSz\n35jZO7L8aEV6pSCl0UXy6N0EtaGytQr4SteDZnY6sMf3VQntTo27TzCzE4EVZjaGoJDbG+5+eliU\n8gkzWxK+fjzwbnd/pbuLmdm7gOuAM919q5kdFv7qf939jPA1DcBXCfbJgKAW1unAcGC1mf2/8Li7\ne7uZ/Qtwmrunt88dBnzQ3fea2TnAt4FPHeQzEuk1JQ0pK2Z2O8F2tyn23Wg7vaTL8382s88B2wm6\nqA7kAQB3f8HMXiTYnvZc4BQz+3T4miqC7YrbCKqHdpswQmcDD7r71vC6b4THjw3HKI4k2Cb45Yxz\nfu7uKeCvZracoKz4Uwd4j8OAH4YtDEf/T0uBqXtKou5PBNU5AXD3LxKUsa6m+41n6giqe6Z9x93r\n3H2iu//2IO+Veb30xmEGfMndx4c/Y9x9WfianTn+XdL+C/hPdx8HzAAGHySGA/kmQZn0U4C/7XIt\nkbxT0pBIc/flwCAzuzzj8FD23Uw7WhZmNg74GnB7L9/u0xYYQ1Di+zmCfViuCMcTMLN3WLAtaDaW\nh9ccFZ47MjxeRVDaHvbtY5B2QbgXwtsISqA3d/n99vD8tCr2babzhSzjEuk1JQ0pBxcC9Wb2opn9\nDriHYNtLAz6YnnJL8A3+i+7e1Mv3eQVYCfw3cHnYTbQAeBZYZWbPAHcCWc2W8mCv8W8Bj1uwB/lt\n4a9uAn5iZs0E+yRkehpoAn4LfMODzXMyrQDelR4IB24F5pjZk+j/ZykC7achQjB7CviFuz9cwhhu\nALa7+3dKFYPIweibiUhA355EsqCWhvQrZnYdwT7I6UFuJ5jh9O1DuOYo4H/oPM7iwDnpmVMifYWS\nhoiIZE3dUyIikjUlDRERyZqShoiIZE1JQ0REsqakISIiWfv/bCxIgI1Fcl4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "df[df['Continent'] == 'Africa'].plot(color=\"red\", kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax)\n", "df[df['Continent'] == 'Asia'].plot(color=\"blue\", kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax)\n", "df[df['Continent'] == 'Oceania'].plot(color=\"green\", kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax)" ] }, { "cell_type": "code", "execution_count": 124, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNfVh9/Z1UqrlVZt1XsHFUCAACHRe3fBvTuJ7TjN\nn+OSxI4LiZ3YceIkTuw4seMaxyW4UmwQHUQVIEASSEK9rcqqbNXW+f5YtCAkQNhgbDPv89xnZmdn\n7tyZlX5z5txzzxVEUURCQkJC4vJAdqkbICEhISHx9SGJvoSEhMRlhCT6EhISEpcRkuhLSEhIXEZI\noi8hISFxGSGJvoSEhMRlxLBEXxCE+wRBOHKi/OzEtmBBENYLglAhCMI6QRACL25TJSQkJCS+KucU\nfUEQsoDvA7lADrBEEIQU4JfABlEURwCbgF9dzIZKSEhISHx1hmPpZwB7RFG0iqLoBLYBVwPLgDdP\n7PMmcOXFaaKEhISExIViOKJfCkw94c5RAYuAOCBCFMU2AFEUtUD4xWumhISEhMSFwOtcO4iieEwQ\nhGeBQsAIHAScQ+16gdsmISEhIXGBOafoA4ii+DrwOoAgCE8DjUCbIAgRoii2CYIQCbQPdawgCNLD\nQEJCQuJLIIqicKHrHG70TtiJZTxwFfBf4DPgjhO73A58eqbjRVH81pYnnnjikrfhcm3/t7ntUvsv\nffm2t/9iMSxLH/hQEIQQwA78SBRF/QmXzweCIHwPqAeuu1iNlJCQkJC4MAzXvTNtiG1dwJwL3iIJ\nCQkJiYuGNCL3HMyYMeNSN+Er8W1u/7e57SC1/1LzbW//xUK4mL4jcHfkXuxzSEhISHzXEAQB8VJ1\n5EpISEhIfDeQRF9CQkLiMkISfQkJCYnLCEn0JSQkJC4jJNGXkJCQuIyQRF9CQkLiMkISfQkJCYnL\nCEn0JSQkJC4jJNGXkJCQuIyQRF9CQkLiMkISfQkJCYnLCEn0JSQkJC4jJNGXkJCQuIyQRF9CQkLi\nMkISfQkJCYnLCEn0JSQkJC4jJNGXkJCQuIyQRF9CQkLiMkISfQkJCYnLCEn0JSQkJC4jJNGXkJCQ\nuIyQRF9CQkLiMkISfQkJCYnLCEn0JSQkJC4jJNGXkJCQuIyQRF/iklDTXcNfd/+V73/6fURRvNTN\nkZC4bPAazk6CIPwKuAVwAkeAOwE/4H0gAagDrhNFsffiNFPi247T5WR3025WVa5iVeUqqruqWZy+\nmDtz7kQQhEvdPAmJywbhXFaWIAgJwGZgpCiKNkEQ3gfWApmAThTFPwiC8AsgWBTFXw5xvChZcpcn\neque9dXrWVW5irVVa9GZdcxKmsVNo27i6oyrCVIGXeomSkh8YxEEAVEUL7hFNBxLXw/YAD9BEFyA\nL9AM/AqYfmKfN4EtwCDRl7i8qOupY1WF25rfUrcFu8tObnQuj0x5hOuzrydaHT3sukRRlN4CJCQu\nMOe09AEEQbgLeB4wA+tFUbxVEIRuURSDT9mnSxTFkCGOlSz97zBOl5O9zXs9bpvS9lIAUkNSuXnU\nzdyYfSMjQkecsx5RFKnurmZb/TZPyYvN47/L/3uxL0FC4hvJxbL0h+PeSQZWA1OAXuB/wIfA304V\neUEQdKIoaoY4XhL97xhGm9HjtllTuYYOcwcAkf6R3JB1AzeNuonc6NyzWuku0UVZ62H2lq7jQPV2\njlQfJOlQFvURh1GFufh+9m0sTV6At0sAmw3s9oHly25LToannvq6bpWExJfmUrp3coEiURS7TjTk\nYyAfaBMEIUIUxTZBECKB9jNV8OSTT3rWZ8yYwYwZM75KmyUuAQ29DR63zea6zdicNgDU3mruyLmD\nW9OuYbpfFvLuHjimg6L/gU4HhYXw8ccA9MzKx6xtAp0OX72ZkX0iYcocJogL6LHeg7fiKHHheqLC\nbMh27QDFHlAo3EUQYNs2sFjgyishKAi8vU9+f2pRq93LykpYuxZaWiAwEBYvhqlTL+VtlJA4I1u2\nbGHLli0X/TzDsfTHAP8BJgBW4HVgHxAPdImi+KzUkfvdwyW6KNm/ltL1b1NRuQtXRzvBZhdqo50w\ni4x0NMQ7VASYHMh0XeBygUbjLkol7NvnqcviLcPX5gLg9YfnEZm5jPjyiXR+aEZn1lE4tpCce3O4\nfcHtKL2UpzTCBUVFuN59F9Pq1RgyMtBXVaHftAlDYCB6hwOD0+lZTvH3Z2pZGXz6qbvYbO4HxBVX\nwLRp7geBhMS3hEvm3jlx8oeAO3CHbB4EfgCogQ+AOKAed8hmzxDHSqL/LcFkM1FYU8ia8k+JeX0l\n9222cCzRjw5fkWZvK74RMaSnT2Z05kz8oxLcAh8aChoNermDw+vexuvfr5G58Qhb40XWLcxEnLeU\n0fH5pKmyEH67DccqOzJjPOVjmjg64ihe0SKOuQsxR0ahdzoxOBzoDQb0vb0YbDb0KhUmHx98ZTLU\nXl4E1NbilZ5OpcWC48TfVYAoMquhgftee40Zer1b5K+4AnJy3G8IEhLfQi6p6H+lE0ii/43F1mbj\n6F+PsmvBLj5r/IztDTu42Z7NDz5qpTXYn0fnqrDGJTAlaT45sfkoFAFuYXY6abMYqNa30qTvwNHR\ng8osw670ozs4CLO/GgsyvGUyRlfLmLvKwaSNIu0xVioyG9AmN6GyGwgwm1GPHEnAlVei7u0lYOdO\n1Bs2ENDbS8Ds2agXLyYgKwuVTMYRk4nCqioKd+9mT3Y2Y0wm5h08yNyPP2ZCYCBeV1wBy5ZBQsKl\nvq1fDacTzGaQycDP71K3RuISIom+xBmxulwDXB39wjzA/dHVhV6vp1cmo11vJP09O3NX+rEn18Lz\nv3Zh9/LBhhyFw4nMaUGp9CbSV02Yjx9quRwv0Ybe3IbO0EBLz3H827QsrReYVNaOT2wU4cuWEzJt\nOmqtFtWWg5jfaaO9OAxHnxea8GKq0rbwRfxxJiz/KTfYR+B9w83uxoeHQ3Q0tLbC9dfDjTfCpEk0\nWq0UdndT2N3Nxu5uQkSRuXv2MPejj5hRU0PA1Klua37RIggOPvsNulDY7W5BPrWYTIO3ne/2U7fZ\n3H0lzJgBmzd/Pdcl8Y1EEv3vGDaXa7AwO53oz7DNcJqYn7oNIEAuJ8DLC/WpS7kctVyOX3kp6vXr\nccqcxB+IIOXQZLysKpwJa1D7riWiqwe1xYLabMbb4UCMjsbu44VR5qRH6KPTZcTk5SJYGUzO4dP6\n66OioKsLl9VOFxPRspBuxqEJO473lA7+k7qR/dYabprwPa4ecwM+D/8Kvvhi0P3QFxezJSHBLfRd\nXegcDuY4ncw9dIi5775LXF0d9PaCry80N4PVCqWlcOQI5OfDqFHuiux29/e9vV9KlEWTCbuhF6uh\nG6fRgK9dxMfqcO8vim7rW6U6WU7/rFK5hbujAzo7Ty6t1pMX6+UFcXEQH+9+M0lIGLgeF+e+TonL\nGkn0vwE4+oX6FMEdrjCfLvBOOCnMXl4DRfuUbf0iPtS2/qWPbHAKpWZ9M+sP/I+UX/6BoLo2Plh4\nM/nbbkBVo8ISbOHZG5/FJ6aNF9aKJLTbaPr9I2wM1NG2bS27ekox+XuTHzaOSSGjmdzuTcQr7yJU\nVQ06j4k4tCykTb4QZYCZyIx6FEG7qW7fS5+hmzRVHFE2b2Rl5QPvpUzG3owMCsePpzA3l0MpKeSV\nlzN3/37mFhczproaWWYmLFkCmZng4wM33eTu3D2dtDQIC4OGBmhrc789hIQMLconPou+vhi8nLQ4\ne2h0dFFna+d4XwsVlkbaRCNyfzVjU6ZwW949TEib7j7W29vtfmltdZ+rvt5dTl8XxZMCfrqgx8e7\nH5Ry+YX6s5T4jiKJ/gXiqMlEo9U6SISHdImcZnlbXa4vLcynb1PKZBd0tKlLdHGw9aBnkFTooeO8\nvdJFe84VtPTcjLMCFAYFDckNdDytZc7uI4z/83u0hqtYn+BgTIeMrGY7LqUP+r/+gbA5y+Chh+D9\n90+eRKGAG27AMSaf9u4ctBsU9DVYibg1gsg7IqkIqmDF1hUUtxTzyMQHuaszHu93P4APPkAEqiZM\noPBvf6OwqootQUEkarXMKy5mbnExU44cwbfftTFcbr4ZMjJOimp8PMTEDIjSEUURrVFLeUc5ZR1l\nlLWXUdZRRnlHOd193Z79vGReTI6dzKLYmSxSjiLL7I+8sWmwoDc3u91JZxL0hAR3OKnUgfztwGZz\nvxX29Jy59PXBihXg7/+1Nk0S/a9IicHAY3V1HDAYyPTzG1KY+8V8SDeJlxeqCyzUXxWz3czGmo3u\nQVJVa1B7q1mWuoQfbOom4pWtbIz5CUJ9AsfGHGV0WRbWpHJSjH9kTFXXoLoMKi+qo3wYrUwYaJVn\nZcHTTyNOzqfniBetr7eiW60jeHYwUd+LInh+MCUdJazYuoIj9fv4p3k2sz8qQVZaii4ggI3jxrE+\nN5fC8eNxyuXMLS5m7v79zD5wgIju7kHtOCMLF8K6dbByJVx11aCvRVGkzdQ2QNT7RV4myMgKzyLU\nV4NR24isoRHflg7G2kPId8aQYVYR0WVF3tDk/iePjT2zoMfFuUNSJb4ZDEe0z1bMZnc9crk7Gi0s\nzF1CQ0+uR0XB977nftP7GpFE/0tyzGTiibo6tvX28qv4eO6OikL5LX61bjW0srpyNasqV7G1fivj\nosaxNH0ps5Jm0VhZTNyPnsavbA7NsiXEu1bhg446bidC8QKp9mF2DC5bBn/6E6SmYqm1oP1XA9q3\n2/HydRKVryc8rR5vYzO6mjIaj+0h54h7RK5VoaAoO9vjsqmKiWHa4cMel83IhgbO+BeckwMTJrit\n6XXrTm5/7TW4807PPuK//03biBjK2k8R9hMiL3OJTFekkeeIYrQtiMReAaGhEWddLYqmFiJ0fQhy\nL/piIlAmp+OXmjFY3CMj3ZEzEl8PF0q0T8fXd2gBP/1z/3pQ0Dfud5dE/zyptVhYUVfHmq4uHoiN\n5aexsfh9SbFva3uXgIA8fH2TLnArz40oipRoSwakJF6QuoCl6UvJj53M7j0fUvLiYzy92kYLS6nn\nVjTsIYG3aeR6GrzHosh8keklewfU2+cto21iFvF7KxD63Sq5uTBxIs62XjpKg9E2ZGOyRBIu30Jk\nWDFq+1H3KNv+tgFHkpM9Ir8zK4usujqPyE86ehRvh2PwRYWHuyNvIiPdHaSbNkFjo9uaX7YM5s9H\nVKvp+fAdfH/2ANUTUnj1xhH8/va3WP49P5R2mNIXzuRWORpUhBpdBGi7kLW24QgJojNMRZWflQPe\nOhxxMURlTiIzdyGjJizGKyT0Iv5alyEXS7RPJzj47KJ9+rpKdXGv+2tAEv1honc4+EVNDR+0t/OT\nmBh+HhdHoNewpg0YksbGP1Nd/QATJx5FpTp34rALQZ+jj021m1hVsYrVVavxkfswNmosY4UYEirb\nkL37Hje685ohAp1MpYa7UKIlhX/iRS9lrMCHTkbyLF6c4x8rLg5x3Hj07WFoGzLpaEsnQF5BpPUT\nQtmFDLtn1xaNhsIT7poN48fjb7F4/PIzDx4kyGQa+hzTp8PMmW7XSE0NrF4N/v6IS5fSPWcKh1L8\nOF5TjKl4F74HjxB3tJlxjQ4iDWf/27FPK2DHbTNZZz/G/wy7cCjkzE+Zz7yUecxKmkWI76AcgBcF\ns9PJfoOB3Xo9u/V6Rvn58WTS128knDdfVbStVreFbLef+1z9KBQnBfpMon3qZ43GHfF0HhisBmp7\namnobWBm4kz8vL99Yx4k0R8mv6uvp6i3lzdHjiT0K/rgGhufp7r6ATSaZYwa9ekFauHQaI1a3jr0\nFn/a9SfaTe0Em2F8K+Q3y7jjgIukQWOdoZdMqvkhTlSk8DIhFNPNWI7yKLGsJI73EIDegvEEJI5A\neOeUjJWBgVBQgLVUi7ZhBFoWABDF50RQiA9ui96kVLJ1zBiPNd8aEsKsgwc91nySVuuuTxDcUSun\ncuedMH68OxTyvfcQDhz4yvfJtfxqajOjWR9p4i3hMGU9lUxPnM685HnMS5lHuib9ove7iKJITV8f\nu3p7PSJ/1Gwmy8+PvIAAJgcEMCUwkLivw/d/IUQ7KOhkUavdEUoOx8kkdWdbt1jcvu7hulHCwiAg\n4Ct3dDtdTloMLdR011DdXU1Nd82A0mHuID4wnuzwbF5e/DJxgXEX6IZ/fUiiPwxEUWTk3r28MXIk\nkwMDv1JdDQ1/pKXlJWy2dkaP/pygoAuTqKvP0cfxruNUdFbwQdn7fHHgf4zohMVVsLQCxmnPXYeZ\naGq5i16ySOLfRFIIuGjkBpq4hgyeJpiD7rDFrsGdti4UdJKPlgXoySJMuZfI6EME+NXjkgns12go\njIqiMDeX/enp5FZUeER+XFUV8qHCJr8EptR4hEmT8S2YjpCR4XYdHTwIRUVQXAyJiYj5+bTlpLE+\nysSHlv1sqd9KWkga81LcIp8fl4+3/OJ2sBkcDvYZDOw6IfC79XqUMplH4PMCAhjr74/vl3EfXmjR\nPr34+JxduC2WgeMJenvdxw3XjRIaetE6tg1WwyAxr+lxL+t66jxJ/6L8o8gOzyYrLMu9DM8iMyyT\nAJ+Ai9KurwtJ9IfBHr2eW48epWLixK9k7TU0PEdr67+IibmPtra3GTdu93nV53I6aKopoaliHx3H\nD2Oor8Te3ICztYWoNjMLq4Y3OXFjAKitEHRiXI+dAOq4lTbmEsf/iGUlcqw4UHGMX2AllCyeREnH\noLpEBIyxM9BaptPWMx5/ZQuRwXvQCNupVzhYO3M6W5JT2ZI9ipjOTo/ITzt8GL++vmFf+6m0xAVT\nesci/KbPITlnJpEh8e77KIpQW+sW9/5SV+fuUygowDhhDJsj+1jTUcS66nXYnDa3yCfPY07yHML8\nwr5Ue4aDSxSpMJvZrdd7RL7aYmGsv79b5AMDmaRWE9svdBdbtE8t/YbM2US7o2PgusPhEWdbSCDt\nKpFWHzvjxixAHh4x2DoPDv7axhD0W+tDWer91vqphKnCyArPIjvMLez9Qh/s+zWNyP6akUR/GPyo\nspJob29+nZj4petoaHiW1tZXycnZQlnZ9cTG3kd4+LXuL+120Grdg3NaWzHWV9FdU465qQZnczPe\n7Z2ou4wEGxyYfGSY1D4EGxz4mc/u72zxB7XNXYbCiYJmltPI9YSxhUTexBu3v8dEIqWsIJgDpPLS\nAP+7SybQGBWHwTQdo3EmosOXSL7AV7WDL6bEsW78OPZmjcOsVDJn/37m7t/PnP37iT6ls/ZMHIz1\nos0fRnfKie60os2Ix7hwFoHX3ELopJkIp0ZC2O1QUjJQ5AEKCqCgAMfkSRSHOVjXsIn1Nes53HaY\ngrgCj28+Myzzorlsukwm9ra1sbu7m11mM3sdDkJcLvJMJvK6u5ms1TK6sRHv7u6vLtqnFz8/t2jr\ndIPFeqh1nc7dQTkMK1wMDaVK1s123UGKmnZS1FhETXcNE2Mmsih1Eb+Y8gu8ZF++r2u4DNdaP5Ug\nZdBAyz0si6zwLML9wi96e79JSKJ/DqwuFzE7d7I/N5eE833dNJmgtZX65ufQ2leRU3EPfYbjHM36\nhNy/T8Te2IhMq8VLb0If4EObWka9yoZWDY6IMOTRsfjHJJHoVBOjF5A3NeM8XEJwnRar4CLQeu4m\nnE5XUiTBtW20MZtavo+aKpJ5BRWNnn3amUkVPyOFfxDJes92F7IBKRFChN10Jh2jcHoghRNyORof\nT0Fpqceaz66tPXMoJVAWIeOTRckoRmSQ1yJj1J5aAstrEGbOQli61J2nPirq5AE9PbBr10mBLy6G\npCSPyFNQQF0QrK8pZH31ejbVbiIuMI55yfOYnzqfKfFTBqZYPhvnYWk7ensp8/Fhd2gou2Ji2J2U\nRLNGw4TqavIaGshrayOvp4dwb+/zE+7+txeT6eyiffq60XgyU+lw3CihoWeMFbfYLRS3FFPUWERR\nYxE7G3fSZekiXZPO3OS5zE2ey4zEGQQqv5rb83ScLifNhuYhLfWa7hpMdhOhqlAsdgsWhwWL3YJT\ndKcO8ff2HyDs/a6ZKP+ob9R4mEuFJPrnYGV7Oy+1tLApJ8e9QRShu9tjlRu0WrabTCw6dmyAtU5r\nK6LNRu0PfGib1kfI2ylo8cJ4RQ11WpH1VXa8ouNQJ6YTmZBNekQG6UEpZHQKhJRWI2zYgPjRRwhf\n0gUC4AoMYPukKP4SXEGsQ8XfPjTTzViq+SECTlL4B0EcObk/cmq4h07yyeIJ1FQDYCLenRKBubi8\nu6nNauTjpX5snJBJelOTR+Tzy8rwOUe0xT9yYUNuMJNi8phf6SSl6Cg+pj6EJUvwuvJqmDXLbXWe\nw1VDQQFMnozBV86Wui2sr17Puup19Fp7mZs8l4Xxs5mjmUCEw+fLuUdstjMKcnt4OLtjY9kdGsru\ngACKvb2JEQTyfHzICwwkLyyMLI0Gr6His10ud3/I+Yi4TDa8aJT+9a8QG95mbHMLfEMRO5t2sr9l\nP3aXHY2vhjnJc9xCnzKX+MD4L1X/qZzNWq/vqSdUFUpycDIR/hFYHVYsDgtmuxmL3UKHuYMuSxcZ\noRmDXDNxAXGSuJ8FSfTPwbKSEq7++GPuWL/eLeZarbsTKyqKxhEjWHLbbRwLCqJw5xe4ZL1UeRs4\nLO+g2NXMyLAq5kYIrOsdi7//BLKDQxjpeIG49C0kWYORNzTCCy+4R4OeJw4vOUdivOj2kxHvVBNq\nleHf3ktnWjQNYd6stx7Fzw7373bvbyKRau7GTALJvEoYmwdY4VZCKOcJ5JjI4HcIiLSrltAgX4xJ\nDKN8mpW3rvKlM0nOdIuJgu0bufrlN9Do9Wdtp8tPhfDMs9inTaH74E5cn31K8Kad9Gj82Tcugi+y\nvNkQ1E1LbyN5nUoWaNXk17sYdawLX5MNQ2o8zsyRKEePQ5WWiWgy0txYTkP9IdqbK7Hp2kkgiFiX\nPxqrHKWxD+Ecoj2solKBIGBzuThkNHo6Wnfr9XQ5HExSq8kLCCDP15eJNhshXV3DE/Dubncky3Ci\nUfrXL1JsuEt0Ud5Rzs7GnR6hr+52P+h95D5MiZ/iEfmcyBxkwvk9SM5mrVd3V2O2m0kOTnaXoGSi\n1dHYnDYsDgsmm4nq7mrKOspoMbSQrkkf5JpJDEpELvv2Doi8VEiifxbabTbS9+yh8Z578Pne7VRP\nyeKoVw/l5jp29egoVM1A3vwRoiKQIFUE86kkPSSdDN944s1rcTh3ENtZQLVmJVPfuo7jmVvwajeR\n/Pe+k6luT6DTqGj0MhNgheSewW3pClezPtzAwUjwcUC0AW4sxePiMfoItKlEogygOmXckpUQ6riT\nTgqI57/E8OkA/zxAD9mU8zjRE9rxuSKV8iJ/XDsclOYKfDbfRe9EA2G9ZUz/7BN+9fqes7psAGxT\nJuN88AFMft6Ert4Ib799MtpnzBiYMsVtyX/+uduaPwPGACV6lZw2Lyud3g56lAwoIVFJ5IyYQXhM\nOqHRqYRGp6LQhA0Q7fNCFGnu7GSXVsvunh52W62UyGQk9/UxuaODvKYm8ioqGFFZiaxfzPv6hu9G\n+ZKx4RcKk83EvpZ9FDW4XTW7mnbR03fyj21MxBiPyE+Nn4qv4twZOc9krVd3VdPQ2+Cx1k8tsQGx\nOF1OOswdntHPpe2lNPQ2kBycPMg1kxKS8rX0E1wuSKIPoNe7X7uDggZs/ktjIweMRnJ/dwUJB6p5\n9McZjNCko1ROYI3/eJ7SVnNHk47uLgNjZs6k+qmnCD52jNore+iYJSfrs/Ecuu0QLoWLLN19lEW8\nxISYdQiri/B+4CHMXvD+xER2513NnP37uXbrVs+5i1IUbIuyszsWen3glsPwg4PDvyQHShq5nmau\nIorPiecdFBjdX86dC6WliLFxNKU8RPV7oeiygE4X3WqBzXO62TJqK35dRazY2sqNG1qGdU7R2/vk\nKNzTCQtzi+TpJCa6ffcLF7rXg4Iw+3mztX2f2zdfs542YxtzkucwOXYyI0NH4hJd1PfW09DbQH1v\nPfU97nWtUUuEfwQJgQnEB8aT5B9HGhqSnWrirEoi+7zw7TF6LO++ri4OeHmxKyiI3VFR7E5Ops/b\nm7zaWiZrteT19jLBbkcdHHxml8oFiA2/WLQYWjwCX9RYRIm2BIfrpEUQo45hborbLz87aTYR/hGD\n6jiTtd4fGXO6tX6quMcFxtGsb/bkKirtKKWsvYzjXcc9se6n+tzTNekXPUxWQhJ9MBhgwQL3nKcP\nPTTgq7HFxdzg281Hhfez5/4yxMBA/rJoEX9avpxP3nyTXLnck1/l1sxMsv39uS7wY7TmNfjFvUx7\n87OYbBas5ja8LZXIy10s/RW4BIG1kybxl2uuYeP48Uw5UsKjm95HlhpFhY+RutajLN7UxKy6878c\nFzK0LKJO+UOCRrtIWhGH797P4IknPPs0hIfzzsIrmPzmTZ5tRybUoPHdxNxjnxPWPjgGfyh2xkLN\ngonk6QNQ7txHbFMvBm/4YLSckfnLyI+djLBnj9sfLwgDOlzJyfFkrXSJLg63HWZ99XrWV69nT/Me\nxkWN8wyMGhc1zv0abzaf1X3iam/Dpm3B1dGOXKdDYbRg9FPQorSj9XVRHhfJ/hGZlKVm0ZYynpbg\nKGJtBrIFBxODApgdn8qEqORvpcvA6XJS2l7qEfiihiI6zZ2IiJjt7pHT/t7+zEyc6fHNjwwdiSAI\nQ1rr/aJ+Jms9OTiZlOAUwv3CERGp66mjtL3Uk5iutL2USl0lkf6Rg3zuIzQjhvUWIXFx+M6JviiK\nvLDnBfJi85gYc464eqPRbWFmZMDLLw/o/DpsNLL4yBFG1/6Oa5IXc2vBj/nZz37GlmuX82y0Aoel\nhWZDM036JpoNzRyz2BkT4WKK9UN+t0tkrlHkyukw8xZoWg51d0LmD314L2sxf73heho0oShlJl4x\n/4axH4TAvhIiazpwKrwIMZzH0PP+6wa6yKOae1DQQ7L8XwQ6jwKgV6nYPHYshePGUx42heXvB5NV\n5n5d9ru7hXFzVMj37YTnnjvrOTamCPx8rkibH/ykI4n55VZGHmlBG+6HPDySOlkv/j0WxreIyJNT\nBop8YuLj2vXtAAAgAElEQVQAi1irb2Hroc8oPvw5x8q3E2PzYaoqg7HyWFJcgfh09Q4Wd6fzrK4T\nS7A/x4UeSpzNbLc3sMlhogY/RHUGQmAWSrk3IxROJqr9SRAMeJlr0errB7wt6K164gLjPG8LCYEJ\nJASdXI8NiMXHy+e8f58LjcFqYE/zHk+H6+6m3UT6R+Lv7Y/ZbsZsd08OPzpiNLOTZpMRlkGYKoxG\nfeOg0aZnstZTQlJICEzwCLQoijTqGwcIe1lHGUc7jhLiG0JWeNYA10xGWAb+3l9v2mCJc/OdFH3Z\nb2SkhaQhE2TcNuY2bhl9y+BoA5PJPSVeWhr861/0uWy0GFrcIq5v5uVugebeOqr3/4q3t8Xw4lX3\n4WcVaTb/HVVkGLEBscSoY4gNiCW8q4+wjncwx1lw/SOdG9duZd+rkPwqhG2Hvb9XYs7r42r9p8w+\nkTKgaHQGb3XfTeIBPakvnf1azUo5z939fao0MUS3tBDR1UVkdzcRXV1EdHdjTJiErn4RDqMPK2e8\nhlOxg2XakVTEZVOYm0tjWAa3bvdhyucCvjXuB0rikwkkTquD5cvdnYtnYPtNBSyJLyK+F5ZVuMuk\nZvd3NpUP8sAgRL2eg+FOnGmpjJ95E4r0DHcM/Smi7WzX0ttYjbWtGUVXD4FGBzalAocmCJ+IWJRR\nsef2i/eHMQK9fb0c1B7kQOsBilv3s1vXTK1TCQEZEJAFvjGorFqylTKWRqVwc8JYEn1V54zqMNvN\nNPY2DngQnOpKajG0oPHVuB8CQQkDHg7924KUQWc9x5ehobfB3eF6wl1TqatkbNRY4gPjsdgttBpb\n2d2027N/tDqa+MB4dGbdGa31lOAUkoOTCfcLH3Bf+ucK6Bf1ftdMeUc5KoVqkM89MyzzgodsSlw8\nvnOiDyCsEHA+7mRP0x7eOvQWH5R/QE5kDreNvo3lmcvxd8jcMyclJHDPlV58VPkJequeaHU0MeoY\nogPiWKu5HdO+u3krpJeVAT8hIHUZr776Oj4hobT+4sfsPbCKgusfRNNmoPYHoMuDjv+O45Eb7+Xj\nHXdhTIXOD8fw1+VX8/3851DLjGjuTGDFHXdSFxnBP1p+jtLbQvbjQHwi3RNGsTNRxlvqGopoYOrI\n+SwbeQWLhHR8f/sMpSVHOJKUhDYkhLbgYLamhdDhG8Wd7yeRc0jJG7cLrFkMrhOeCYUNCorg1o0K\nEsqcyBYH4V1ng2oT2a7HCWzfNvSNDQ3l+O8e4o/e+3B+uJIfFrtz9ZwNs0JAKcqQaU4muxLDwuj2\nl1MpdHHA0cheWy3qmGQyM6aRO2YhY7Pn4KUcXlSKzqzjQOsBd9EeYK+2nFYhiPCo6VhUSXQrIhEd\nJtCXM0LhZHFkMnelzyQ9JHFY9Z8PTpeTVmPrgAdCfU89DfoG6nvcbw0yQTbwQXDK28K4qHHnHCvg\ncDk43HZ4gD/eYreQEJSAv7c/lbpKtMbBeTXU3mpmJs30WOspIW5RTwxKPOM5O0wdJ4X9hMiXtpci\nE2SDfO5ZYVloVJoLch8lLh3fSdH3+o0XlkctKORun3Gfo4/Vlat569Bb7D2+lY0rVYQkZ1P+h4e4\na+0P2fn9nYT7hXtC0tbqdDxRW43/yh/wyPyjVCnuJ7IjGO9332fJ/w5xPBhSu90ulX7BH/Nz8DII\nTHvvGR4NWsHvW56kkzAeKXmJtOxiTOEyfu74M6k9Ar+J3Ikp6DA9oU/z2fENbDv4CUk6J/NdyWT0\nKohqNTJiXfGg66oPhH89fTVTJ99F4OvhWN4xUrrEyWPXutCr5SBCWhUs+AJmb4TqFPh8IRwZBQ//\nAZxyeOrXoD/FKBNcLjLr68ns6CCtsZbs8koiT7xBRHZ1EWwwnIzWCQ93933k5tKqdPBY6QsI4eE8\nfe0/CY9Np7Oviw01Gzy+eS+Z14DMlMMZ1t5mbONA6wH2t+4/sTyITlATEzMHRfAYuhVR6Fxywlzd\nmHXFuHrLWBSRyHVpc5idPPuSuxNsThv7W/azrnod66vXs7d5r2fQUJAyiH8s/gc3ZN8w4Jjevl52\nN+3mi+Nf8Pbht9FZzj1yWaVQcc/4e1iesZzUkNRB1vrpdFu6B8zw1S/wVod1yBQE56pP4tvLd1L0\nfZ7yofeXvYOtG4sF25KF1CiM3HKFk/3tJSQEJvD5zZ+TEZYBuDsVl+zZQUVVCdkh9dzv9zzR/4b0\n/wysqjvEl/bbRPQ5DnJ+F0qHQsNLU6cQcX0Rm5jFvQ/tZHXMEaZ9z5dKze0o7buJ97qK7LojNAd9\nQNuzdpJrIa0LvF0CtaFyerxF8hpdeDtOXldTkIxXr4ij4Jf/QhY8nsq/NRL9Yg/bC+CNO0AXCoE9\ncP/7nUz8HFQmiEs4SpR9Nc72wzSrxqPV/xxH6AE6Ru6iMyiAVo2Go/HxlI0dS6Vafd73Plpmo7Oz\nmBlhiUwOiaZZu5Piui+o7jjEjITpzEuZx/yU+aSGpJ5ROERRpNnQ7LHg+0XeJCpIjFuASpOLQRlH\nnVNJuEJBDD1YdPupqP2ENB85S9MXsSR9CeOixp13/PhXRRRFOs2dHOs8RoWugorOCo7pjlHRWUF9\nbz3xgfGM0IxgZOhIRmhGMCLUva7x1dCkb2JT7SbePvw2m+uGnnwmwi+CLksXdpfbFect9+aucXex\nNH0pUxOmolKc+Q3JYDVQ3lF+0jVzQuD1Vj2ZYZmDXDPR6mhJ3C8zvpOir3paRcdDHQNzXff1ua3U\n4GB4+21WVn7CTR/exE/H3cvGVS+Q1wR5TZDZ5cekt1bj29fH+tJrkcUa8d8BUf9RoPRSotYZEIGa\nH8vpzvfBeewu/jimgC8CA3ig9k/Mlm3jqoj/8tqOdeRYjnN40X4ebv8z/yq9HzGyF3sqHHob6mQB\nRORMIThzPHl1DrL+/Rneh8s8zRWBDwpGUjLvSj7NGE94WSh3vQKNcfDPe2BU006u+lxHemM2rqYw\nQtlJpP8Ogow7EBARgRaWUsedjOCPhEbWwF//CtHR8Pzz8PHHA+5ZYTL8dhrELbyJ3yz6OxYU6BwO\nmq1WjprNlJlMlBoNVPWdf+6HTJWKKf5ezBFrKdG6XTQHWg/gQkZa/HzUoZPoUyXT4PKjyykyUa0m\nTWGnr+sgx2o/orR5JzOTZrIkbQmL0hYRExBz3m34MticNqq7qgcJ+7HOY4iIA4R9ZOhIRoSOINwv\nnGZ9s6ejtKKzgg+Pfjhg3tx+gpXB3Dr6VqYnTqdJ38Qh7SE21G7A4XJ4UhzMSZ4zZCil2W7maMfR\nQeGQ7aZ2RoaOHOSaiQ+M/9ofjhLfTL6Toq/+vZqWn7eg9jlhxVqt7vlP1Wr44x8x7dzK3/92K3lN\nkNsCfnawyqFDJSPh4/W45HJqb7mOhpc7iP1IhjXRj4wj82HUKMTRo6gqXE7d3FAec/yGelkID723\nktt2r6byBQvxT6t4fO7t7EgfyR2Rb1NlCmbNvu2MiO3jqWxIWZVL7KFAhMOHB8WtN4eGsmH8eJ6/\nejGH00cBkH0EfvgyaHrMWFILyclLR22eSvtKPco4LyLtnxFe8he8ODnJiBMfKrkfo2oMWT9uQ9VX\nDX/724BzVQfDL+bARxkgyuAPc/7Ajyb8aNCkEAargTVVa7A5bdz+ye0ALEhdwO1jbmdO8hxCVaE4\nRZGeEw+IMpORIl0z+3o6OG510CWcdLfMan+N0PCJ2P3SaBECKTXbSFQqyQsIYILaD7mhgsN1q1lT\nuQq7086S9CUsSV/CzMSZFy3Er99qr9C5xbyis8Kz3tDbQFxgnNtaPyHsaZo0/L39B4Y59pwMdew0\ndw55nhmJM7h51M3MTppNlDqKooYiCmsKKawp5HjXcaYlTPMIfX8oJYDVYaVCVzEoHLLZ0ExaSNog\n10xSUNK3MuRU4uvjOyn6Qc8EUfd/de4oivZ2iDhhKUVFQWsr3X5ybDg9EQd2px29TMatjzzG5vET\n+c/TT1OdsYH4KXLafWcyOdLBlNxNbGzcx9Zj95MstPLBse8TWfIFz76/k3CTi5WvqWiJSsHifzOf\nG2VUKGP5p+tOttt/QJrxTsZE30b0Kw3EtU6BbdvAbMaoVLI1J4d/XX89n/Xn9jnBwkb44e87CTou\nI2lsJbKp+Wh3+GFtsBJxUyiRH96FX93gzlhLfB6lPffjZylnhP1Z5JzM3fPILPjPaGgMAo2vBpkg\n4+GCh7k3994BYu8SXWyt28obh97grUNvebaHqkLZesdWMsMyAXenZoWuYoCLpkRbQrAymDFRE4iK\nnIIYkIFWpqHEbMPodLpTF5zIF58ot1JUu55VlavYULOBjLAMlqS5hX50xOgL6nawOW3UdNd4hL3f\naq/QVeASXQOs9mh1NAq5AgFh0MCk0yNhRERaDa20GltpNbRidVqZGDORgrgCCuIKyIvNQ+2j5kjb\nEY/I72zcSXZ4tkfkJ8VOQkCgqqtqQIdqWUcZtd21JAUnDUpBkBqS6umzkpA4H76Toh/ybAhVP61C\n46V2x+DX1LhzhisUiIhYenR0JUWwK8hAQ0IQsqlLeSnnOpJsLvZbLAQW3cj1AdORx1hZ07OR25N8\nuN/4Y34cUcUo114a/6vhqTfKsURocOXnYXruWqraV7DReit/bLNgDZnMA95vkuYXjqr6Jbqa5zC7\ncSvJLwjsnzqNf86YweszZgxos7+zl4dCI1j+xSEUz7TSbshFnSoiT4uhe7uJkAIlkeXPE1z3ATKG\nmGzEzw+daRTHeIhE3iaaT9iWl8wL8TWsTwGjD9yZcye91l6KGop4MP/BQWJf213Lm4fe5M1Db1LX\nUzeg+u13bifAJ4D9Lfs9UTSHtIeIUkcxNmocyRF5eAWNptMrnBKzjSMmEyNUqgEin6JUUtpR6pmu\n8WjHUeYkz2FJ+hIWpi4c0o1xvnh87SfcMKda7bEBsW5rPSQNP28/FDIFCrkCo81IbU/tkHHr/WGN\nycHJxKhj6LJ0sb91vyfjpLfc2yPwBfEFjI4YjZfMi2Z9s0fkN9RsIMAngLnJc5mVNIuEwASa9E0D\nfO7Hu44TGxA7yOeerkn/RowLkPju8J0U/bDnwij7URnhe0rhrrsgOxtGjYLRo/mjYT2/rP83XY/2\nMu6f41g09n7edo0gv20/WZuqeCtHSUfbi6ycDD+uycE3eia/Vq+k2ZlMunCUB0pszHBl8PbDu7C8\n+W+K8jVY6m/k2epAqlL+jlmh4aeRaqa2zOSxvld4fMdj9GVZuDHqDVycfO32F534t39KjK2RN/wW\nkPG/XTR9LKfWeisAMpUMVbSTyJp/EO5ahzdDJDZLTAS7HVHXQ13ftbR6LaVr1Gf8fuyb7I4Flwym\nxE/hielP8MqBV9hat5UHJj8wwI1jsplYWb6SNw69wZa6LUPez9zoXMo7yokPjGd81HiyInNRheTQ\n4x3FIbOdXXo9oigyOTDQI/K5ajV+cjl9jj42125mVeUqVleuxkvmxdL0pSxJX8K0hGlfStDsTjvV\n3dWDhL1CV4HT5WRk6Eii1FF4y71RyBR4y70HWO391np/SOPp6QP6I1c6zZ3sbNzpSUh2sPUg6Zp0\nCuIKyI/LpyC+wDP+w2A1sLV+K4XVbqHXGrWkhqQSpY4iyj8Kk91EWXsZxzqPEe4XPsjnPjJ05Fk7\naCUkLhTfSdGP/GMkB+85SJQ6asD2nr4egp91hw3GqGNo9k6C9AeYr9/Nq/e9RObLr2KofpoxGg0/\njarlOdUbPBanJqZ6PGr1REaPXodTUPJGyRuMuPZe/pLvS8JVagKDM3hK/iQAQSY5i/zeIp4GKkln\nCav5KX/DhD8rWlsZOyqavxz4LXptHa/1ziTr41206vKpaj+ZEiGGD4nkc09qYw8ajbtvorvb7bYq\nKcGcnUdxyy3UC1buu+YXdPu7OwxX5LzFFZNG87sdv2NL3RYenPygR+xFUWR7w3beKHmDNw+9iUsc\neprCcVHjuH30HYSHjcXgE0eJ2cpuvZ5jZjOjTszb2l8SlEqPO6bF0MLaqrWsqlzF5trN5ETmePzz\nGaEZw3bbnGq1nyrs9T31RKmj8FP4uYVdrvAIfL/V3m+tn2qp95eh4tZFUaRCVzFgAFSrsZVJMZM8\nVvykmEmefiKHy8G+5n0U1hTyRskb1PacTBwnE2T4yH08o1RP9blnhGac7GuSkLgEXDLRFwQhHXgf\nd6CKACQDjwFvn9ieANQB14mi2DvE8WcU/ZjnY9j7g72DojxMNhP+v/dnUdpixox/ilfau9Ht/iGb\nXmvgn7Nn8t41D6PpMPFw23/pdcZx3/d/zlXvL+PVqfmkJj1OYXM5fyj9nF0GI5HK8YT46/i14jfc\nyesYcM+bqcDGf7mJT7iSmyzvkfQrf0YeaqNRV8OvtzyObtMa/lSXTvr2YzTE/5q60lwAvNAzgj+h\nYdfALJj33w9ZWdDY6M5KWVmJfe4s9oyL4D2jkYIXF7I1cyuvzH6FGNNypvBLTL0++C74LZvrNvPg\n5Ae5d8K9+Hv7U9Zexv3r7qewpvDMP4xcxYKx9zMx4w72G93T+6nkcs+crf3ztipPmfrOJbo42HrQ\nY83XdNcwP3U+S9KWsCB1wVkH9AxltfcLfLel2yPq/Ra7Qq5AJshoM7YNy1o/E32OPvfkIA0nJwfx\n9/anIL7A467JDs/2dIqKokhRYxF/3v1nPjr60aD68mLzmBA9YcCMTBdjZK6ExFflG2HpC4IgA5qA\nScBPAJ0oin8QBOEXQLAoir8c4pgzin78n+PZ8b0dg1Iv2J12Ql+cgN/4v9Nqd/DX5EQ+fPMZduZf\ng0PuzkWzamEf/q/dyTPGW9lk3UKij5WrMmbzR8fiAe4ZOQ7+xd28w81sYjYAc/Y1c3f1v4mavwWr\n4EPpO7/hp5uf4e9PLaPpiw/4+WF/As2h1Lrupr1jDABqysnmcXw4MSBn8WJ4/HH3RB6rVsFnn4Fc\njn3JQnaO0fCS7xHW1BUyde9U7i68m38s/Sc79VN5ePZdTJ7dwZLnfkvA6M3clft9JsdOpkRbwuNb\nHj/TnScsLJc5Y35GaZ+LozbwUsWRGxDk8cNPCgggxmewC8ZkM7GxdiOrKlaxpmoNAT4BLElfwtL0\npeTH5Q/qZOw0dw5yx5R3lHvytw+FSqEa0lI/1yjToWg3tQ8Y4Xq47TCZYZkegc+Py/cYCTqzjtL2\nUrbVb+OFvS8MishRe6u5b9J9zEmeQ1Z4FqGq0GG3Q0LiUvNNEf15wGOiKE4VBOEYMF0UxTZBECKB\nLaIojhzimDOKfuJfEtl8+2aSgpMGbP/0+EaubBoqnE0knHayzDU8vmc9zNxCnSOcKHkXrc4QouU6\nbhP+QxuRniNu4h1GcQTbq0GMVVrI3ytgPVpF1eouRJ8+frPmRaxpAhGtraQ26xh5JIC4I2NQmNx1\naIRNZIm/R3bvXXDFFTB6NGzY4Bb5wkLIzMSxeCHbRgfxirWIz49/QWpIKhaThWXvLmNs41i2Xi/j\nw/9dwS//vovfVF7piQUP9wun3dQ+6CrHxk4jICyPYzYZRmU8onoEoQoFJl0x4Y4O/px/N7PC4lGc\nYdalht4GVleuZnXlanY07GBCzARPtE2aJg27034yQuaEsO9r2Udpe+mQ9YF7UuqMsIwvZa2fCZfo\n4mjHUY8FX9Tozjg5OXay2xcfV8DEmIk4XI6To1PbyzigPcCOhh2D6luSvoT/m/R/zEqaJQ1kkvjW\n800R/X8DxaIo/kMQhG5RFINP+a5LFMWQIY45o+invJDCulvWkRqS6tlW39dHzs5CemRqfGUyZgoC\n9z35JJb/a8fXvxKrU0RVORp55n66RTUPHdPQ0FHHO8s/IFz3A0pdz/L6xqOUmI8TNUbB32M38qDp\n98zaUMr1lbW8t+dmrnxrKyr/13jddAfruybwz+e3IuucgKplLLITSXF2zurhzR8pqdUoCRQEYkwm\nopuaiKmtJSYwkMjkJLqivdjVtZ1tVR+Ro0kmOyyLZkMz5SXlrPhgBbJYL/4wooryoDfp86/0XKNP\nwyKSxtZxTFcOyMAvCXnQGOLj5tOjiKZXlONnbWJeWCy3JeXS0LiOFRvu59Gpj/KzST8bNHjH6XKy\nr2WfJ9qmxdDCwtSFTI6dTEJQAlqjlrL2MjbWbuRQ26Ez/r7hfuHkxeYNstrP11o/E2a7mb3Nez0C\nv6txF8G+wR4rPicyBxHRM5ipPySyy9KF0+XE6jw54CxGHcMdOXcwL2UeebF5Un53ie8cl1z0BUFQ\nAC1AhiiKnaeLvCAIOlEUBzmFBUEQnzglR/yMGTOYcSIMMv1v6ay6cRUjQkfw5z+DIsvAU36HaTsx\nf+ux5GRGTJ2K+PxzbA29jWt2WrHoVax5Zg1d7y7nCUsijcnPYW9bz4OxP2W6NZ7lj7axbKaKB2bW\n0dUyiagvjHysS+SNa66iMqaARapdPMif2NeXx9i78whszMaBGhE5NjRE5HaR9NxIlLJO+OwzXKtX\n0yEINF95JQ3TprI13IutnZWU69tR+sXi6xdHj8uLPlEEq47xe/t45M/RrFxynPfzS3BRDTYdyxLz\nmRszjkffX0tfkglvTTZm3yRE/1RCZE7iBAONjetJlJn47aQfsCBlLr3WXu5dcy+H2w7z36v/y5jI\nMZ77qLfqKawu5ONjH/POkXeG/YNrfDXMS5lHRmjGBbHWz0aLoWVAh2tZRxmjwkcxPmo8Ib4hBCoD\n6TR3egS+zdjGiNARZIVlEeIbQquxlRZDC8e7jqP2Vntmi5qZOHNY+YEkJL5NbNmyhS1btng+r1ix\n4pKL/jLgR6IoLjjx+Sgw4xT3zmZRFDOGOO6Mln7Gixl8dN1HZIRlcN11oLm2Dd/MWt468E+mjbmf\nj378Y5wzpvPZddHI2n7OVdttPPLxI8zRZdD979t5bdM7+I5oYm2fCm/9RN7Lm8KjjjV0GXsZo9rG\nfO+1/Mz+DEFOkS5FEJlCGX+V/wyrIQT7re+xc6ICudhB3mE/glKCiL6qjZjST/BevRoSEmDZMlxL\nFlMUauH98g/4X/n/sDvtpGnS0Phq+Pz45yevEyXP179IxupEVv/EyT98ipHF6fGKmIxFHjDk9QcL\ndkbSSXn9WlL9gvjx6OtZnDCRUIWCnY1F3PLRLSxOW8xz857DYrewqnIV//fF/9FrHdRfPoAgZZDH\n0h9OBscLgdPlpKyjbIA/vtPcSagqlECfQAKVgfh6+VLTXUOjvpGU4JQB4ZAJQQmefDf9oZSzkmZ5\nBkad7gKUkPiu802w9N8FvhBF8c0Tn58FukRRfPbLduRmv5TNe9e8R3Z4NrNnw913w7GIFXzuiGTe\nMTuPfLGG9JlHmB0TxPJQO/YrniHYHEztT/5CWVI9f3rgIH73TeKhtF/zsKyUA9GPUfBENp1XT2H/\n+BcxvyCg0Y7iyeseJqdWzrJbbgRg2/MPUxwZzvzdOagMcl7+IeydCP1pKtWCgL9cxGzW0mtsBHsv\n2PXgOLE8se6Piz/NfoJrI+bT9L0qOlt7+b8rN3E4XosscDSiXxIKWzuJMjMqcz2HylcxWZPLDVOv\nY3fHcT6r20l8+HjSo/Lpk/vTbO2jwWKm12EDWxdYO8HW6V6eum7rBKuO6zKWMS95HplhmaSEpBCm\nCvvafNlGm5E9TXsoaixia/1WNtVuGvC9gIC33JvEoMRB4ZD9cygUtxR7BkYdaD1AbnSuR+Q9s3BJ\nSFymXCzRH9YsxoIgqIA5wN2nbH4W+EAQhO8B9cB153tyuUyO0+VOZ6vTga8vfFrxKaGhD5G9Zy0f\n/GIJeVo1v508jYOrPiLY7H6lt07ewfYX3uDFJ3diW3eY+/5zJ5aF2Xhdo0IUoN32ImEbAlgvPo3G\nMpKHn+9B+eG1ADT+f3v3HR5V8TVw/DupJJCEQCChk4RepZcIBCGABSyAIipFRRQVsVEUBBUVlCYi\nFnwVFfjZkI5SpErvvdeQQCC9J5tk3j9m0yCBoCnEnM/z5Nndu7v3zq547uy5M2c2jKDJqsZ0SS2D\nt9McvB5x5lHfe/m/ilWYdeUcp3RZYmJPExOxG6IPU7WsL21qdOVKUgInY0KITauKT8WmOJWuzu64\nRCZvB+fx29nZGr74EFLsOwJgn5ZEbRVBQsolgiJOUj2pBfWjvqF6qzUMXzEELNGUdyjF0Qs/cfSG\nL9weHD3Mn4MHbm61aNfgCcq41OCKJZWgpCSCk5JYbWvLkRQHqoQ7UiUunCqOcVR2cKCKo6P5c3Cg\nooMDNvlwIgiMCmTzxc3MOzgv2y+cdK6OrvjX9M82U7WuR91svy7OhJ9hzdk1jFs/jvXn1lPFtQoB\nPgGM9htNxxodb6gnJITIf3kK+lrreKDCddvCMSeCf8xG2WTUMA8Lgxibi1TZd4bjnaDRW2/xzqFx\nPFDnAc6d3oXzxtoAnKm3ixouiYze+zXdDv/FT941UE/3ImXpJ9j5wTGXFIKbViDx+bmUrnSNtXXf\nZ+DT5uJludcfw3ZfFyLKnSLigxP8VLkcPxyZT/SR78BaOFPZlaFfx5lcqzGCHbFxVNBh/H32RyqQ\nQO+Gz6JcG7IrNo6jcXEM2mjDQ1MTmdV7JWsbLMFjR22e7fI4lxIjmXd8KYftXMHe/B1zCYY26zma\nWB4aTwY7V8LsnCElFoe0RJITr5lfFCnReJfxoGm5mrT1akBtl4qUt7envJ2dubW3x8HGBq01YRYL\nQcnJBCclEZSURFByMvtiY1keFpbxOColBS/rieD6E0L6/coODpSxy/ynYEm1sOLUCr7e83WOAb5s\nqbIMaDKA5pWam4lMFernOEs1PCGcZSeWZZQ4SExJpKtPVx6q+xCz7p11w6Q8IUTBy1PQLyi2KrOn\nHxoKp8/N5cvFNtR6zItq3j78ufAvgubM4oVen1H9Ym8AGjSdhtoFv1k64lBvB88cOkHC4fmcb3Uf\nkeoM4S+H8dfO3lzr+ALPHaxA57qHCHVPJmXaS6xXnrw7fCgx5a6SciUFrIsaPdPsGZ5r8RytKrdC\nKVWE2fAAACAASURBVMWxa8eYtXMWO48vx7bus3jVe4Vw7cA1JxfaOZemXmIQp0cup/WpFrz2xHjO\nep2FeAjlPJNW5z6h6j3/93iq6b1UdqnM5gubWXpyBfOPLSUsxQJ2rjzRfBh+vk8Sm6YItVg4lWxh\ne0gIYRYLYRYLoRYL4SkpONnY3HAi8LDeNildms5ly2Zsd7G1xZKlumb634HYWIKSkriQGE9wUjI6\nLZmUhMvXpZMccK7Ujd4+nejj60+HSg1xv8lye0kpSWwN3JqRsjkReoIONToQ4BPA8DbDaVihoQyl\nFKKIFW3Qt7ElVacSHw8qMZ7HPp7C5peHUKdMGfz770DX9GbUg6m4uQfDpaoomySudYil7W9xTGYc\n1w51YpPDvcQ41OVwxy20qbuSlN1OjJz1JX/6KnYHuNDwgWSure/MwfvLM+/8brR9Gco7p9KnQR/6\nNepH+2rtsVE2pOk0Vp5aycydM9l/ZT/9GvZjQc/ZJKYkciJsC3+c/oOFF/9mY7QH438Zj2dpD54f\n8jxxTnHZPtPI9iNpWLEhvxz5hV3Bu+jnPZx5w19k6w4LO8L+YOSakaw5u4Y65etQ3qk8YdFnGNpi\nKNO6T8tTTRetNdGpqdlOBGEWC2EpKYRZLByLj8/cbt0WZrGQojUuNmk4pCWSmHCViJjz1msT0eYX\nhtY4ObjSvGo7Gnp2xtnRjbjUVC4nJ3M4KYlVwUlEXNxvFkqx/kKo5OCAnSWSaxFHOX1lO0cCN1Lf\n1YMe3p2YEjCFdtXayVBKIe4wRVp7p/3/tWdKtylU0+3427sPNF5K9LJTbIiK58Izk/nceTdeu704\nsXAz3L+C2o4fcubnTXj0fZlLli6c9L7CHw9VJNn9GK+fn4bdg9eYvgQuJzbhlX0vUmPmUK6GeDE5\nrAZno06TuO8R/vd2P3o27gTApehL7Luyj3Hrx910YlK6pueaMnbhWIIevMqkMtsJL7+KGp7leLXd\ncAY0HcDey3v5YPMHHL56mNfbvU67au0Y9O56kqovJ9z+sKlUWfsBuvl2Y87eOXy5+0u+euArHqz3\nYL593+EJ4dnK/u6/sp8tgVvAxgHsXMHeDexdKeNcGT+fe6lRoSmOpSoQmZqWcYIIS0kh1GIhJiWF\nsll+Tbja2hKbksjV+AjCkmKItiSCjQOO9i7Y2JZCKzN01cnGJnsqKYd0kpeDA3a5TC4TQhTxhdyC\nkn4h12bax9Ry3M+7z9xD/QOHqb/+bz46/j/OPtWNo+FtqRJ6DFLsOdOpEZYjEZxzCSGi9pdMfqkf\nHVeNY1/cId5v7kPfiJ603+hDvVhvys97AoBxgR7cXacRUbt6Ual5IJ8d+ICHF3e5abuaeTXjYtTF\nzDVQNUy9OJWWK1vy57CdTFYf4+PYmm+f+JHutbuy6vQqeszvwfnI87Sp0oZ7a93Lpzs+ZfLGmSTG\n9mRe3/EE1OqEo50j5yPP8+hvj+Js78zeoXup7FL5H3130UnRN6yjeuTqES7H3rg6enmn8vRp0Cej\nIJl3We88pVlS0tK4lBDNqgvbWBe4m20hRwlLseBTsRmt3OvhVrEeyTZOmScLi4XElBRiUlM5kZDA\niYSEXPdtA3imnwiuOyFkPVm42tpKSkiIfFSkQd9G2eC2bgteX73H0iqVmf/udh6c2JNEu03MHmLh\n7TVnaezsB0Gm1opzhx+58nclfmv3E/MHfEbq/j3Ueaofv607wWvfP0rNA234peM8/EaNBeDhrRBp\nOczJfYehJpxJAs5lb8PYDmPp4tMFH3cf9l7ey9z9c1lyYknG8x+2+ZDWn7Ym7FQYA556lqunezCz\n7xaef9SHRccXUXVa1YxAW9q+NCFxIbSq3IqXW4/giW4NeHeC4gFrcYoFhxYw4s8RjPIbxavtXs3T\nsnhxyXEcCz2WUYIgfbm9sIQw6nvUp5RdKaKSoohKjCI2OZbS9qUzFgdpX6097aq1u62CYqlpqey5\nvCej9PCey3toUakFAT4BvN7lVVpUanHToZTXp5+ypp5Cc9gWkpzM0bg44tNyriBa2sbGnAyuOzlk\nPVl4OTjkWpJCCJFdkQb9aleT8H33HVJSU3FwO0PHbnC4hiejlp7l7bVwxvIU4b2D4FJV0hoHEdIu\nliftjxNVqh44lQfbV/hgnS0f/PQBsaViGfjSAL7qHAPA4F1Qu0IrarvX5Y9fqlC17XYOxWykvkd9\nRvqNpF+jfpSyK8WBKweYu38uCw4vAEzBr1J2pRjZfiTVrlXDZbALm73/Zv197tiv2s32n0vxfxff\nxO79mRmfo2+DvvSq24setXpkFPX65htwL2sqLEcnRfPiyhfZHbybVU+uolmlZjd8F4kpiRwPPX7D\nikzBMcHULV+XhhUbUrtcbZp5NcOnrA9BMUFsv7QdWxvbbIuDNPVsetsrNZ2NOJsR5NedW0dll8oE\n+AQw0m8kHWt0pIxDmVvvxEophZudHW52dvg45X3pxMTU1GzXIK6/VpG+7XRCQsa2iJQUc0zIdq2h\niqMj1R0dealKFVzsivSfuBB3nCL9P+IRT382PV6KWZWqsDJpDRfu+YGGaWk8fOAqM5t70W5HO6g6\nAwKrsbHN95SLTyXKAtTqA0G/Y59iy3u/vEeccxwTH5rIq95ueJWCmV9/x77ZAwlNO8MzX80its4c\n6lXrwuetN3F39bsJSwjj6z1fM3f/XFPgq1o7fNx9OBN+hpdbv4y9jT0HvjtA68WtSXjZlpUbX4eY\nlZzu60bT30zb7/K6i6ndptKheocbgmxMjCnAuXQpbL+0jSd+f4Juvt3Y89we7GzssgX29NuLURfx\ncffJGOc+sOlAKrlU4mrcVbZf2s7WwK0sOb6EWuVq4VfNj0cbPsqnPT6lulv1205/hCeEm5mvZ9aw\n9txa4i3xdPXpSq+6vZh578x/nHL6N0rZ2lLF1jbHSqG5SUlLIyL9pJDl5BBmsRCVmoqlgK9XCVEc\nFemF3HSt3x3G7nVVuG94GKttamE5+CKvLXuNnnt6kvbJ68Qtu5ezj37HZsdgFoZWgBZzsNsygA8W\nvEv3Rp1p3qg5XSql8VZ9+PW3sTR5qAPLrs5ke+AO4rc8y7J3XqBjs0r8efpP5h6Yy19n/+KBOg/Q\nvlp7tgRuYfWZ1XSo3oE0ncbms5v5YNcH1N1dl83DzvPBhe9IrrQ5o63fP/Q9A5oOuOnnGTsWzl5I\nwubhZ5h/aD7NKzWnVrlaHL56mDPhZ6hRtoap5Z5lRaba5WpzPvJ8RjGyLYFbCIoOok3VNhk9+TZV\n2+DqmHNJh5tJTk02Qymtvfnjoce5u/rddPXpSoBPAI0qNpK8uRB3mCIvw/CPD5BL0I9MjOTjLR9z\n9NrRzBx6pZ7gUpcyB75k2eRlBLkHUWn2a4R9MopSEyYwZPh6kl8IJ9ZzOWMnlaeyzV1cnnmAH/a/\nw5wWcPySD+9fdMCjnAPDWw9n17f9ibE/Q6V75zLv4Dx8y/kyqOkg7vK6i5k7Z7L85HKqu1UnTacR\nmRiJf2l/en7Wk7C0MEY/MJpoZ7P04b217mVS10k08Wxyw+dI02mcjzyfkXPfcf4wS4+uRJeKBMjI\nh6eXIKhbvi5O9k4kpiSyJ3hPRoDfGrgVZ3vnbHXjG3s2xs7m9n+Maa05cu1IRpD/++Lf1POol1Gw\nrF3VdrKeqxB3uP/c6J39V/bzy5Ff6NOgD0tOLKH8VzGEfTIW4s7xyI5HAEi+LxYbj0g87BVnLvsS\ncqUp9k3W8NbIStjFuzJ72CzObF/DEj+zzylHm7LguVdoVLER09f8xP/pDlSocoVBtgPYNHgTABM3\nTWTo8qE42zuTkJLAwZCDuDq60vBiQx753yOc7XqeyT4/E2sPj9UawsR7R1KrXC201lyMunhDauZY\n6DHKO5WnYUXTc995KBRdOpLxncbzTqd3Mi7WXo27ytbArcw/OJ8tgVs4EHKA+h71aV+tPf0b9efz\n+z6nqmvVf/x9Xo65zNqzazNmv5ayK0WATwBPN3uaeY/Mo5zTDVWvhRAlUJH19NefW8/4DeNRSrHp\nggnINJ2B3Zn5rHnjYywVLVR6MpnIzi+R+FcrfghrzPzogbwVuh3vmFied71MWsBY1ppSN4yedJAx\n0wKZf2Quq8+sxunSvTxUczCzXuvCmYgzTNw0kR8P/nhDO7r5dGPggYFUmluJPwdvYqrDp1RN6sbo\nvt1J1FEZAf7otaM42ztnLrNnTc00qNAAt1JuRCdF0+/Hl1h9ZAfrXpyPh5tztoqT1+Ku0bZq24wL\nrq2rtL6tC6TXi0uOY9OFTRmzX4Oig+js3TmjYJlvOd9/vG8hRNH7z6R3tNZsv7Sd51c8z8GQg9lf\n3H4x982ez5uLh1Hv73qc/uR7HJ5eRWTCMV4YvYrHal6mXPA5vnl2BifiT7CoHZR1gEHfDiGx8XJq\nuldn0F2DKBfcj3dGlmXhhpO8//c7/Hzk52yHub/2/Tzd7Gnu8byHU8+f4uKui7zS6xWCygVhgy3u\nTmWzlf1N78Xntobs+nPrueeHewCo6+jPNZuDuDm6ZVvHtUGFBv+qamRqWip7L+/NCPK7g3fTvFLz\njCDfsnJLqUopxH/Ifya9s+zkMvov7E+Lyi2yP+FQDtI0by4eRprSuJR3QXteIsEST3KKPX1cd+ER\n5sVbfUbwcp0JPJQwhrIOMHw/tPN3552ef1G/Qn0sFqj9yi4uPN6aRl9l7t7X3Ze5D83NKLsQfyqe\nI52OEFkrkmlP/kXMjpFMf7ERj3dpeMsFRS7HXGZr4NaMtVnTeZx6lfdGt6dDDb98KSZ2NuJsRspm\n3bl1eJXxIsAngDfavUGnmp3+1S8FIUTJVOhB/x7ve3C2d+axho9lpnUASnvTdnMYUJagDysSviqc\nlKbnSSl1CNsN3aicUpHRQ2bhY+/DoctjGF0PZp0Gm9jH+N+IyZwMO8kLy1/gyz1fQrfM3f7W9zd6\nN+idrQ2hS0I5MeQEXm9589HGlqSuCeDIb1A1h5R6mk7jyNUjGWmaLRe3EJkYSRXXKhy+ehhbZcuB\nIcfodXdtvvoKujb6599NREJExiIia86uIS45LqN0w4zuMzIWBBdCiH+q0IN+GYcyvNT6JSZvmZy5\ncdYx+GgcH31g8tADkhrx0bcf4Tl+M96l47l4tB5jJiaReGgNHuWrMroebAl058+DDYkr/zPq3ezp\nm97ezzLz4XdvGG+uUzXn3jlHyI8huHzWmAcmuNKpE/zvJ0gfHh6XHMeOoB0Z+fjtl7ZToXQF/Kr5\n0bF6R8bcPYYDVw7wyp+vMLnrZN5o/wbTp9nQoAF0vc1C08mpyWwL3JYR5I9eO4pfNT8CfAIY1moY\njSs2lqGUQoh8VSQXcsMTwin/scmP//nIbno8u41aD0Ux5y0/RgwcwdW6V5kzYQ4JS3pir2144vJI\n4mJSuMd5G+Nq/w1A541mdSZN5r47xn1Kvbjn+OrzG5cFTA5N5tjjx9BpmgsDGjDkTQc++gi6972U\nEeC3Bm7lWOgxmno2zbjg2q5qOzzLeAIQkxTDy3+8zNbArSzovYCWlVsSGgr168PmzVCv3s2/C601\nR68dzQjymy9spq5H3Yy8fPtq7WUopRAC+A/l9AFS0lIy7l8Oi4X7XmbOW+sBOOXqRPOzvsTUCsWr\nlGbpFVviqrXFZucTjGsaC0CXjea96QE/wCeAGS1W0amTYuGxG48XvSuaI32O4PFYBSbbRbNwwde0\nnriV92K2MOrLuIwLrjN6zKBl5ZY5riW7M2gn/Rf2x7+mP3uH7s3Ip7/7LvTrl3vAvxJ7JdtQSgdb\nBwJ8AhjUdBA/PPRDrheHhRCiIBR60LekWuj7a9+Mx69seYQKURUBeLv/e9RN7s8Xrp2xH3iRy8Df\nlvuwv3iK5e1MwH9wC6SX5hpT/3uaNHBgwaEFvPmm4q23wMMj81hRiVHsmrqLtClp/P7EUr5x/AHH\npCo8+HR7utbpil+18dQpX+emKZTUtFQm/T2JmTtnMvu+2dmuDxw/Dj/9BMeynGjiLfFmKKV1YlRg\ndCCda5qhlOM6jsPX3VdSNkKIIlPoQf+d9e9ku4Bb39mf1z82ZZD9fBfhpNxIXLqbUlNDiY11Y1+Z\n4byddj8ONvDcHohOAZuDA6nmWp3/c3gHp2C4GhNOldMWZswNZsEhc7F155mdBPwQQNMrTdk69gSL\nl3bnuVYTmDnJg7zW4AqMCuTJRU+aRbyH7KaaW7Vsz7/5Jowclcr55H3M2WyC/K7gXTTzakaATwBf\n9/yalpVb/qNZtUIIURAKPRrdX+d+nNK8GL9tBL7uvhy+vIoK0S8zedgZyhzzp0+XZBLPJ3Ig/ij7\n4qpxb+lP8S+TwOTjYL95JZX9XsB+/9c0baLwq9aTbXYfsThqEdcGVOXu78Gvmh+dbTvz6JxHKdew\nHIdeqM+C0XbMnAmPP573dv565FdeXPkir7V7jTfbv5ltDPz5yPPMXL6G9R5r2Ja2ju8WVSTAJ4DX\n2r1GpxqdcHF0KYBvTggh/r1CD/p3V7+bD1f8gOu1AHx9Fa9//DoAB1vZ4j5Vg+829tY8wJSjk6nQ\n+A2mOk1h1RXYNzWIkCerUDa5IqpXD1a67mJvYA1q2PjR4MRcFn/mR61yvoT/Gc7xQcepOroG089X\nYflHir/+giY3ls3JUWxyLMP/GM7mi5tZ0X8Fraq0IjIxMqMq5Zqza4hJjiH5WFcGtr+PMY9N+1fl\nE4QQojAVetBP02lsC1+G08W3SWm9iPpB9fnmsTOUjk/gyAPuHFg5jMPVDnMl4hXiYhvxzRWYfxF4\n0oxRb247ACc64x7cjiZ13JkyBdasgVrumgvvXyD462Aqz2nIgKllKV0adu0Cd/e8tW1X0C76/96f\ndlXb8WmPT1l6Yikv//EyR64doX219gT4BPB8y+fZubwx35+wYdY3IOl5IURxUuhBf2fQTpxVOeIt\nFtadW8fhEYe52uUjOPEpyiGalmdaMr/LAizNuhAe9hPzQ6Dc4bdp0WsnD9d7mGM/voC3N5w7B2PG\nwLPPQv1qFg71PEZqTCo2X7Wg4/OODB4MEyZAXhZUSk1LZfCSwRm1ea7GXeXotaME+ATwYZcPaV+t\nfcaInthYuPcdWLxYAr4Qovgp9KD/65FfCbYchbavAXDVPRycqkD8RVqdHIpreVeaOK7iYqkgOD8Z\n7B2Y9mI3xu77nmXNlvHQO9CtmxkXn5oKY/rGsKfFETwe8mBdbR/GDrbhm2+gV6+btyMkNoS1Z9fy\n3f7v+OvcXwB09+1uavJ435OxAtb1Pv4Y7rkHWrfO169FCCEKRaEH/Wnbp2Xf4FQV+9Ay2F1uT/fg\nblR/oDrLdQJc/h2OPoAqHcav9T9htN9oHO0cOXUKateGRYvgAfsrXOp3hhrTavPupops+cycDOrW\nvfG48ZZ4Nl/YnDEx6mLURSITTc37wXcNZk7PObcsWBYYCJ9/Dvv25de3IYQQhavQV5OOHBXJyEQL\nzF+BZ2lPPA/+TekrbqSsf4uKl0L44YIL+F+B1c7UaX4Fb/ca7L+yj2eaP4PFYgLvmeNpjOAkz5W+\ngNf/7qL3rIpERMCOHZkBP02nsSd4D5P+nkSXH7rgOcWTiZsn4uroytRuU+lVtxe+7r7seHYH3z74\nbZ4qVL79NrzwAlSvXsBfkhBCFJBC7+m7lXIjLga46Me8B5bQ63wSHmGlSTzemVr2aYx84lcIiaLM\n1tc516g21SpFM9JvJKXsSnHyJDTwSOTq40eoW8GRCeVaEPyUHa++asbMX4y6wM97TU/+r7N/UaF0\nBQJ8AhjRZgT+Nf1xcXRhd/Bu+i/sj191P/YN3Zfn4ZW7d8PatXDiRMF+P0IIUZCKZNZQTAyQ5Ebd\n0m1IqHSIslc8qUwUJxzTSPCrDBMb8cKkTUw/7ky00ymGNB8CwNnfIhgbfIy9PlVZUqoaR85GMf67\nDVxwWUPdWWuITIykq09Xevj2YGq3qdmGUqbPrJ22bRqz7pvFow0fzXN7tYbXXoP33gMXGYIvhCjG\n8hT0lVJuwDdAI0wVhKeBk8DPQA3gPPCo1joqL/uLiTG3QUFg4xNH7JrSdCSYXc1DID4UgstyynYR\nKaVCGHX3dErZleLi5IuojwL5oGIqgS2+IdR1DTaPHGZbSnu6lu3KL31/oYlnk4zlCbO6FH2JpxY9\nRWpaKruf2011t9vLzyxaBJGRMHjwbb1NCCHuOHnt6X8KrNRa91VK2QGlgbeAtVrrj5VSo4AxwOi8\n7Cw96J+4kIoul8y5zU60sr/Eh70cYZEH7g9PYNW5g9gnV6RzhQ4s7byUuKA4XhkwltAUdxo6BzC0\n0UT2LfVjxfs3FkfLauHRhQxbOYzhrYcz+u7Rt726VFISjBwJX34JtrIwlRCimLtl0FdKuQIdtNaD\nALTWKUCUUupBoJP1Zd8DG7iNoG9nB7tD49DRzlQkDjf7BM5V84RRdxMxbjCkQc2I8pzqcIqollHs\neKYsoe/vpEV9D3btMvn1HfG5HyMuOY4Rf45g/fn1LO23lDZV2+SlaTf4/HNTQfN2a+ULIcSdKC89\nfW8gVCn1HdAU2A2MADy11iEAWusrSqmKeT1oTAx4esLfQXFAaVqmxbCndhnsF/liSXWguos3tbZ6\nM2bNOzT4tA7/F1iJ78aY9y5YYCZFOTtDfC5Bf0/wnoyZtbdzsfZ6oaHw0UewadOtXyuEEMVBXoK+\nHdAceFFrvVspNR3To79+9ZVcV2OZMGFCxn1/f39iYvzx8ID9kXEQUZpWpULZc48ifrYXrZpb6LSo\nN812d8F7cXOGfeHCkiVmZm1aGnh7m/04Od0Y9NN0GlO2TmHK1il8du9nPNbosTx8vNy99x489phZ\nJCUvUlNN2YcaNaDSv18iVwhRgmzYsIENGzYU+HHyEvQvAYFa693WxwsxQT9EKeWptQ5RSnkBV3Pb\nQdagD6ann5QEeMdhs7cszfU5FttWolxSCm9c28ZFZy9etm2Lx3AXOnc26ZWnnoJvvwV7e7MPZ2dI\nSMjcZ1B0EAMWDyA5NZldQ3ZRo2yNPH8JOTl+3PyqOJbDoixZRUfDqlWwfDmsXGlOTr/8IkFfCHF7\n/P398ff3z3j87rvvFshxbjk5y5rCCVRK1bFu6gIcAZYCg6zbBgJL8nJArU3Qv3oVqBnHgMophHpp\nyi1y50v2UKqrA1/Vrk54XFnGjIEWLaBiRVMls3btzP1k7ekvOraI5l83p3PNzmwYuOFfB3wwF29H\njYIKFW587vRpmDHD5PnLl4dHH4UNG0ytn/PnoVOnG98jhBB3gryO3hkOzFdK2QNngcGALfCLUupp\n4AKQp4HvSUkmDYKLBZxSqZIYgnOEDS9Fn+TLsvVpVqEcp78zAffhh00vf8UK2LgRatXK3I+zM8Rb\n4hi67DXWnlvLkn5LaFu17W189Nz99RccPmx67AApKbB1KyxbZnr04eHmM4SFmRnAY8ZA//6Zv0KE\nEOJOlaegr7U+ALTK4anbHtMSlT6S3zsOAp2pcCmS6CQn3qExIZFOpOwyT7/yCnz4Idx3HzRvDt98\nk30d2lMx+wjv+zgJKa3ZN3Qfro6ut9uUHKWmwuuvw+jRZnz+smUmfVOzJvToYYq9rVljfml89RU8\n9JAM5RRCFCNa6wL9M4fI9PzzWoPWPHhJs2SzbjBhl7YnRYPWjRtrvX+/1r6+Wp8+rXX58loHB5v3\nBQRovXKl1qlpqfqTLZ/oCh9X0DReoNPSdL5IS9P62DGtGzQw7StTRuuePbX+6ivTli++0NrbW+tO\nnbRetUrn23GFECIn1tiZ7zG50MswrF9vveMdB64pHF1bA5MpMiNfvvsOOnQwOfXXXsu8IHrqFLhW\nCab7vIEkWBLYOWQn9cbVJCkJSt18flaukpNNVc7ly02PPizMzLwdN8709FNTTW++Qwfza+PHH8HP\n719/BUIIUWQKPehnFCyrGQdBpWCrqVvfuzc4OpogbGsLe/bAvHnmpUlJcKnMEnqvHsoLLV/g7Y5v\nY2djlzFW/3aC/rVr8McfJsivWWNy8j17wm+/we+/w5kzJrU0eTLMng1duphROXfdlb/fgxBCFIUi\nKbgGGnzi4PuakGaWn+rZ0zyzcSNERJgev5OTqYM/+JfXoPtqfn/sd9pXa5+xFyen7MM2czySNhdl\n03vzR46YUTcPPACzZplJYgCXLsH770OfPmaUUO/e5uJt1hFDQghR3BVN0C+dilKgV3plbAoIgIsX\nTRE2Pz/o2xf2Xd5H/9/745naAv8T+2hfzS3bbnKblZuYaIZQLl9u/pQyJ5UJE8xwSkfH7K8/cyZz\nZFDVqnDwoLkVQoj/mqIJ+nF26L5tITHz8MePm7w9wLTpaUzbNp1JWyYxo/sMQtY+wQWfG3eTdaz+\n5csmDbN8OaxbB40bm0C/YgU0aJDzeraHDsGkSWYSFpjg75PDcYQQ4r+iiNI7ZAv4YIL19OlAmcuM\nPT6Q2ORYdj67E293b174Aho2zP52rc2JYswYUyPn1CkznLJ3b5gzBzxyXuIWgO3bzXDQXbtgxAg4\nehSGDZOAL4T47yv05RJz89lnQN2llB3djPbV2rNp8Ca83U2hnfR1cePjTV5+6FCTfrFYIDjYXHS9\nehV+/hmefDLngK+1qcx5zz3Qr58Zc3/2LNSpY0bpPP104X5eIYQoCoXa04+Ly+UJ+3hSur0Btf5g\ncf+FdPLOHBd56ZKZIRsUZP5atDAXYdevh1dfNWvWdu6c+zHT0mDJElMtMybG/DJ4/HEzezY52Syz\n+MUXMsFKCFEyFFrQT02FMmVyeMLzAPR5HC43gy/302GaGzt3ZpY8SM/zjx0L998PZctmvvX6omtZ\nWSzw008mZ+/kBG+9ZWbP2mT5bfP556anHxCQbx9TCCHuaIWW3omIuG6DSoO202FAV9j8Fvw+H5Lc\nqFzZLEuYnGxSPtu2mcD8xBPZAz7kPHonMdH03OvUMVU5p083Qy/PnjU5e4vFvC4szOT1p0wp94lJ\nJQAAE8lJREFUsI8shBB3nELr6YeGZnlQ5jI8NAgco+GbHRCReQV15Uoz+zXdkiW5j5XPOk4/JsYs\naTh9ukkBzZ8P7dvD6tWmQmdgoJl8lV4U7b33zLDQBg3y9WMKIcQdrdB6+qdPW+/UWQ5Dm8OltvDd\n5oyA7+wM/v6Z6Zx0p06ZMfRRUVlm81o5O5ux/e+8Y3rxe/dmzratVMlU6ezeHUJCzOzb7t3N+06e\nNCeF68r8CyHEf16h9fQPH0+A+96AOivg11/h4t3Znq9Tx6xStXy5uU136hRUr27KIXTvDh98YLYH\nBVmHeAJDhpg0UK1apuc/YYKZbVu6NHh5mSqZTZpk7nPkSPNXMc8LPAohxH9DofX0L5ZaCU7h8OX+\nGwI+wP79JnDPm2ett2+1e7e5iHvhArzxhvnF8NxzZvIVwIAB8PXX4Otr0jf165tx9337mhE5f/+d\nPeCvXw8HDsDw4QX8gYUQ4g5UaEG/ZvwjsHABJJbN8fkPP8y8UOvlZdIxkZEmZQOm9//ii9C2rXn+\n5EmYNg3KlTNLGnbrZtI8335rfhls3mwCvq9v5jFSU03lzsmT/3llTiGEKM4KLeiHhSkgey2E9Bw7\nwLPPwqefmgqXaWlmApa7e+bzv/5qKl2ePWsuwnp4mBWtZsyAjh3N2P3du02ufssW2LQJKlfO3oYf\nfzQXf/v2LbjPKYQQd7JCy+mHhd24rU8fk2+HzLVo+/WDxYvh3Lnsr+3a1fy5upqTwrx5Ji8PpnKm\nq6tZsjA21vxKuH5OQFwcvP02LFyYcx0eIYQoCQqtp59tyKZV1pE6mzebYH7ihMnfZxUSAo0amdE4\nDg4mVz9lisnx9+5teu/332+2L1uW8ySwTz4xFTbb5s8yukIIUSwVYnrnxm1Zg37Hjqa3P2iQefza\na+a2d28zymbIEDNzNn1yVXCwGdO/aZMZ2ePjY2bgXl82GcxIn88+M6UYhBCiJCvSnv7Bg9kfh4fD\nwIGmcNq0aWZbp06mXEKDBmYIZkSEKZ62fbvZ57Vrplrmgw/mfuy33zbXCGrUyL/PI4QQxZEy6+8W\n4AGU0lrrW+bR27SBHTtMPt/WNnMlLTCB/7PPModpgvmVUKeOuf/dd+bEEBYGzz9vKmamV9rcs8dc\n5D1xwuT9hRCiOFBKobXO9yuQhdLTT0u79Wt8fc3iJ889B716ZW6fPNmMrc8a8PfvNyeCl1822wcN\nMr39n382wzdr1zbj97dtM2miCRMk4AshBBRS0L927dav+f57s0zi1asmfZP+yyA2Nvtom82bzZj8\nmTPNBKusBddatTK9/tOnoWlTU3tn0ybzXE7LKgohRElTKEH/ZqtYgRmKuXZt9nVp03P0Wa8FrFgB\njzxixuL36ZP7wujly5tfAT4+ZmWsFSvMhK1XXzWTuoQQoqQqlKB/qwVK1q41QdrNzVxw3bvX5PYh\nc5nEBQtMrn7Zssz697ktjA4we7bJ+U+fDkuXmolbTk7QoYP5pbB4sZncJYQQJckdcyF3714TjI8d\nM8MxmzY128eNA09PM9zyzz/NeP10iYnmRJGUlH1f4eFQty5s2HDj2rpJSWaC1uefmwqdQ4ea2cBe\nXv/6owohRL4pqAu5d0TQf+kls8h5z55m9E3r1qYoWjpfXzPL1ts7+/u0Nr8iLJbsvyZefTVzMZWb\n2b/fvOaXX8yaucOGwd13y4xdIUTRK9Kgr5Q6D0QBaYBFa91aKeUO/AzUAM4Dj2qto3J4r9ZaU6sW\nnDmT/bkWLcyQyurVzSza/fvh/ffNGPw1azJf97//mfIMOSlTBq5cyZyFe/KkuYB79GjeSydHRZkL\nybNnm0VWhg0zC6y7uOTt/UIIkd+KOuifBVporSOybJsMhGmtP1ZKjQLctdajc3hvrj39zz83lTPB\nDK0sW9ZUyrzvPjPbNquVK8HOLrMXnn7btauZiZse4B95xJRaGD06++vycqu1SQl99ZVJEQ0YYC4E\n57ZylxBCFJSiDvrngJZa67As244DnbTWIUopL2CD1rpeDu/NNej36GHy9GDG3W/cmP35tm1Nrz9d\nly4mMEPm7fr1Ju1TvXrm+1u3NqWTr39tXm+z3r/nHinfIIQofEUd9M8CkUAq8JXW+hulVITW2j3L\na8K11uVyeG+uQf/Spcxhmm+8AYcOweXLpjyDp6dJ24SFmSGfrq4mwGddPxfMoim//24u3LZsCaNG\nZV95SwghiqOCCvp5La3sp7W+rJSqAKxWSp0Arj9b5Hr2GD9+QpZH/tY/M0wz3YwZUKWKqbBpY5NZ\nDbN8eXNx1dsbnnrKXAPIugBK+lj9H380xdYefTSPn0gIIe4gGzZsYMOGDQV+nNsevaOUGg/EAs8C\n/lnSO+u11vVzeL2OjNRUrWpm197M22+bMfsODqYWzyefmO2TJ5vhldeumTTOlCmZ77n7bjOs85ln\n4LffpHSyEOK/ochq7yilnJVSZaz3SwPdgEPAUmCQ9WUDgSW57SMkJLMkclYzZmR/PH++KbpWunT2\ni6cPPGBm1c6ebUbyZM39OzmZlbQ6dJCAL4QQt5KX9I4nsEgppa2vn6+1Xq2U2g38opR6GrgA5JpY\nCQm5cQIVmDx8utBQU3sHzMXdP/80aZuHHzZllW1sTI7/669NgbUDB0yePyLCpHzmz8/rRxZCiJLr\nlj19rfU5rfVdWutmWuvGWutJ1u3hWuuuWuu6WutuWuvI3PYREnLjtuHDzZBIML36K1fMiWHvXjN0\nc/ZsM26/eXOT6rG3h+XLzQpZAQFmAhZkjvOvWfMffHohhChhCmWN3NOnb9y2aJEZDrlihQn6335r\nJljVqmWC/9Ch8MILJi20aZMZoZM+WWrqVFOm4d13zeMRIwrjUwghRPFXKEE/p9RLYCBMmgSrV5vC\naNOmwccfm1m7vr4mnQOmh9+li/lL5+JiZtB27Jj5GiGEELdWKFU2fXxu3FalirkIa2eXOVa/f3+z\nIlZeZsCGh2fel1r5QgiRN4US9G1yOEpsrEnd2NubYmtgTgSnTpkUz80kJ8Obb5ryyI0ameJqQggh\nbq1Q0js5XciNijIpHnv77KUWTp0yBdNu5ssvza+HBx+EZs3yt61CCPFfVig9/ZAQM9Qyq06dTEnj\nqCgz8QogLu7W6Z3wcJg4MXOCVvXq5k8IIcStFVpPf9687Nv27TNpnchIM3Rzzx4zyuf06ZsH/YkT\nTSXNrIupCCGEyJtCCfpxcdlr6S9caIqnzZplHj/1FERHm8AfEwOVKuW8n1On4Icf4MiRgm+zEEL8\nFxXaGrnTpmU+rlQJZs40QzYrVIDOnU3vfuXK7MM1rzdqlKnG6elZGK0WQoj/nkIJ+jt3mpE56apW\nNYuWjBxpUjy2tmas/po1uad2Nm40s3VlIpYQQvxzhZLead7c1MhJl56+UQrKWSvw165tUjw5Bf20\nNLOy1kcfZS+rLIQQ4vYUSk8fsi9cbpfDqaZOHXObU9CfN88M7cxtnVwhhBB5Uyg9fTAVM2/Gyyuz\n9k5WcXHw1ltmeGdOq28JIYTIu0Lr6WcN+qmpNz6vFHzwAbRokX371Kmm5PKtJmwJIYS4tdteOeu2\nD2BdI/foUWjY0GyLiwNn51u/NzgYGjeG3bvNcolCCFFSFNnKWfkla08/r7Vyxo6FZ5+VgC+EEPml\nSHL6eQn6+/ebcfsnThRcm4QQoqQptJ5+TEzm/VsFfa3h9ddh/HhwcyvYdgkhRElSaEE/OTnz/q2C\n/vLlcPkyDBlSsG0SQoiSptDSO1kXOrlZ0LdYTKmFGTNyHs8vhBDin7vjLuR++aVZ5LxHjwJvkhBC\nlDiFeiHXxcXk9nML+hER8P778NdfMhFLCCEKQqH19OPjoVUrcz+3oD9xIjz8sBmbL4QQIv8Vak+/\neXPYsCHnoH/6NMydC0ePFlaLhBCi5CnUnH65cqa2Tk5Bf9QoM0xTauULIUTBKdTRO56ephTD9UF/\n0yZTauH6JRWFEELkr0JN7zg7m5r46TX0IXutfCenwmqNEEKUTIXa03dygrp1s2+fP9/U2pda+UII\nUfDynNNXStkopfYqpZZaH7srpVYrpU4opVYppW5aMCEh4caefHy8qZU/bVru6+IKIYTIP7cTal8B\nso6tGQ2s1VrXBdYBY2725vT0TlZTp0K7dqZevhBCiIKXp6CvlKoK3Ad8k2Xzg8D31vvfAw/dbB/p\n6Z10ly+bUguTJt1Oc4UQQvwbee3pTwfeBLKuuOKptQ4B0FpfASrebAfX9/THjYNnngEfn9tqrxBC\niH/hlhdylVL3AyFa6/1KKf+bvPSmS3Bl7ekfOADLlkmtfCGEKGx5Gb3jB/RSSt0HOAEuSqkfgStK\nKU+tdYhSygu4mtsOJkyYQFAQzJkDjzziz8SJ/owfD2XL5s+HEEKI4m7Dhg1s2LChwI9zW2vkKqU6\nAa9rrXsppT4GwrTWk5VSowB3rfXoHN6jtdZUqQI7d8K+fTByJBw8KKWThRAiN3fiGrmTgACl1Amg\ni/VxruLjwd7e1MqfMkUCvhBCFIXb6un/owNYe/qlSpmyyatXmz8pnSyEELkrqJ5+oQT91FSNrS1U\nqABr10KTJgV6SCGEKPbuxPROnqWvmvXggxLwhRCiKBVKTz8mRlOzJhw+DF5eBXo4IYT4TyjW6R2t\nNSkpcvFWCCHyqlind0ACvhBC3AmktqUQQpQgEvSFEKIEkaAvhBAliAR9IYQoQSToCyFECSJBXwgh\nShAJ+kIIUYJI0BdCiBJEgr4QQpQgEvSFEKIEkaAvhBAliAR9IYQoQSToCyFECSJBXwghShAJ+kII\nUYJI0BdCiBJEgr4QQpQgEvSFEKIEkaAvhBAliAR9IYQoQSToCyFECSJBXwghShAJ+kIIUYLcMugr\npRyVUjuUUvuUUkeUUh9at7srpVYrpU4opVYppdwKvrlCCCH+jVsGfa11EtBZa90MaALco5TyA0YD\na7XWdYF1wJgCbWkR2bBhQ1E34V8pzu0vzm0HaX9RK+7tLyh5Su9oreOtdx2t74kAHgS+t27/Hngo\n31t3Byju/3CKc/uLc9tB2l/Uinv7C0qegr5SykYptQ+4AmzQWh8FPLXWIQBa6ytAxYJrphBCiPxg\nl5cXaa3TgGZKKVdglVLKH9DXvyyf2yaEECKfKa1vL1YrpcYBCcAzgL/WOkQp5QWs11rXz+H1cjIQ\nQoh/QGut8nuft+zpK6U8AIvWOkop5QQEAO8CS4FBwGRgILAkp/cXRKOFEEL8M7fs6SulGmMu1CrM\nNYAftdZTlFLlgF+AasAF4FGtdWQBt1cIIcS/cNvpHSGEEMVXgc3IVUr1UEodV0qdVEqNKqjj5LEt\n/6eUClFKHcyyLdfJZUqpMUqpU0qpY0qpblm2N1dKHbR+phlZtjsopX6yvmebUqp6Pra9qlJqnXVi\n3CGl1PBi1v7bntx3J7U/yzFslFJ7lVJLi1v7lVLnlVIHrP8NdhbD9rsppX61tueIUqpNcWm/UqqO\n9Xvfa72NUkoNL9L2a63z/Q9zMjkN1ADsgf1AvYI4Vh7bczdwF3Awy7bJwEjr/VHAJOv9BsA+zPWO\nmtbPkf6LaAfQynp/JdDdev8FYLb1/mPAT/nYdi/gLuv9MsAJoF5xab91n87WW1tgO+BXnNpv3e+r\nwDxgaXH692Pd51nA/bptxan9c4HB1vt2gFtxan+Wz2EDBGNS4kXW/nz/YNYDtwX+yPJ4NDCqII51\nG22qQfagfxwz1wBMYD2eU1uBP4A21tcczbK9H/CF9f6fQBvrfVvgWgF+jsVA1+LYfsAZ2Gn9h11s\n2g9UBdYA/mQG/eLU/nNA+eu2FYv2A67AmRy2F4v2X9fmbsDmom5/QaV3qgCBWR5fsm67k1TUOU8u\nu77tQdZtVTCfI13Wz5TxHq11KhCpzIXufKWUqon5xbKd3CfH3XHtV7c3ue+Oaz8wHXiT7HNRilP7\nNbBGKbVLKfVsMWu/NxCqlPrOmiL5WinlXIzan9VjwALr/SJrv1TZzJSfV7TzfZiqUqoM8BvwitY6\nloKdHJev7ddap2lTu6kq0EEV/OS+fGu/Uup+IERrvf8W+70j22/lp7VuDtwHvKiU6kAx+f4xaY7m\nwOfWzxCH6Q0Xl/abHSplD/QCfrVuKrL2F1TQDwKyXkyoat12JwlRSnkCKDO57Kp1exAm55Yuve25\nbc/2HqWULeCqtQ7Pr4YqpewwAf9HrXX6fIhi0/50WutoTC6yZTFqvx/QSyl1FvgfpuDgj8CVYtJ+\ntNaXrbfXMOnB1hSf7/8SEKi13m19vBBzEigu7U93L7BHax1qfVxk7S+ooL8LqKWUqqGUcsDkn5YW\n0LHySpH9DJg+uQyyTy5bCvSzXhH3BmoBO60/waKUUq2VUgoYcN17Blrv98VUHc1P32LyeZ8Wt/Yr\npTzSRyaozMl9+4pL+7XWb2mtq2utfTD/jtdprZ8ClhWH9iulnK2/ElFKlcbklQ9RfL7/ECBQKVXH\nuqkLcKS4tD+LxzGdhnRF1/6CuGBhvaDQAzPS5BQwuqCOk8e2LMBcNU8CLgKDAXdgrbWNq4GyWV4/\nBnPV/BjQLcv2Fpj/YU4Bn2bZ7oiZqHYKk2+vmY9t9wNSMSOg9gF7rd9tuWLS/sbWNu8DDgBvWLcX\ni/Zf91k6kXkht1i0H5MTT/+3cyj9/8Xi0n7r/ptiOpL7gd8xo3eKU/udgWuAS5ZtRdZ+mZwlhBAl\niFzIFUKIEkSCvhBClCAS9IUQogSRoC+EECWIBH0hhChBJOgLIUQJIkFfCCFKEAn6QghRgvw/24jG\nAPyKKKQAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "for continent, selection in df.groupby(\"Continent\"):\n", " #selection.plot(kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax, label=continent)\n", " ax.plot(selection['GDP_per_capita'], selection['life_expectancy'], label=continent)" ] }, { "cell_type": "code", "execution_count": 122, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "5 73.822\n", "19 62.994\n", "22 70.261\n", "33 77.010\n", "35 71.026\n", "48 73.353\n", "69 63.290\n", "130 70.073\n", "131 70.506\n", "158 67.851\n", "179 74.777\n", "182 72.432\n", "Name: life_expectancy, dtype: float64" ] }, "execution_count": 122, "metadata": {}, "output_type": "execute_result" } ], "source": [ "selection['life_expectancy']" ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8k/XZ+PHPt5zaUlqoCqwRaIwTT6g4f9M9iLZKmc+D\nE322MbR9oB5g45mgKIpSY+lqVRweYU83nFI2OhnOA0zZtByCysTNiXg+laRgCkWp0AMpCP3+/riT\nNGnTNoUcm+v9evVFcpPc9zc9XLlzfa/vdSutNUIIIRJDUrQHIIQQInIk6AshRAKRoC+EEAlEgr4Q\nQiQQCfpCCJFAJOgLIUQCCSroK6VuUUq97/6a4942RCn1qlLqU6XUK0qpjPAOVQghxPHqNugrpc4C\nbgQuAM4DrlRKWYC7gPVa69HARuDucA5UCCHE8QvmTP8M4C2t9SGt9VHgNeC/gauAFe7HrACuDs8Q\nhRBChEowQf8DYLw7nZMK/BcwAhimta4D0FrvAYaGb5hCCCFCoW93D9Baf6KUWgRUAU3ANuBooIeG\neGxCCCFCrNugD6C1Xg4sB1BKlQG7gDql1DCtdZ1SajiwN9BzlVLyZiCEEMdAa61Cvc9gq3dOcv87\nErgG+BOwFih0P2Q6sKaz52ut4/aruLg46mNI1PHH89hl/NH/ivfxh0tQZ/rAc0qpTOBb4H+11g3u\nlM9qpdQNQA0wJVyDFEIIERrBpncuCbCtHpgQ8hEJIYQIG1mR242cnJxoD+G4xPP443nsIOOPtngf\nf7iocOaOwJjIDfcxhBCit1FKoaM1kSuEEKJ3kKAvhBAJRIK+EEIkEAn6QgiRQCToCyFEApGgL4QQ\nCUSCvhBCJBAJ+kIIkUAk6AshRAKRoC+EEAlEgr4QQiQQCfpCCJFAJOgLIUQCkaAvhBAJRIK+EEIk\nEAn6QgiRQCToCyFEApGgL4QQCUSCvhBCJBAJ+kIIkUAk6AshRAKRoC+EEAlEgr4QQiQQCfoiauwO\nOwVzCsgtzKVgTgF2hz3aQxKi11Na6/AeQCkd7mOI+GN32Mm7OY/qc6uhP3AYLNstVC2twpxtjvbw\nhIg6pRRaaxXq/cqZvogK6yPWtoAP0B+qz63G+og1quMSorcLKugrpe5WSn2olHpPKVWplOqvlBqi\nlHpVKfWpUuoVpVRGuAcreg9ng7Mt4Hv0h9qGWkn7CBFG3QZ9pdQoYAYwVmt9DtAXuBa4C1ivtR4N\nbATuDudARe9iSjfB4XYbD8OgPoPIuzmPykGV2Mw2KgdVkndzngR+IUKk25y+UmoI8CbwA6AReB54\nAlgKXKq1rlNKDQdsWuvTAzxfcvqiA7vDTu4Nl9Jv7y6GN8OXfaF/43cxcTKfnfgZzsudkOl+8GHI\nb8xn5RMrj/l4NXY7FVYrrU4nSSYThaWljDLL3IGIXeHK6fft7gFa62+UUg8DO4GDwKta6/VKqWFa\n6zr3Y/YopYaGenAi/nUWbJM0TK5W3L8TvgLuZRzXUkQKKbjqXJTVlrHlf7YYgd+d9jnWwF1jt7Mk\nL4+S6moGAs1A8datzK6qksAvEk4wZ/qnAC8BFwMHgGeB54AlWutMn8ft01qfEOD5cqYfh0JxZhww\n2FoszK6qosJqZV5lJQOB+ZjI4UlSSPE+14WLGWNm4PyxEw7D1V9OxrLlg4D7alUKa3k5zpYWTMnJ\nlM6ahTk727uvkoIC77E8moHF+fkUrzz2Tw9ChFPUzvSBC4AtWut690BeAP4DqPOc7bvTO3s728HC\nhQu9t3NycsjJyTmeMYswC9WZcYXV6t0HwECgpLqaxe43E8/2FjL9Aj5ACilkNmbiPOzEst3CqX01\nCwPsa8HcubyckUH11KmQkgIuF1uLi6kqKfEGft9j4fP81traHnxXhAgvm82GzWYL+3GCCfqfAlal\nVDJwCLgc+BfQBBQCi4DpwJrOduAb9EXscNgdlFvLaXG2kGxK5sqfX8nvnv0djpeqeMW+N2Cw7smZ\ncVfB9mB6Os3u+8nU48LV4Uy/n+pHfmM+pUtLqbj+hoD72rhrF9U//7kR8AFSUqieOhVreTkrFy0C\nIMlk8h7LoxlIysoK+rVEisw9JK72J8QlJSVhOU4wOf3tSqk/AP8GjgLbgGXAIGC1UuoGoAaYEpYR\niuMWKJBoFMV5xUytnmrk0XFx7wv3Yiu0cbEmJGfGXQXbI01NWIFSYBZO7qWsLaePi1WWVTxX9RzZ\n5uwu99WUmdkW8D1SUqhtafHeLSwtpXjr1o6podLSHr2ecJO5BxERWuuwfhmHENHi2LFD326x6CbQ\nGnQT6NstFv3Lq36p17FOb2KT92sd67RpjEmfOgbv47XP8xbm54fk2I4dO/S9OTnaAXoh6HtB3wr6\nl5j0jwaP13fm36ntO+zd7mvOyJF69IUXatat02za1Pa1bp0++/zz9cL8fO3YscP7/IX5+fre3Fy/\n7Z3ZYd+h82fn65zpOTp/dr7eYe/68aGwMD8/JN930Tu4Y2fIY3Iw6R0RxzrLq1/X+Ckp/MTvsSmk\nYNqRiR7spLAfVHzLcZ0ZjzKbmV1VZeTwa2tJyspitqd6x2TioM9jBwNTcLLs0gtIxcnyG673S2+0\n39fBQYNwbdvGc2+9xeSyMqqLirw5fXNZGWvfeYeh77zjd6YcbGrKr0XECcBh2Hrz1rC3iJC5BxEJ\nCRX07Q5Hl1UevVFngeSwCpxHv7i5noeb4WPgR/1gcOYJnDvhCm+wPmbtKrgmzJzJoj//md8cOeJ9\nY5nVpw99//lP7tu927tt9po13Pjyy4y75BK/wF1SUMDCXbsYCFRt2YJ1xgzeyMzkovp6HnA68Yz0\nWOYiumoRcTxrBboTT3MPiaJXzrGE4+OD7xcxkt7ZYbdry7RpbamAdeu0Zdo0vcNuj/bQwqqzlMGt\nkyfraZZp3hTPOtbp/2Gctrd73LzJVx3zsbtK73Q2rnsCbPtRWlqHdMy9OTl+j9PuNFH7bRr0vbm5\nPRp3zvQczUI6fOVO79l+eqqr75eIvGj/PAhTeidhGq5Zy8vbyvrAr8qjt6qx22lqbGRmcjJWjNl2\nT6rm1kcfpaSqBFu+jWcueoZ7+/+CX7GFbJ/nDwRSGxqP+fidpZYq2pVs+h6v/S/kQOCcpiYqrP6N\n2Dxnxb5a3a/P17GcKXfWIiIrPbxn3N4UVn4+xbm5LM7Pl0ncKOrq9zeeJUx6x9nS0m2VRyAOh53y\ncistLU6Sk03MmlVKdhy0/g1UCTI7JYWMiRO59dFHvYFk0cpFFMwpYH/jTk760H8fx5ta6CpH3Vkq\no7Xd45uBfnTMa0+YOZNr16zhnKYm+mGUjtWNGMECpbh/587jmosova2UrTdv7dD2uXRp+Kt9ejL3\nIMKrt86x9Kqg31XO3pScDC6Xf+B3uchKTu50fw6HneLiPKZOrfbMEVJcvJWSkqqYDfyeHGR1VRWj\n9u7la4xf1IHAEpeLxWlpHc4cnQ1Ovrgc8muh8pu2ydubBqXw4HGUNXaVow5URrlg5Ej2fPUVzS5X\nW9AGrgDK7XaKc3NJMpmYMHMmL9xwA880NbW9oaWlcePKlZw8YkTAieOeMGebqVpahfURK7UNtWSl\nZ1G6tDSoSdxEnDeKVXaHHesjVpwNTkzpJkpvC+5n6NFr51jCkTPy/SJCOf3ucvbHktO/8858vW4d\netOmtq9169B33hmbJXQBc5CgHd3kt/Nn52sWoJmDPnUM+uJs9Klnoa+eNjn04/HJiQYqo3xj82b9\no7Q0XeQu56wCPb1vX799XJ+Wpj+KwdLGRJ03ikU77Du0ZZLF+L1eiGYB2jLJ0qPS296a0+81V84q\nmD+fypycDmfy+Tabd2Wm5yystqWFrCDOwm65JZdrrrF12P7CC7k8/vjG0L6AAHp6pjL36qtJW7OG\nJIzceCFwIrAY44y5s34z4byKlbf6wX3mHUz1g+9zPrDb+YPD0bFvjvs1+SrOzaVkY/h/Lp0J5ndQ\nREbBnAIqB1X6X7PhGLq1Hsvvb6hEs/dOXAgmZ2/Ozu7RH19ysilQRojk5PB/vOtprXiN3c6BV17h\nPvBLjcymbYKzs/x2oHTGzLtmHtdHY49jyVH7Pqc4N5eBDoff/w8Evm33nFj42H2s80aRdLwpj3jh\nbHAafze+3N1ae6I3zrH0mqB/LDn77syaVUpx8Va/nP6qVRZKSsI/odfTWvEKq5UlLS3+lQbAg8CH\nw4axeMKELvPb5myzd7/RWpwUSGd51ffS0mj2yenHQluFcPwOhlIs/VzDzVuB1e5MP9wVWPGg15Rs\nls6ahWXVKuOPDsDlwrJqFaWzZh3zPrOzzZSUVGGz5fPCC7nYbPkRm8Tt6nKCgXRWabAjOZlH33yT\n4pUrg/5YGkvXry0sLaXYYvGWYnoC/PyXX4650sZw/A6GUiz9XMOt9LZSLNstbaW3ngqs22Kr31I0\n9JozfXN2NlUlJf45e3d73eOpqMjONrNoUeQ/3g3WGZz6LAxvhj2D4ItcIK3zM5XOzoizJk7scTAM\n1UfjUOiqlcO4Sy6J+Hi60tXvYCyIpZ9ruB1PBVZv1yuCvu9S6e+aTJT5pDHsDgd5xcVd9lvvrhY/\n0kuxa+x2Rtq2sXJnW34+fxe8O3YEpU8HPlPptJPkY4/1+Pix9tE4nvKqPZ03iqRY+7mGm2/KUvgI\nR0mQ7xdhLtnsrqwq/847A3ZhzL/zTq211nb7Dj1tmsVbmrluHXraNIu223cEtf9w6KxFQXctEULV\nSTIU5W4i9sjPNb6Q6F02Ozvb7myp9MK5t/LrF9d0W1FRXm71TtS6/4upU6spL7eyaNFK7/73AlaT\nCWdmJsPq63lk7lwef/HFsLzWzvLz3bVECGUnSflo3PvIz1VAnKR3urq4RPsAWQNUAJ+9/FfuuHoy\nGSeP6LKioqXFGeg9gZYWI8/Z6nSyF8gbN86vfW/Gww/D1Vcz+MCBkKd8IrESsLvqoGh+NE6UssJo\nkJSHiEr1jt1hp2BOAbmFuRTMKcDusHf5+K4aH/k23qoBlgDzgDVHNAvXrOWkl15i5MqVnVZUeGrx\nffnW4ieZTMwZPpQWcz/GrFqAacV9cGA/B26/nbq336bEZmNeZSVL8vKosXf9OoLVWcVKYQhLEnta\nHRQpnk8glYMqsZltVA6qJO/mvG5/R4QQwYn4mf6x1Ap31fjohqee4qa1z/H7xhYqMGrTfd8cHqup\nYcF557HPZgtYUdFdLf7lP5/Jpt1/4cnrbN7/L6v4mC3XLGZvZia4x+a5SPe+0aOPu+9KVxUroRKr\nk3rR6mUvRKKIeNA/lj/qgxnpnaY7Wkli83eGc8EIB8P7wcGvYZYTb4vggcA3mzfz3bQ0v6oeD08t\nvlG9U0tychYlJW3VO399aRnz5x3yy/kXFdYy40/LyKqv9+5nL7CiqYkDnmX4LhevFxVhKysLGPi7\nKyMNd8VKNDtJdiXaZYWSWhK9XcSDfk//qO0OO882bOPzwVC5H7+OjD+d+Qtyc+/jlJOP4pNup7gM\nSrYYgb8ZsOzfz7zKyk4vMt1VLX5nOf8sxzuUOhu822abTBy4/Xa/fv07CwqYu3gxLy5d2u41dV9G\nGm6xOqkXzU8gibRiVSSuiOf0e3qBCusjVmp+sIs10+C8MTA+G847C3bmjOW3yzZw5EgjRUW7/Ktv\niqDc1NZ/ppBjuwCC3WHn3x84Aub8U/ceZaj7fjOw9aSTAlYJbf/0046vKUYu6OKZ1NtYsdE7eRtt\n0VxJmUgrVkXiiviZfk/TCt5PBpnwxY/hC/f2EfYG9jtbycysC3gmvm1oHxY7jzIbGOXe3t0FEHwX\naR09ms5LH22j5sxdlJVD0Sz8cv73/f5pFv9umTfnPvSDD9gXoEoozScF5H1NEWjMdSxpiljoBR/N\nTyDRTi0JEQkRD/rB/lF7gtZHH34EJgJ/3Dcl8fnnwwJ2wmzt/x2O8CVP499muLOyx0AXTPnwI6hp\nhi0WmLEEMvtA+sFsVj5l9N+5eHxbG4D6q6+mpawMu0+eyVxWxmUjRnQ4Vjgac/kG+Qwy2LZ7Gzsv\n2Bl0miIWUk4e0SorjNXJbSFCKSb66bdfeHX5z2dSuOgG49PAQWArcBkder2jk8jNvY+TT95AUZHd\nG6wrKkykbmllqXO3dw7ACjSNGEHR5s0Bq2BuvvlqJk1a0+HNo+SX8NaPgExjW649l40VHXu219jt\n3JebS+ORI+zNzGRofT3JwJALLiC9XS1/oACb9kQ5Ly+4k0vGX9zj73GHfvgbgPH0qJe49IIP73UF\nhOipXttPf8trr/HUpEks8WmT+4u/rqG6oMkI+O8CGngeTkg/gSsuvMLvk8GmTfcwd24q99yzkczM\nJkaPPpesQ3Cfc41f6WYpMH/06IAB326v4V//eoef/MR/e0oKXJAG+zYZqaWuzvpGmc3cs2kTFVYr\no2trOWg2c2DbNu5bs6bDgjKz2czTN81g0swSmvqNhvqBNDkf5IbPn6aqagRm86iAx+hMh1x0Ej2u\nwY+HXvDhFquT20KEUlSDfo3dzqJJk7zXOgUjQP+2oYmtG+CLTCAX71nXwVcPdshNm82jePHFx/32\nW5ybG7Cu/5s33qDGbvdrxmYtL6fqnU/o983AgGmigfUwvB98EURJo2+ZZUlBAQt37eqwoGyx1Urx\nypUs+90Gmj55Ed9C1OrqEqzWxaxc2f6aUF3rkItW9DhNEeu94CNFVqyK3i6q/fQrrFbO8Qn4HgOB\n4V9ivCUddG/sD66JroCVFA6HnfnzC7jlllzmzy+gISPDu5rVoxk4paXFW73z2utvcM6sOVTm5LC3\naC7OBXdy/8Mpvgt3WVUG052AGkZ+Y36PPuZ3taAMwOlshQCPqK1tDWr/vjpURJ0HbKRHFTCx3gte\nCBEaUT3Tb3U66QcBF17tOQUjL70JuBAYDPSH9f9ez+uvv85Lv3uJFmcLhzJa+GbASxQW1rbl9B1Z\nXD+gP8sPHe5w6cCbN7zM5BuuZv2W/Rx8bH7bmW22mTcKfsMtt9zKxOQGBtbDfCc8bbGw0qe2P9g2\ny931zzGZkgK+8qysnr8Pd6iISoURKSMYu2csjUcbg0pTxHoveCFEaER1IrekoIAplZU8RVv7hGbg\nJ/3g7+NNkJYJh+rhgBOuAL4CNg3n4h1nsqBlHimk8JSphOuetHHgALzyCrS2Gl//+GcaLUkn03T0\nKH2SkxlaX0+e08lLp4HjJ8CG/wcPPtRxUHOe4dT3D2BO/gfnTjyfmx971C/gd2j8ZrEEXPDV3WPt\n9hry8pZQXd32yi2WYqqqZvc4pw9t1TveXLSsJBUiroVrIrfboK+UOg34M8Z0qgJOwSiG+aN7+yjA\nAUzRWh8I8PxOg74nMN5YXc1qjItdb+gPWy8bB3N8ltg+Ugbf2QK14zAdNfOk7TpSMM7Ql4+Zy38u\neJcXXoDCwranLH4kiY1HL4U77vAroczavgXH9yHzaH/qR/wHzkkzYfh3jAG5XAy75wkmnHERpaWF\nHYJvSUEB8yorO5y9L87PD9gywfupwF3L3/5Tgd1eg9VaQW1tK1lZSQGPKYRITFEL+u0GkQR8iZFw\nuRnYp7V+SCk1Hxiitb4rwHO6LNn0DYxvOu1Umb6FO570n1B02DEtvoXMsWZa323kng/KGI4RqFeY\n7uNI7gauu67jJOyM+7Nxli73288PK2Zwy/yjbc3Tln+HLf/9MGQMRj38MKtmzmTKlCkBx1qcm0uJ\nzRZ4+8aOZZxCCHGswhX0e5pAngBUa613AZOBFe7tK4Crj2UAo8xmppWWsT39XN5JOQW+HQWrV8Oe\nPcYD9uxm3N/u4clfN/LEje/x64fsPD/udvawG4AfOm9kt6NfwFW5mSn+/RNMmyu9Ad/zmKLrd2P6\nvyJYvRpdUMB9TzzR6Vh92zh7hLrPvRBChFNPg/7PgD+5bw/TWtcBaK33gLcVTY/Y7TVcmlvGmq/3\nse+BeVBaBlOmwAsvwJ49mF55iiL3JC0Ygfr6ot28bFoGQAaD+WrXkID9cepd/u8EmUe+CvzmYB4M\n06dDdjb7uxhrJPrcCyFEOAVdvaOU6gdcBcx3b2qfs+k0h7Nw4ULv7ZycHHJycrz3rdYKdh0ZBEXX\n+DUgo7AQVq/uNFBXn/Bv5gwqp96UinPcLyh7/GGKbmluS9s8loqzn7mt9tzl4vAHtQFr8euTMr13\nvq3/utPvQST63AshEpPNZsMWIH0cakHn9JVSVwH/q7W+wn3/YyBHa12nlBoObNJanxHgeV3m9HNz\ni7Ht2w9PXNPxP0vuxtS8nSdLXB0C9Z9m5LDp9Gyc90w3Nr6/HdOzT3Ci3kfjvlZ2pAyAzBPhm6MM\n6JtM+jf1jGo5wmkXD6CgYGfAnH7qA2WMHujinb/9O6jviRBChEsstGG4FnjG5/5ajD5mi4DpwJpj\nGYDJlASf9w24GpSUXTjPc7H4oX7Mu/Pbtjr8siyucc5k+wnrcHoeP+ZcnKcuJWfGDH7ndFKY6uIv\nhV/DUDh0GNK3W1i9tAqFcTH0d95fz8eNdezfe5QMxwMcPVhP0/lOzhyc7ze+WOg8KYQQoRLUmb5S\nKhXjErSnaK0b3dsygdXACPf/TdFad0iJd3em78np7zq5BYqubau5LC8DyxYYDMNXDWVC45kkZR4g\nqT6THzpvJIPBzDjxfpx/WOB9jqWsjKotWzBj5NuvOS2bIz8wB6xbD6a5VqDGaJZVq6LSeVIIkVhi\nomTzmA4QRJdNu72GuXMfY+uuTyCzP+pgLXvGvg0nuR9QD+P+MI6i/UWkkIILF2WsYgszwPQCGZmv\nc2V9LaVOJ77Z9e5KKbtb0CSdJ4UQ0RIL6Z2wMZqmPQq4z/xz7oN9++DHdmiCUzcArW9zd//baT08\nnnr64RyaAsOehfpk0t7/mmEmJ4+NgeR64xq5J9F9KWV3zbWk86QQoreJiaDvy2qtYNfOx4C9sHQu\neU2vMKb1BI6QSV/qeYuXeH9cDhQVGAHZYSd75R4m3N6WGbq3DJK/HEHRcZZSSudJIURvE9Uum+3Z\nHXaq3vkLjLwSMq1kNzST1no2e8llP2PZSy591Ei4Mc8biE1/f4qi211+1Z7XFkH/K8cedymldJ4U\nQvQ2UTvTf+P11/jVTdNJPvANLRlDuKn0ARb84R72XtM2sTrwARN99X9wHdd5c/nL9XKGP/kye+7/\nJezeg7n6s4B1/H36NB73GKXzZHySiishOheVoP/G66/x+BWX88LBI0Z/yboDFBRcy9EUuPgN2DMA\nvpgEfZIGc/3R673N1VJI4Xqu56OP72cPYHrqFbJ3n4XLZetQ7ZmcHJrWCObsbJm0jSOxdK1fIWJR\nVNI7v7ppOhXugA9GY+GV30JBA7x+AN7dC5P/BP37pHgDvkcKKQx0AS4XmftameScSUVZlt/FT37z\nSDqzZklrhERkLS9vC/gAKSlUT52Ktbw8ugMTIkZE5Uy//zf7Al5VKsnnduUh+F7/3bhw+QV+Fy7O\nGv9dvmuz8bHrSzIYzDVbFrN6xlO0ZtbTWp/ByRecRrb0kk9IUnElRNcifqZvd9jZcdgVuFulz/2B\nwOA+tVRkVeDCOI134WLlyJXcu+xeVi5axHN/e4pVllVkMJjpznuY+n4ZSckjuevRuyP0akSs8VZc\n+ZKKKyG8Ir44q2BOAZX7K5m82jib91xVygrcgnFFFtzbrjzFxPL1b1BuLaeltoXkrGRmlc4i25zt\n3Z/D7ujy/0VikVXUorfoFSty7Q47F+VfxN6Je6EGTn0Zhh+CPUlgaYDnjra9CRSm9uWWv2/g4vGX\nhG1snhW5zgYnpnSTXGKwl/BU73grrqR6R8ShuA/63l43DdXGBc/7+zzoMIx79wekfrGb5Ib9tKQP\n5t7frwh7wO+u944QQkRL3Af9gjkFVA6qhIPAm8DleIMtG2FEygg2P705YgHXO552bz75jfldtmYQ\nQohIiPveO84GJ5yAEWQV8DrGzK0CLoJdqbuwPmL1C7jefL2zhWRTaPP13vH46g+1DbUh2b8QQsSi\niAV9U7rJOKvvDwwAcjs+xjfgOuwOivOKmVo91bsat3hrMSVVJSEJ/H7j8TgMWelyvVshRO8VsZLN\n0ttKsWy3GIFWYfzrq13ALbeWewM+GIuyplZPpdwamkU2fuNxH9+y3ULpbbKoSwjRe0Us6JuzzVQt\nrSK/MZ+LTriItA1pRsDdD2yA5L8l09jciN1hB+Cb6m8CrsZtqQ3NIhvf8eTac8lvzJdJXCFErxeV\nFbnJaclcdtZlHPz0IFtqtuCa6KKlfwtrD6/lw5s/5Om7nub1na9zDdd0WI2bnOW/yOZ4yi6766cv\nhBC9TeRLNn1KJPu+1I8j479tu0IWxvaT/25CZzgxH0gnu+58JjlnksFgnkh/gvJ3y705fSm7FEL0\nVr2nZLPdxCn/AHJ8tu2H8e8p7p6nvRdF+fWvFR/sGsKp54zmH8/9w/tQKbsUQvRW4Qr6EcvpOxuc\n/sEZoAlMH5oYUzEG03MmqAfTx3gDPhgr6e+4Q2PKrGfooKHd71PKLoUQolPRKdkE/4udf+W+2Pmu\nMhpP3xLwoihnnwYZabrrfYKUXQohRBciWrKZ+vd0b4mkaYPJCPg+JZlF+4tw7U8J1CSRvn07Xg1L\nyi6FEKJnItpaeQB94XngecjckRmwJLNP0wgWP9zH76IoFRVw6aUdr4YlZZdCCNEzEZvInfCzCWzY\nuQEuA/qD6VkTT374ZIeSzBlnzeDM08+gZe9WRo1qom9fI+Bv2mShpKRKLo4ihEgIcV+9k3x6Mod+\nfChwTt/dZqFscBlfjv2STU9vQgHl5VZaWmpJTs5i1qxSCfhCiIQR90G//9n9+fan3/r/Zz2YVpjI\nJJN6VY8yK157/jVJzwghEl7cd9kcljKMLw9/6V9pkwbOs5w4JzpJXpPMR89/JAFfCCHCKGITuZWP\nVtJnXR+/Shs2AN83bk8cO1ECvhBChFlQ6R2lVAbwe+BsoBW4AfgM+DPGZW0dwBSt9YEAz/VeLvG1\nN14jf24+TpcTnanhe0AqjHhzBGPNY2k42kB6n3TUUcUBDsglDIUQCSuqOX2lVAWwWWu9XCnVF+NS\ntguAfVqd5WJIAAASMUlEQVTrh5RS84EhWuu7AjxXtz+Gp0labUMt6aSzbfc2dl6w0+9KWlwEpEov\nHSFEYopaGwalVDowXmu9HEBrfcR9Rj8ZWOF+2Arg6qCPqpOg/rvomvFsf39HW8AH49/LgHeN29Xn\nVmN9xBr8K4oiu72GgoIScnOLKSgowW6vifaQhBDCTzATuWbga6XUcuBc4G3gVmCY1roOQGu9Ryk1\ntIt9eNntNeTlLaG6ugQYCCM3BeyfQz1Gr/3B8dFLp8PropmtW4upqpqN2Twq2sMTQggguKDfFzgf\n+KXW+m2l1KPAXUD7vFCneaKFCxd6b2/Z4qC6+jcYgRFoGhmwfw4ZwFvGkeOhl47VWuET8AEGUl1d\ngtW6mJUri6M5NCFEHLDZbNhstrAfp9ucvlJqGPCm1voU9/2LMYK+BcjRWtcppYYDm7TWZwR4vl9O\nPze3GJutxOcRdhidBz9u64nPJuBCIBXS/prGe2vfi/mcfsfX1bZ948aO24UQoitRy+m7Uzi7lFKn\nuTddDnwIrAUK3dumA2uCOaDJlAQ0u+85MPFbxnyaw8glo2AdRn/9C4HBQH84+8yzYz7gQ/vX5dFM\nVlZE2xsJIUSXgo1Ic4BKpdS7GHn9+4FFQJ5S6lOMN4IHu9uJ3V5DU9N+kpNnAx8xjmKeJIcnKOC3\njeWM+2wcnIMR8MHomjnU0uMXFQ2lpYVYLMW0Bf5mLJZiSksLozYmIYRoL3KXS/Sb6PwaEz/nSW4J\n2HDN+VNnXF760G6vwWqtoLa2laysJEpLC2USVwhxTOK+DYP/ROfXZDIgYGvlM/afwWn208hKz6J0\naXwtzDKbR8mkrRAipkUs6FdXH8QI+DXAEurJwoWrw5n+6O+NZmnF0kgNSwghEkrEZhn37PkCI9/9\nGJg0ztO+oKzPb3BhXC3FhYsynuFL1S9SQxJCiIQTuS6bw0bgcNwM476Gov+FlB+xxe5gxp0PkPn1\nGdQzGCe/IrdheaSGJIQQCSdiZ/rDhysw2d0B353SMWfj/MPdvG8ajJNFwEkMGnQwUkMSQoiEE7Gg\nr3VfyDy7LeB7pKRAZgtG6seKUkciNSQhhEg4EQv6DQ2pUD8Q7xXPPVwuqP8YWAzcQkNDeqSGJIQQ\nCSciQd9ur8Hh+ACc06FsVVvgd7mgrBycy4Bi4MSwrWCVDphCCBGhxVkWy+1UV98IPAXcAKYVkNmM\n2v8eete9wAQ8K1jD0ZUyUAfMcB1LCCFCIa4vjA5NtNXoVwDfkp39MStW3MayZevDvoK1oKCEysp5\ntHXABGgmP186YAohYlOcr8j9GiNn34qRUZrB/v1Wli1bH1Sg97Q3cDpbMZl6/ubgdLbiH/ABBlJb\n29qTFyGEEHEvQkH/V5DZDGl10DQM6n/F/v0nUFk5r9sLjYTi4iRtHTD9z/SlA6YQItFEJr0z2gw/\ntrf1y3/ODJ9OAJbRXZolFKkZyekLIeJNfKd3PAEfjH9/bIffvmlcErGbNEsoUjNm8yiqqmZjtS72\nmT+QgC+ESDyRCfqBroGb1uQO+l2nWUKVmpEOmEIIEanFWYcD3G86l2AuNCIXJxFCiNCJSE5/5MSR\n7Lxgpzen32dNKmP6T+GsM7N7VL0jFycRQiSKuK7T3/za60wqmEETQ6FpBNTfjcWyXCZShRCiE1G7\nMHooLPvdBpp2vg07N0P9SuAsqqtLsForInF4IYQQbhEJ+p1V4KxfXy09cIQQIoIiEvQdjg9om4j1\naKaubhR5eUsk8AshRIREqPfORxjN1toWRxldNWcDJwZcaHW8rReEECKexfVELmh8m63Bx8AjgBHE\nBw+exqRJFm9glxW0QohEF9cTuYZRGGf39wFn4wn40Mz+/RYqK+d5Uz1Wa4VPwAcYKBO/QggRAlHo\nONaM0W3Tc7sYKMQ3sEtXTCGECI8Iddn0tFFoBu4GtjFw4BSam8/CyOt7zvqNwC5dMYUQIjwiFEUf\nBG4FpgEpQA4u115gCm0BHzyBXVovCCFEeERoIvcNjOqdJbSd8d/MgAG7OHRoDYEma6PdekGqh4QQ\n0RTV6h2llAM4gJGM/1Zr/X2l1BDgzxin6g5gitb6QIDnavgR8Azt0zVJSZO58sqxNDamxlRPHake\nEkJEW7T76bcCOVrrb3y23QWs11o/pJSaj5Gsvyvw08+h4yUTC2lt/Q6DBqWxZk1stTzuvHpIrqkr\nhIhvwQZ9Rcf8/2TgUvftFYCNToN+M/A4UEpbescKpMZkRY5UDwkheqtgJ3I1UKWU+pdS6ib3tmFa\n6zoArfUeYGjnT1e0BXzc/xr3Y7Eip616yJdUDwkh4l+wZ/rjtNa7lVInAa8qpT7FeCPw1enkQJ8+\nVRw9mu6+l+P+GsiAAU4aG/uQm1scU5OlpaWFbN1a3CGnX1o6O8ojE0L0VjabDZvNFvbj9Lh6RylV\nDDQBN2Hk+euUUsOBTVrrMwI8Xl911TzWrl1I+4nc1NSpHDy4ilicLI129ZAQIrFFrXpHKZUKJGmt\nm5RSA4FXMTqnXQ7Ua60XuSdyh2itO+T0lVJ68+Y3uPzyJzly5Dd4ArxSM9H6HsD3faJZmq8JIQTR\nrd4ZBrxglF7SF6jUWr+qlHobWK2UugGjm9qUznawbNl6jhyZj2/1jtaZ+Ad8CDRZGqh8cuvW2PlE\nIIQQ8aTboK+1tgPnBdheD0wI5iBVVdVAaoBDd99qQconhRAidCJSjrJ372CMks15GJmhecBRUlJu\noLtWC1I+KYQQoROhhmutdCzZfIBx4+YzbNhin8nSjimbrpqvSa5fCCF6JkJBv55AZ+tHj57QbYqm\ns/LJmTOvkVy/EEL0UIRWG1kItNjJbv+g2+vjms2jqKqaTX7+YnJzi8nPX0xV1WyWLVsvF1oRQoge\nitCZ/k0YF0vxvUbuL3A47iMvb0m3Z+dm86gOnwgk1y+EED0XoTP9EzEulrIYI/g/COwGVlNdncxl\nl93W7Rl/e9IqQQghei5C/fTn4t9s7W6gDnjau23kyAXYbLcFnY+X9sdCiN4sqv30j+sASmm4HjBh\nfLBoBd4EPBdP8WjmqqsWsmbNr4Pet7RKEEL0VnEe9GdgLOz1BP3PMK6/4m/YsGns2fOHsI5HCCHi\nQbQvonKcHsX/rN5KoNp7o4+bEEKIcInQrGf7KpubgJvxXY0LVvr2dZGbW0xBQUmPJ3aFEEJ0L0Lp\nnSY6Xh93Eq2t4/GkfJKSPqG19VcYTdhkUlYIkdjCld6JyJl+Ssps2vfY2bSpjPz8vuTmQnb2Rz4B\nH2ShlRBChEdEcvoffliM1dqxx84ll4wDIDe3GIej+zbLQgghjk9Egn6gFbW+umqqJoQQInQiktPX\nWnfZEVMWWgkhhL+4rtPfscNBTs4j7Nx5P52twJWFVkII0Saug35nF0bv6QpcIYRIFHFdvbN1ax2B\nOmK+9VZdJA4vhBDCLUIzpU0E6ogpK3CFECKyIhL0f/CDUbS1XgDPCtyLLpKcvRBCRFLEJnIvvbSM\nXbvamq6NGFHH5s1FMlkrhBABxPVErm/JplTnCCFE9+J6IheMBVqlpYVkZSXhdLZitVZIUzUhhIiw\niJ7pywIsIYQITtyf6VutFT4BH6SpmhBCRF7Egr7T2UqgWn1pqiaEEJETsaDf1lTNlzRVE0KISAo6\n4iqlkpRS7yil1rrvD1FKvaqU+lQp9YpSKqOr55eWFmKxFNO+r35paeExDl0IIURPBT2Rq5SaC3wP\nSNdaX6WUWgTs01o/pJSaDwzRWt8V4Hnacwwp2xRCiOBEtU5fKXUysBwoA25zB/1PgEu11nVKqeGA\nTWt9eoDn6nBXCAkhRG8T7eqdR4E7AN/oPUxrXQegtd4DDA3x2IQQQoRYt0FfKTUJqNNavwt09a4j\np/NCCBHjgrlc4jjgKqXUfwEpwCCl1B+BPUqpYT7pnb2d7WDhwoXe2zk5OeTk5BzXoIUQorex2WzY\nbLawH6dHK3KVUpcCt7tz+g9hTOQuCnYiVwghRHCindMP5EEgTyn1KXC5+74QQogYFrHeO0IIIYIX\nrjP9YHL6x62goASnsxWTSWrzhRAimiJypm9cFlE6awohRLBiMaffA9JZUwghYkEUup1JZ00hhIiW\nKAR96awphBDREqHoK501hRAiFkSkeic/f7FPZ02ZxBVCiGiROn0hhIhBcV69I4QQIhZI0BdCiAQi\nQV8IIRKIBH0hhEggEvSFECKBSNAXQogEIkFfCCESiAR9IYRIIBL0hRAigUjQF0KIBCJBXwghEogE\nfSGESCAS9IUQIoFI0BdCiAQiQV8IIRKIBH0hhEggEvSFECKBSNAXQogEIkFfCCESiAR9IYRIIN0G\nfaXUAKXUW0qpbUqpD5VS97u3D1FKvaqU+lQp9YpSKiP8wxVCCHE8ug36WutDQK7WeixwDnCZUmoc\ncBewXms9GtgI3B3WkUaJzWaL9hCOSzyPP57HDjL+aIv38YdLUOkdrfVB980B7ud8A0wGVri3rwCu\nDvnoYkC8/+LE8/jjeewg44+2eB9/uAQV9JVSSUqpbcAewKa1/ggYprWuA9Ba7wGGhm+YQgghQqFv\nMA/SWrcCY5VS6cArSqkcQLd/WIjHJoQQIsSU1j2L1UopK+ACbgRytNZ1SqnhwCat9RkBHi9vBkII\ncQy01irU++z2TF8pdSLwrdb6gFIqBcgDSoC1QCGwCJgOrAn0/HAMWgghxLHp9kxfKTUGY6JWYcwB\n/FFrvVgplQmsBkYANcAUrfX+MI9XCCHEcehxekcIIUT8CtuKXKXUFUqpT5RSnyml5ofrOEGO5Sml\nVJ1S6j2fbZ0uLlNK3a2U+lwp9bFSaqLP9vOVUu+5X9NjPtv7K6VWuZ/zplJqZAjHfrJSaqN7Ydz7\nSqk5cTb+Hi/ui6Xx+xwjSSn1jlJqbbyNXynlUEptd/8M/hmH489QSj3rHs+HSqkL42X8SqnT3N/3\nd9z/HlBKzYnq+LXWIf/CeDP5AhgF9APeBU4Px7GCHM/FwHnAez7bFgF3um/PBx503z4T2IYx35Ht\nfh2eT0RvAf/PfXsd8EP37VnA/7lv/wxYFcKxDwfOc99OAz4FTo+X8bv3mer+tw+wFRgXT+N373cu\nsBJYG0+/P+597gCGtNsWT+OvAK533+4LZMTT+H1eRxJQi5ESj9r4Q/7C3Ae+CPibz/27gPnhOFYP\nxjQK/6D/CcZaAzAC6yeBxgr8DbjQ/ZiPfLZPBcrdt/8OXOi+3Qf4Koyv40VgQjyOH0gF/un+xY6b\n8QMnA1VADm1BP57GbwdOaLctLsYPpAPVAbbHxfjbjXki8Hq0xx+u9I4J2OVz/0v3tlgyVAdeXNZ+\n7E73NhPG6/DwfU3e52itjwL7lTHRHVJKqWyMTyxb6XxxXMyNX/VscV/MjR94FLgD/7Uo8TR+DVQp\npf6llLopzsZvBr5WSi13p0iWKaVS42j8vn4G/Ml9O2rjly6bbUI5ox3yMlWlVBrwF+AWrXUT4V0c\nF9Lxa61btdG76WRgvAr/4r6QjV8pNQmo01q/281+Y3L8buO01ucD/wX8Uik1njj5/mOkOc4HfuN+\nDc0YZ8PxMn5jh0r1A64CnnVvitr4wxX0nYDvZMLJ7m2xpE4pNQxAGYvL9rq3OzFybh6esXe23e85\nSqk+QLrWuj5UA1VK9cUI+H/UWnvWQ8TN+D201g0YucgL4mj844CrlFI7gGcwGg7+EdgTJ+NHa73b\n/e9XGOnB7xM/3/8vgV1a67fd95/DeBOIl/F7/Cfwb6311+77URt/uIL+v4BTlVKjlFL9MfJPa8N0\nrGAp/N8BPYvLwH9x2VpgqntG3AycCvzT/RHsgFLq+0opBUxr95zp7ts/xeg6GkpPY+TzHo+38Sul\nTvRUJqi2xX3b4mX8WusFWuuRWutTMH6PN2qt/wf4azyMXymV6v6UiFJqIEZe+X3i5/tfB+xSSp3m\n3nQ58GG8jN/HtRgnDR7RG384JizcEwpXYFSafA7cFa7jBDmWP2HMmh8CdgLXA0OA9e4xvgoM9nn8\n3Riz5h8DE322fw/jD+Zz4HGf7QMwFqp9jpFvzw7h2McBRzEqoLYB77i/t5lxMv4x7jFvA7YD89zb\n42L87V7LpbRN5MbF+DFy4p7fnfc9f4vxMn73/s/FOJF8F3geo3onnsafCnwFDPLZFrXxy+IsIYRI\nIDKRK4QQCUSCvhBCJBAJ+kIIkUAk6AshRAKRoC+EEAlEgr4QQiQQCfpCCJFAJOgLIUQC+f9qIXP1\neGjCugAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "for continent, selection in df.groupby(\"Continent\"):\n", " ax.plot(selection['GDP_per_capita'], selection['life_expectancy'], label=continent, marker='o', linestyle='')" ] }, { "cell_type": "code", "execution_count": 132, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1cVGX6+PHPGYEVA1EYBcxMDRJUtrUNVCAY7EFLxczV\ndreHbaUvblZrxtfd+qbbvtLdrX786kttGrvS/jZz27IHUXe1tnTEgQS23A0LVDLWLLAA40FIZpz5\n/YEMDMwTOo/M9X69fMmcM+ecG2Uu7nPf130dpaqqyoQQQoiAoPJ2A4QQQniOBH0hhAggEvSFECKA\nSNAXQogAIkFfCCECiAR9IYQIIE4F/ZdffpnFixezePFitm7dCkBLSwu5ubksXLiQFStW0NbW5taG\nCiGEuHgOg35tbS1vvvkmr776Kq+//jr79+/n888/p6ioiFmzZrFz505SUlLYvHmzJ9orhBDiIjgM\n+sePH+e73/0uISEhDBs2jO9///u8++67aLVasrOzAVi0aBF79+51e2OFEEJcHIdBPy4ujg8++ICW\nlhY6Ozs5cOAADQ0NNDU1oVarAVCr1TQ3N7u9sUIIIS5OkKM3TJ48meXLl5Obm8uIESNISEhApRr4\nu0JRFLc0UAghhOs4DPqAeRIX4NlnnyUmJoaoqCgaGxtRq9U0NjYSGRlp9dikpCTXtVYIIQJIVVWV\ny8/pVNBvbm4mMjKS+vp63nvvPbZu3crJkycpLi4mJyeH4uJisrKybB7vjoZ7ysaNG1m5cqW3m3HB\n/Ln9/tx2kPZ7m7+3310dZqeC/urVq2ltbSUoKIi1a9cSFhZGTk4OeXl5bN++ndjYWPLz893SQCGE\nEK7jVND/85//PGBbRESEpGkKIYSfkRW5DiQnJ3u7CRfFn9vvz20Hab+3+Xv73UVx90NUkpKS/HpM\nXwghvMFdsVN6+kIIEUAk6AshRACRoC+EEAFEgr4QQgQQCfpCCBFAJOgLIUQAkaAvhBABRIK+EEIE\nEAn6QggRQCToCyFEAJGgL4QQAUSCvhBCBBAJ+kIIEUAk6AshRACRoC+EEAFEgr4QQgQQCfpCCBFA\nJOgLIUQAkaAvhBABRIK+EEIEEAn6QggRQCToCyFEAJGgL4QQASTI2w0QgctoMqJr0FH9TTWJoxJJ\nj0lHpUg/RAh3kqAvvMJoMrLq/VVo67XmbZpYDQWzCyTwC+FG8ukSXqFr0FkEfABtvRZdg847DRIi\nQDjV09+8eTO7du1CpVIRHx/Phg0b6OjoYM2aNdTX1zNu3Djy8/MJDw93d3vFEFH9TbXV7TUtNaTH\npMuwjxBu4jDof/nll7z++uvs3LmT4OBg/vu//5u///3vfPrpp8yaNYvly5dTVFTE5s2bWb16tSfa\nLIaAxFGJVrdPiZgiwz5CuJHDT9Ell1xCcHAwHR0dGAwGzp49y9ixY9m3bx/Z2dkALFq0iL1797q9\nsWLoSI9JJys6k5uOwqP74aYjCv/19T2ot6rp3N+JYlTM73XJsI/RSFhJCWMKCwkrKQGj8SK/AyH8\nk8OefkREBD/5yU+48cYbGT58OKmpqcyePZumpibUajUAarWa5uZmtzdW+CGjkTCdjtDqajoTE2lP\nTweVCpUJ3npVIUILJhQOs54m0gB4giconVLKutvWYVKZgO5hn4zodKvncqYNE1atYqRWa97UqtFw\noqDAueOFGEIcBv3PP/+cLVu28M477xAWFkZeXh67du1CURSL9/V/LfycjWA92HPYCrZhOh0R57c3\nk2IO+D3SjqSRUptC+ZXlACSEX2nzXEZFQafXU20wkBgURHpwMKo+P49hOp3FcQAjtVrCdDraMzIG\n9z0J4eccBv2PP/6YGTNmEBERAcB1113Hv/71L6KiomhsbEStVtPY2EhkZKTNc2zcuNH8dXJyMsnJ\nyS5ounAbF/WM7QXb0Oreidw24q0eH9cQR/mV5WhiNdz0qWL1XCN0OnK+9z20XV3m7ZqQEArCw82B\nv++1+gqtqZGgL3xGZWUllZWVbr+Ow6A/adIkCgsLOXv2LCEhIRw8eJDp06czYsQIiouLycnJobi4\nmKysLJvnWLlypUsbLVzDZDSh1+kxVBsISgxiWNowSr8qRdm7m3td0DO2F2w7ExLMr8M5ZvV9iTMT\neT71edJj0hnxhz9afc/7p09bBHwAbVcXOr2ejJAQADoTrU8a922Dz3DFHZbwS/07xJs2bXLLdRwG\n/SlTppCdnc1tt92GSqUiMTGRH/zgB3R0dJCXl8f27duJjY0lPz/fLQ0ULmAlkJhQaFvVRpe2N2DW\nXFXD/Yvu53/KTVZPM9iesd1g22ciNZIKoii1GOIJ0YSQ/cNsFJVi91wfxlu/S6gxGMxBvz09nVaN\nZsCdS3t6utPfi0fI3IPwAKfy9H/605/y05/+1GJbREQEmzdvdkujhAvZCCS1P/g/FgEfIOHfCaRM\nS+HD2HKrpxpsz9hesB3zx96eu4KJ6ayjmRQaZt3J2TtnE5webA749s41vaPD6rVn/uMfhI0ebe4p\n98wj9NxlOOpBe6NEhMw9CE+QMgxDnK1Aogo7Dowd8P6bD8ehjyzn/Uth9he92y+oZ2wn2PbvuSuY\niKKcttvv4BIOEvrHfsMb/c81ZQqR27bxk+XL2b5+PTvSeu8SsktL+dG6dahMJouecntGhlPB01sl\nImTuQXhCQAV9o8lkN8tjKLIVSMKVY3xjJejf91EtUee/fv9SUF2/gOiUmy5+bNlkOWTUnpqKPiqK\n4KYm8zZ9VBSRr7/OyP37zds6kpI4/tJLEBRkEbjDSkrM73tr3Tr2pKRwKC6OGbW1zKuoQHX+ehfS\nU7ZXIiIj1n3B16/mHgLFEJxjCZigbzSZWNXWZjfLYyiyFUhUN44mpC3EYognilIiqTC/nv0FfJYy\n78J7mfZSNsvKLAI+QHBTE8F9Aj7AiKoqJt91F8dfftniw9b3l5nKZOLm8nJuLrc+LDXYnrK9EhHu\nDPp+M/cQKIboHEvABH2dXu8wy2PIMRrBZOLbiRMZXldn3tyq0XAmI53wDAW9To++Ws/xyt+SWb4T\nBcse+YiaI5zJyLygyzubsunIiKqqAb11W7/MrBlsT9lWiYiECDf3uC9g7kG4z1CdYwmYn6Zqg8Hq\n9hob23uYTEa6ukro6Cikq6sEk8lPlu+f76VMvP9+c8D/dtIk6p57ztxTUVQKIRkhfJD9AVuu2DEg\n4MPFDS3YTdkcRNDuOaav9tRUOpKSLLa1ZmbSqtFYbruAnnJ6TDqaWMvzaGI1pMd4oMd9fgjr69zc\n7sAiAd9r7P38+rMh1dO3N2afGGT9W02wsR26A35b2yq6urTmbSEhGsLDC1B8tfjX+THIiN27B/RS\nhn/2mXlStK/qb6rZEwfFU2DRkd7tVddMQrmIoQV7Y9S2hjKCGhsZcfjwwIMMBsYUFnaPq6amMmH1\nakZUVZl3dyQlceJ//xdUqovuKasUFQWzC9A16KhpqSEhIsHp7J1AnDfyVRebgTVU51iGTNB3NGaf\nHhyMJiRkwP704GCb59TrdRYBH6CrS4teryMkxAdv76yMQfZnbXw7cVQiJhUsvg3m1cKMBjgUAwvu\neoiMi+hp2h2jtjWUYTQy+a67LAK6PiqK6D4LVTqSkiz2w/khoLIy80Tvxd5+qxQVGbEZgxrDD9R5\nI1/kigysoTrHMmSCvqMxe5WiUBAejk6vp8ZgIMGJXpjBYP32zmCo8UjQH2xPJaykxG7AB+u9lJ7h\nDG29lt1Xwu4rzw9njLvI79HRGLW1NEqViuMvv2w+BoPBIuADAwJ+D2+nNgbkvJGPckkG1hCdYxky\nQd/emH3PB06lKGSEhDj9AQwKsn57FxTk/tu7QfdUjEZinn7a7jlt9VKsDWekRqe6ZnHSIPLjrR0z\nprDQ6cO8fdvtzM+gtwXKc4ldloF1IT+/Pm7IBP0LGbN3JDg4nZAQzYAx/eBg99/eDbanEqbTdY/Z\nW3F64UJa5s2z20vpO5zhS8+vtTWu2n+Ixxduu93xM+hKvvT/6m5ey8DyA77x0+gCFzJm74iiqAgP\nL0Cv12Ew1BAUlEBwcLpHJnEH21OxlWnw7aRJfLFhw6BuSb21OMkaW+OqJ555hrCyMp+67XbHz6Ar\n+dL/q7v1HbLs4bEMLB83ZIK+vTH7i8moUBQVISEZHp+4TRw5hZuOwtX18GEs7IkDk8p2T8VWj7gh\nL2/QwdBbi5OssjOu6mu33Rcyb+RJPvX/6mYXk4E11A2NoN9nqfTNiYlk9On1OZNRYTIZz/fmqwkK\nShzYm/f0UmyjkdufeIOV2t5NxVOg4MFMmz0Vm5kG11476Mv73K2xDwZ4WwY7b+RJPvf/6mYXkoEV\nCPw/6DtYKu0oo8JhLr4XlmL3fapUj0VH4LvGpZyx1VNxYSVJuTUemuT/VYA/BX0bvW1bS6Uv0R3g\nTEamw4wKR7n4Pec3Kgp7UlL4MD6eq48dI0Gno8NNPU9b4/MOSyK4sJKk3BoPPfL/KsBfgr6d3rat\nANn03Fqi2EBiykyr+3syKhzl4odWV2NUFBb3K98798sv2VhSwiVuGPLxxEpAR5N63rw1DpS0Qm+Q\nIQ/hlaA/6EVHdgof2QqQ19R8A/fdz481GrZt2IBWrzfv65tR4SgXvzMxkT0zkzmVNow72MIx4qkg\nhbfHjaPm2WfNlR1dOeTjiZWAvjqpF0hphUJ4g8eD/oV8qO0VPvr6nnv46JpJfPef1nPUR2m1FP37\n3+yZNctqRoWjXPy2tFTOjCngCR4x7y8llXWs51BcnDno9zyke8+sWRdfd8UDKwF9dVIvkNIKhfAG\njwf9C/lQdyTaSFNMSMCIisIfPoJyXS6LO+B7FRBZAUqfgpFjt2zhZrDI6unhKBdff66MMWOOWhyT\nRhkpVDCjtta8zagorBw1irdbW83bNMHBFIwcaTXwO0wjdXPGiq9O6nn7DkSGlsRQ5/GgP9gPtdFk\nJEe1jVX9KkC2aDS0pqazatV4rr9+J2nzurdX3QpRpTB9XW/gDzt4kLCDB20OwdjLxbc15r/wP+8x\nr6L3gSN7UrqHfPrS6vXozp4lY/jwft+T9wtz+eqknjfvQGRoSQQCj/8kD/ZDrWvQse/UfhbfBjf/\nGB6d0/331oeXoCsbSWdnGWlpOy2OaUqD5pSB5+qZB3CW0WSkpvWc1X136k6ZH8kHUG5jvP348eMD\nvyc7aaSe1DOpl5uQa5689TZv1rK3dxcqxFDh8Z7+YIcVeu4MTCrMFSAB4tqOYqoOJT7+Q6vHNWVd\nRlT55wO226vE2HeRlmpYAms+2Mb++v2snwZp6t73hYRoaLn/Gepm9JYBuLK52eo5Zxw7BlOnWn5P\nHijMdSHDFL5QC96bdyDeHloSwhM8HvSd/VD3BK26tjqr50mISIDETl566Wqr+w1T5gMvDNhuK+3R\n2iKtH4dAiRHWfQwpkRAXBjdedi8zon6GoliOuc8uKSG7tNQirTO7tJTZo0fT0e9a7ijM1TfIT4mY\nwht1bwxqmMIXhpx6eCut0Fcnt4VwJa+kbA74UBuNhB0oMS+8ak1LZVX56gG32j3MdwbR7Wzblkpp\naTZpaTvM+4ODNFz654G9ttbMTJtpj2fPDlykFT8RduyChdOgvLn7T2R4EFfHDAycHenp/HnVKsp2\n7uRQXBwzamtJDQ3lmyVLep/4dH4i2VphrqS2UFJHX1hhLmtj0f05miyXWvC+O7kthCt5f3GWwTDg\nSUmfzU5i/w1VA2YcFly2gJsuu6n3zkCBgoKT6HTPUFq6jPj4Q0yePJmoCiMR2gcGXKp5yRKraY9G\nI+zYUc+cOQObN31499OkeoaVbPb6VCpOFhQwVafj+zU1dN55J6pt25j4QG87eiaSVSoVz1wSzl1/\nGkVVpxFqw6iqiGR1ZhsFBScGnZlpbSzaGnvDFP5QC97dfHVyWwhX8u5Ps5VH4wFMer+KebUD3/7x\nNx8P+BCqVJCR0cGiRVcxderdDB+ewYjqIwMPBmKeeaY7wvdc3mSipKuLR2sMvPOfaVaPCTv/+EBw\notfX56HWKAoj9++32N13IrmsNJyqzZfB1suhPApMClrtSHS6MNvnt8HWWHR/9oYpfL0WvKf44uS2\nEK7k1Z/oMJ3O5qPvegJtX5+1fWY1k8JkMtLVVUJHR2H334lTrJ5z+GefmYOu4ZyJO+o6uK+1lV1j\nv6Hip2OpbJpt8f6o0u6c/8tmLuT51OcHlbpnb0EZQHV1qNX9NTXWt9tjayy6L0e/sHqGnCyO8aFa\n8EII1/BqN85WYITuB3Nbs+fkHtLGpnGu9ByGagPDElV8e9Ua9Hqt+T2dV2USM3kiocfrBhxfdWAL\nJ+LghW0LOHx7k3m7CRW/jNrA038qYPG5HYTVdgf8tkwN6T/s8xASJ8ssO6qfk5jYaXV/QoL17fZY\nG4vOjMlk6eSlHGk54tQwha/XghdCuIZXg76twFg6XmF3SgqMjIf2Y9BcAZgAhV2tX5N1z1Fm/HNM\n95tnHoQntBbH6/X7eeu3q6jd1YRJpUJlMvH9o0eZV1HBC8pB/v7+QYg/DaRZHGdCxepzBbyzdQW3\nTnqf656L5cy16RYB39kyy47q56Snt6PRtKLVjjTv12haSU9vd/afz8zeWHRmrJ2qnAPO47u14IUQ\nruEw6NfV1bFmzRoURcFkMnHy5Enuv/9+FixYwJo1a6ivr2fcuHHk5+cTHh4+qItbC4yl4xXSn14P\nY/oE5MZS+PhXMO1xUmrTmPHPPieJP2b13Prot/h1zp8w9RnByi4t5Z6X19I8E+KiX+AYw6ggxeI9\nCxPPMe/5qaSkT+BMv46xvcJvA3L/HdTPUamgoOAEOl0YNTWhJCR0kp7efsHldaR6ohDCGUpVVZXJ\n8du6GY1Grr/+ev7yl7/wl7/8hVGjRrF8+XKKiopobW1l9erVA45JSkqiysa4/fmTmgNjZbSBhWEf\nwlVPWDYSIymnfkN89ETGvxfP3N+kdK/WgvM9/UesnBge5neUM8viPO98soSgqd+Yt/UUTzOhQt3a\nzj8mjCfIxuTlmMJCon//+wHbTz3wQPfkrRBCuIjD2HmBBtWvPHjwIJdddhkxMTHs27eP7OxsABYt\nWsTevXsvsAUqWtMz2JawmhdYzSWXr7DYrWBkPet4InovObzI3OsegfXrQDmfhVORAv+5zOqp47BM\nAUqhwiLgQ2/xNIDGkWEc+ugjm031RJ17IYRwp0EF/T179nDzzTcD0NTUhFrdXZtArVbTbKMMgSNG\nI/x81WU8cLqdv6V9wZlRkyz2p1BBGmWWB6WVQcr5YmcmFZ/sv9fquWuJs3gdj/WhoL6/HI70qZLZ\nX89wVF+urnMvhBDu5PRErl6vR6vVmodwlH5ZHf1f97Vx40bz18nJySQnJ5tf63Rh7O80QFqTtUNt\nBuqvUmvZOW0Wx+KhMmUmj5Nq8cuhlFQqsKy6FvmJHqb2P5PlL4fhKju/vDxQ514IEZgqKyuprKx0\n+3WcDvo6nY6pU6cyevRoAKKiomhsbEStVtPY2EhkZKTNY1euXGlzX3V1KMS3Wd/Z/E+OtZbCxIG7\nxpbFcewWKJ8FoGId60mhghva/4W6OYh1p2sxjXwRTMOIbzIyo/YY102YQUiwhq4+6Z19fzmk/LuU\n5tiv7f9DuLnOvRAiMPXvEG/atMkt13E66O/evZubbrrJ/Fqj0VBcXExOTg7FxcVkZWVdUAMSEzvh\nJRtZP1+8TkXzEf5zdjyXTznZu700FSpSiJveE/S70y3LmcWvNmzn5vJyrrkqimsXlWNSwTHg0u9r\nmDj7XhRAr9dRe3oPTx/eybl6AxnfeZH2s7VUfKeCn0y1nKj1hcqTQgjhKk4F/c7OTg4ePMhjjz1m\n3paTk0NeXh7bt28nNjaW/Pz8C2pAeno7mdtGs780ynKIp7EUmiswAS+UjON3f7oP4mqhNq578tak\norYrHOi9S8guLTU/2CTt303sWHov70wJGrA4KSQkg4Sx6YSGtqEN1QIVEDpw1aovVZ4UQghXGFTK\n5oVwJu3IaIQS3SW8c9oI8W2MG/0RhWV3070gCxSjwvpX15N2pDd3v5Qo1jEN08zTZMbt5Be1LzCv\nosLiwSaOUil7yhHbKq5V0tXFfVYmdp8fOVIWMAkh3MpdKZs+UU1LpQJNxhk0gNEYxM9XZUPMQkjY\ngWKEebUmYq4s4sTIKfyj8hqOEdbd2b/yBBwLJ/QVNTOTyzlxO4Qf631GrqNUSkcLmqTypBBiqPGJ\noN+XThfGfu0oUN5CueLvvNX0C9JPj6SNeMLJJ5xobt2wwTwUpGAkven/UhXVe46oUpjwru3a+c6S\nypNCiKHGp6KX0WRkd20pZLwM9Vcz7xhM4naq+tTICY/4BGV2Ez2DODONFaRFaS3O05QG+rlLCbnI\nVEprDzuRypNCCH/mtaBvPGfgxK4/QNWHkHQ14+ffw+qKPLQRWjj/MJMbXlxC84n7LY4LapnKzINw\nMLV7Ue7P3jsGNww8v8F4hBCcLzZmjVSe9E+ScSWEbV4J+sZzBtp+cj0L/n0+W+fVcvb99WVGJLXx\naAN8GAt74iBYFW/1+Mz93UE/pQIufy/eatAPCnJNaQSpPOlfJONKCPu8EvRP7PpDb8A/L+twG1mH\ne18XT4HycIXpVo6PUSmAqbvAZkVKd95+Wu9q3GFfXktwlJRGCETyrF8h7PNK0DdVfejwPYuOwD8y\n9wE3DtiXPv8Snh+p4vT0s2A6C+vWd3f7z+fxj7jrehR5zF1AkowrIezzeGQ0mozsjrDyLEQrJg4/\nSrDGctI0WBPMdzK+Q0ZICNnXhRGiCekus1w+C7beQUhoBiHp33FH04UfkIwrIezz+CdB16DjhZj/\nMHdKd2/enoRrb2PkwpHodXoMNQaCEoIITg9GUXWPzSoqhfCCcJv7ReCRjCsh7PNo0DeajOz+fDcm\nFSy+DebVdj8A/V/R8OC/h3PDJ9+a31t6VRQTFuSiqBRCMkIIybB+a+5ov6P26Bp0VH9TTeKoRIfP\nkRW+TzKuhLDPY0HfaDKy6v1V5od3m1Sw+8ruPwDz7nqCsx8cgcOHYPoMJizIRTXMfc3r3x7orr1T\nMLtAAr+fk4wrIWzzWNDXNegsAmx/b/znLZ7NfhbVIs8EXGvt0dZr0TXo5DmzQoghy2Nd2upvqu3u\n39+wH12DzmKbyWiiq6SLjsIOukq6MBldVxvOVntqWmpcdg0hhPA1HuvpJ46y/nzZvmpaasy9bJPR\nRNuqNrq0vRNyIZoQwgvCXTJRa6s9CRHyvFshxNDlsZ5+ekw6mliN3ff0Dbh6nd4i4AN0abvQ6/Ru\na0//evpCCDHUeKynr1JUFMwuMGfL7K/fT9Xp3lrRE8MmYsKE0WREpajQV1sP7oYawwVl6thrj616\n+kIIMdR4LcKtSFxBwawCJoVPAqCuvY77y+5n1furMBgNbGaz1eOCEix/TxlNRkrqSyisLqSkvgSj\nyeh0G3rq6ecm5JIRmyEBXwgx5HktZRNgYtD3qDN8ZvE+bb2WP9QUcjhuM/958DMuf/968+MR22a3\nEZUeZfecknYphBC2eTVls87wrwHvU4Dpoa+y7Crgqvdg0XucOhlFwe7JXLNoFrmq3scfStqlEEIM\njldTNhWjwsyjM7lj/x3MPDoTxaiQEglTw09bvC96fBN3LKskYfSVDs8JknYphBC2eC1l0+rDzqeU\ncuJ/fgt0DDh+agSEhVumakrapRBCDI5HUzaTQq43v06pTbEI+ABpR9L49pPLbJ7DeM6yQpukXQoh\nxOB4tODaqFFd8FX31/H11p+Kda7y+zRd9w1RwacG7Ov/NCxJuxRCiMHxWNDfX7+fA1+VmF8fiz1m\n9X21MZ9yiv8hOmgzBkNvHn9IiIbg4IE9+J60S5m4FUIIxzwW9Lcc22LxuiKugtIppQPG9EOvDSU9\nRoOCBr1eh8FQQ1BQAsHB6fI0LCGEuEgeC/qtXa0Wr00qE+tuW0dKbQpxDXHUxtRy9cKrKZjWm2Mf\nEpJBSIj04IUQwlU8FvSzxmVxpNVyItakMlF+ZTnlV5YzKWwSP5v2MxmPF0IIN/JYhF2RuIKo70TZ\n3J/33TwJ+EII4WZO9fTb2tp47LHHqK2tRaVS8fjjj3P55ZezZs0a6uvrGTduHPn5+YSHh9u+kCqI\nd29+l8LqQl49/iqnu3oXYGXGZAJQWF1IwqgETCYTR1qOyCMMhRDCxZSqqiqHTyZ59NFHueaaa1i8\neDEGg4HOzk7++Mc/MmrUKJYvX05RURGtra2sXr16wLFJSUlUVVVZbOt5Nm1NSw1XjrySN+resPlU\nLamlI4QIRNZipys4jKTt7e18+OGHLF68GICgoCDCw8PZt28f2dnZACxatIi9e/c6f1WTCo7djGn/\no3zy8SV2H6PYU0vHHxiNUFISRmHhGEpKwjA6X/BTCCE8wuHwzhdffMHo0aNZu3YtR48eZerUqfzy\nl7+kqakJtVoNgFqtprm52akLGo2watUEtNqR3RsyvoA59o/p+0QtXzXg+wI0mlYKCk6gkpsUIYSP\ncBj0DQYD1dXVPProo0ybNo0nn3ySoqIiFMWyDk7/131t3LjR/HVISAZa7fTenfVXO2ykP9TS0enC\nLAI+gFY7Ep0ujIyMdi+1SgjhLyorK6msrHT7dRwG/ejoaKKjo5k2bRoAN9xwA0VFRURFRdHY2Iha\nraaxsZHIyEib51i5cqX568LCMZY7a+dBTTYk7LB6bNLoJL+opVNdHWp1e01NqAR9IYRDycnJJCcn\nm19v2rTJLddxOPCgVquJiYmhrq4OgPLycq644go0Gg3FxcUAFBcXk5WV5dQFExM7zV8rmJhpOs0d\nf/1f7vzsQRTjwLuFzNhMv5jE7ft99ZWQYH27EEJ4g1Mpm4888ggPP/wwBoOB8ePHs379eoxGI3l5\neWzfvp3Y2Fjy8/Mdnsdo7P4zadK31H32HdZzmDSaunf+eRFTpqhZd9s6TKrehCJb5ZN9TXp6OxpN\n64Ax/fR06eULIXyHUymbF6Mn7aj/ROdMmniCgelID//4YcqvLAf8L13TaOwe26+pCSUhoZP09HaZ\nxBVCXBAWxqj2AAARF0lEQVR3pWx67nGJ/SY642mz+r6HQh5CN03nl2WSVSrIyGiXMXwhhM/yWND/\n5BPLic5jWF+9O/maOKYmTPVEk4QQIuB4rBttXqikmGBmExW3t1I6yjLwlxJFhWm0p5okhBABx2M9\nfZWK7oC//jCkNWEC1i2HlP8XTtyWKGoJp4JI7j/6FRmaM55qlhBCBBSPBf2EhE5IaYa0JvM2kwrK\nl7dRfnQilHdX4JwyRVIchRDCXTw2vKMoQLz1yVvieic+TW7NJRJCiMDmsaBfUxMKx2yUXq4NM395\n9Kj1la1CCCEunkeCvtEI584BFZFQ2u9BKqVR3dvPc9cKVqmAKYQQHhrTt6g+uW5699h+XDvhp4bT\n9t5YMHWXX3DXClapgCmEEN08EvQtqk+aFCiP4t6rDeT+99eUlXW6fQWrVMAUQohuHsve6e/QoUso\nK+sO9I4Cb095g+rqUBITB//LQSpgCiFEN88EfcUIcXsg9sPu+vm18zh4MIyDB8McDrO4YmhGKmAK\nIUQ3z4xo37YYbp8Pc9Z1/33b4u5fBPQOs9hib2jGWT0VMPuSCphCiEDkmZ5+/wekJOzo7vkfuxmw\nP8ziiqEZlQoKCk5IBUwhRMDz2pg+MYfMQd/eMIurhmakAqYQQnhwcdYADTMAx8MsMjQjhBCu45Ge\nviZGg7ZBa3498du5zJ87g6kP1jkcZpGhGSGEcB2PBP1nZhVw1+NHqfr6CDTMoK52Hh9ntpP7X01O\nBW8ZmhFCCNfwSNAvKx1J1Zs/sNgmi6OEEMLzPDJIYisDZ8+eCKmBI4QQHuSRoH/unPXtO3eOZtWq\nCRL4hRDCQzwS9Ddtira5z9ZCK6mKKYQQrue9PP0+tmxRA5izcqQqphBCuIdPhNCDB8O4776J5qEe\nV5ReEEIIMZBPBP0ePYHdXukFIYQQF84rQX/MmC5SUqynatbUhEpVTCGEcBOvBP2vvw6hocH6dELP\nilspvSCEEK7ntYncEyeGM316B4cPjzBv6wnsvlB64WIf3CKEEL7IqaA/d+5cwsLCUKlUBAUF8cor\nr9DS0sKaNWuor69n3Lhx5OfnEx4ePqiLf/VVEL//fR1HjgwM7N4svSDZQ0KIocqpEKYoCi+++CLb\ntm3jlVdeAaCoqIhZs2axc+dOUlJS2Lx586Av/tVXISgK5OZ+TUaG7/SkJXtICDFUOR1mTSaTxet9\n+/aRnZ0NwKJFi9i7d+8FNcAXM3Ike0gIMVQ5Paafm5uLSqVi6dKlLFmyhKamJtTq7kVVarWa5ubm\nC2qAL2bkSPaQEGKocirob9myhTFjxtDc3MyKFSuYOHEiiqJYvKf/674iItbS0tJzKc35PzBx4reY\nTFBYOManJkt7sof6j+lL9pAQwl0qKyuprKx0+3WcCvpjxowBIDIykjlz5nD48GGioqJobGxErVbT\n2NhIZGSkzeN/85t7uP/+iQO2h4cbLbb7ymSpL2QPCSECS3JyMsnJyebXmzZtcst1HIaxzs5OOjo6\nAOjo6KCsrIz4+Hg0Gg3FxcUAFBcXk5WVZfMcaWntREXpLbaFhxuoqhphsc2Xiq/1ZA/52iSzEEJc\nDIc9/aamJh588EEURcFgMDB//nxSU1OZNm0aeXl5bN++ndjYWPLz822eo6wsjKamYIttbW3WL11T\nE2qRpinpk0II4ToOg/748eN5/fXXB2yPiIhwOk1z9+4IpxvUf7LUXvqkPHVLCCEGxyN95V27Rlvd\nPn16h8Vra5Olkj4phBCu49V6+rm5XzFsGHYnS+2lT0qpBCGEGByvBv1jx0LNE6W22EqfTE1tl7F+\nIYQYJK8GfYOhe6LWXpC2lT4pY/1CCDF4Xg36mzZFU10d6rB3bq34mr2xfgn6QghhndcHQrTakbzw\nwphB595LqQQhhBg8rwd96O7x9zwf11nyoBUhhBg8rw7v9KXVjuTAgTAyM50L2lIqQQghBs9ngj7A\n229HOB30wbsPWhFCCH8k/WIhhAggPhX0L720y6NF1YQQItB4bXhnwoRvOXFiuPl1ZKSeF16INr+W\nhVZCCOF6Hgn6kyZ9y2ef9QZ4jaaVZ545QVlZ9ySswdCdwdOXLLQSQgjX80jQ37691mqWTc8kbGHh\nGKvHyUIrIYRwLY8EfUdZNrLQSgghPMNjI+b2nn4lC62EEMIzPNLTd/T0K1loJYQQnuGRoH/ggPWK\nmH1X4MpCKyGEcD+P9KX37LH+uMS333b+MYpCCCEungygCCFEAPFI0J87t8Xq9htvtL5dCCGEe3gk\n6GdktJOZaZmdk5nZKuP3QgjhYR7L03/2WcnOEUIIb/NY7R2VCnPefc+jDiXwCyGEZ3ks6DvK1RdC\nCOF+Hgu3Op31XH2dLsxTTRBCiIDnsaDfM6TTX02N9e1CCCFcz2NBX4qqCSGE9zkd9I1GI8uWLeOB\nBx4AoKWlhdzcXBYuXMiKFStoa2uze7wUVRNCCO9zOui//PLLTJ482fy6qKiIWbNmsXPnTlJSUti8\nebP9C50vqvb883U88MApnn++TiZxhRDCw5wKuQ0NDRw4cIAlS5aYt+3bt4/s7GwAFi1axN69ex1f\n7HxRtdzcr8nIkHRNIYTwNKfC7lNPPUVeXp7FtqamJtRqNQBqtZrm5mbXt04IIYRLOQz6JSUlREVF\nkZCQYPd9iqK4rFFCCCHcw+HirEOHDqHVajlw4ABnz57lzJkzPPLII6jVahobG81/R0ZG2jzHxo0b\nzV8nJyeTnJzsmtYLIcQQUVlZSWVlpduvo1RVVZmcfXNlZSUvvfQSzz33HE8//TQRERHk5ORQVFRE\na2srq1evHnBMUlISVVVVLm20EEIMde6KnRc8lZqTk8P777/PwoULKS8vJycnx5XtEkII4QaDqr3T\nd2gmIiLCYZqmEEII3+KRgmslJWFUV4eSmCgllYUQwps8EvTvu2+i+WuprCmEEN7j8dArlTWFEMJ7\nvNLflsqaQgjhHV4J+lJZUwghvMPjQV8qawohhPd4ZCL3+efr5IHoQgjhAzwS9DMy2snIkN69EEJ4\nm/S5hRAigEjQF0KIACJBXwghAogEfSGECCAS9IUQIoBI0BdCiAAiQV8IIQKIBH0hhAggEvSFECKA\nSNAXQogAIkFfCCECiAR9IYQIIBL0hRAigEjQF0KIACJBXwghAogEfSGECCAS9IUQIoBI0BdCiAAi\nQV8IIQKIBH0hhAggDh+M3tXVxd13341er0ev15OVlcWqVatoaWlhzZo11NfXM27cOPLz8wkPD/dE\nm4UQQlwghz39kJAQioqK2LZtG2+88QYVFRUcOnSIoqIiZs2axc6dO0lJSWHz5s2eaK/HVVZWersJ\nF8Wf2+/PbQdpv7f5e/vdxanhndDQUKC71280Ghk5ciT79u0jOzsbgEWLFrF37173tdKL/P0Hx5/b\n789tB2m/t/l7+93F4fAOgNFo5LbbbuPzzz9n2bJlXHHFFTQ1NaFWqwFQq9U0Nze7taFCCCEunlNB\nX6VSsW3bNtrb21mxYgWVlZUoimLxnv6vhRBC+B6lqqrKNJgDXnjhBYYPH86bb77Jiy++iFqtprGx\nkeXLl7Njx44B709KSnJZY4UQIpBUVVW5/JwOe/qnT58mKCiI8PBwvv32W95//33uvfdeNBoNxcXF\n5OTkUFxcTFZWlscaLYQQ4sI4DPpff/01a9euxWQyYTQaWbhwIbNmzSIxMZG8vDy2b99ObGws+fn5\nnmivEEKIizDo4R0hhBD+y20rcnU6HQsXLmTBggUUFRW56zJO+dWvfkVmZia33nqreVtLSwu5ubks\nXLiQFStW0NbWZt63efNm5s+fT3Z2NmVlZebtn3zyCbfeeisLFizgySefNG/X6/WsWbOG+fPnc/vt\nt1NfX++ytjc0NJCTk8Mtt9zC4sWL2bp1q1+1v6urix//+McsXbqUW265hYKCAr9qfw+j0ciyZct4\n4IEH/K79c+fOZcmSJSxdupQf/ehHftf+trY2HnroIbKzs7nlllv46KOP/Kb9dXV1LF26lGXLlrF0\n6VJmz57N1q1bvdp+twR9o9HIb3/7WwoLC3nrrbfYvXs3x48fd8elnHLLLbdQWFhosc3W4rJPP/2U\nt99+m+LiYjZt2sSGDRswmbpvhjZs2MDjjz/Orl27qKuro7S0FIA333yTiIgI/va3v3HnnXfy9NNP\nu6ztQUFBrFmzhu3bt7N161b++te/cvz4cb9p/2AX9/la+3u8/PLLTJ482fzan9qvKAovvvgi27Zt\n45VXXvG79j/xxBNce+217Nixg9dff51Jkyb5TfsnTpzItm3beO2113j11VcJDQ3luuuu82r73RL0\nq6qqmDBhAuPGjSM4OJh58+axb98+d1zKKVdffTUjR4602GZrcdm+ffuYN28eQUFBXHrppUyYMIGq\nqioaGxs5c+YM06dPByA7O9vimJ5z3XDDDZSXl7us7Wq1moSEBABGjBjBpEmTOHXqlN+0Hwa3uM8X\n29/Q0MCBAwdYsmSJeZs/tR8wBw5/a397ezsffvghixcvBjAnlfhL+/s6ePAgl112GTExMV5tv1uC\n/ldffUVMTIz5dXR0NF999ZU7LnXBmpubrS4us9X2U6dOER0dPWA7wKlTp8zHDBs2jPDwcFpaWlze\n5i+++IIjR45w1VVX2Vwc54vtNxqNLF26lKysLJKTk+0u7vPF9j/11FPk5eVZbPOn9gPk5ubywx/+\nkDfeeMOv2v/FF18wevRo1q5dy7Jly/j1r39NZ2en37S/rz179nDzzTcD3v33lyqb57lycVn/XpUr\ndHR08NBDD/HLX/6SESNGuHVxnKvb37O479133+WDDz5w++I+V7a/pKSEqKgo892WLb7afoAtW7bw\n2muvsXHjRv7617/ywQcf+M2/v8FgoLq6mh/96Ee89tprhIaGUlRU5Dft76HX69Fqtdx4443AwPZ6\nsv1uCfpjx46loaHB/PrUqVOMHTvWHZe6YFFRUTQ2NgLQ2NhIZGQkYLvt0dHRNr+nvvvOnTvHmTNn\niIiIcFlbDQYDDz30EAsXLmTOnDl+1/4eYWFhXHvttXz88cd+0/5Dhw6h1WqZN28ev/jFLygvL+eR\nRx4xL0r09fYDjBkzBoDIyEjmzJnD4cOH/ebfPzo6mujoaKZNmwZ0D19UV1f7Tft76HQ6pk6dyujR\nowHvfn7dEvSnT5/OiRMn+PLLL9Hr9ezZs8fm4i1PMZlMFr8BexaXARaLy7KystizZw96vZ6TJ09y\n4sQJkpKSUKvVhIeHU1VVhclkYseOHeZjNBqNeTXyO++8Q0pKikvb/qtf/YrJkydzxx13+F37T58+\nbc5M6Fncl5CQ4DftX7VqFf/4xz/Ys2cPTz31FDNnzuR3v/ud37S/s7OTjo4OoPtusaysjPj4eL9p\nv1qtJiYmhrq6OgDKy8u54oor/Kb9PXbv3s1NN91kfu3N9rstT1+n0/Hkk09iNBpZvHgx99xzjzsu\n45Rf/OIX/POf/+Sbb74hKiqKlStXMmfOHPLy8jh16pR5cVnPZO/mzZt58803CQoK4uGHHyY1NRWA\njz/+mLVr19LV1cW1117Lww8/DHRPUD7yyCPU1NQwatQonnrqKS699FKXtP3QoUPcfffdxMfHoygK\niqLw85//nKSkJL9o/9GjRwcs7rv77rtpaWnxi/b3VVlZyUsvvcRzzz3nN+0/efIkDz74IIqiYDAY\nmD9/Pvfcc4/ftB/gyJEjPPbYYxgMBsaPH8/69esxGo1+0/7Ozk7mzp3L7t27ueSSSwC8+u8vi7OE\nECKAyESuEEIEEAn6QggRQCToCyFEAJGgL4QQAUSCvhBCBBAJ+kIIEUAk6AshRACRoC+EEAHk/wNR\nK3jfvoDjZQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "fig.set_facecolor('lightgray')\n", "ax.set_axis_bgcolor('lightgray')\n", "\n", "for continent, selection in df.groupby(\"Continent\"):\n", " ax.plot(selection['GDP_per_capita'], selection['life_expectancy'], label=continent, marker='o', linestyle='', markeredgewidth=0)" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(30, 85)" ] }, "execution_count": 149, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD7CAYAAACG50QgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXtcVOX2/98zXAQc7iMwIIiKiveyNCUvqGlm3spQu9ep\nr52sfpZ+PUe7anXK+tq9Y3mOVlqaZpa30pMdNcN7ZYomJhpiOCiIXEYQGGb//hgZGJiBGWWG23r3\n6oWz9t7PXgPDh2evZz1rqVJSUhQEQRCEFoG6oR0QBEEQ3IeIviAIQgtCRF8QBKEFIaIvCILQghDR\nFwRBaEGI6AuCILQgXC76a9eudfUtXIr433A0Zd9B/G9omrr/rsLlon/mzBlX38KliP8NR1P2HcT/\nhqap++8qJLwjCILQghDRFwRBaEGI6AuCILQgRPQFQRBaECL6giAILQgRfUEQhBaEiL4gCEILQkRf\nEAShBSGiLwiC0ILwbGgHhJaLYlLISs4i72geQV2DiBgYgUqtami3BKFZI6IvNAiKSWH39N3ot+st\nNl2ijgHvDBDhFwQXIuEdoUHISs6yEnwA/XY9WclZDeSRILQMRPSFBiHvaJ5Ne35qvps9EYSWhUPh\nncWLF7Nx40bUajWdOnXi5ZdfpqioiFmzZqHX64mMjGTBggX4+/u72l+hmRDUNcimPTA+0BLrz/4p\nG/0OvcT6BaEeqXOmf+bMGb788ktWr17NV199RXl5Od9++y1Lliyhf//+bNiwgX79+rF48WJ3+Cs0\nEyIGRqBL1FnZdIk6whPC2T19N7se20X2/mx2PbaL3dN3o5iUBvJUEJoXdYp+69at8fLyoqioCKPR\nSElJCWFhYWzbto1x48YBMH78eLZu3epyZ4Xmg0qtYsA7A0j4ZwLdn+hOwvsDGDqnPR5bfqJVph6q\nTOzrJdZvMqHZsYM2ixah2bEDTKarG08Qmih1hncCAwO5//77GTlyJD4+PiQkJDBgwADOnz+PVqsF\nQKvVkpub63JnhSaIyYQmORnfo0cp7toVw8CBoDbPNVQodOI4vspR1AWReO8uBaDt3XAiFbatrBwm\nPzUf3cBwu2PV5UPM9OkEbN9uMRUkJpLxzjuOXS8IzYg6Rf/06dN8+umnfPfdd2g0GmbOnMnGjRtR\nqaxjrNVfC0KtYguWY2WdOlF0991Wl3aMh6AQ4PJcIrCzfy1jqdDsy8X3eCHFnfwx9AuBKmsAmuRk\nq+sAArZvR5OcjGHw4Hp8w4LQ+KlT9I8cOcK1115LYGAgAMOHD+fXX38lNDSUnJwctFotOTk5hISE\n2Lw+NTWVhQsX1q/XbmT//v0t039FwTsjA8/sbIxt2lAaEwNO/mH3PnWKoGpiy/bt5M2ZA2A5Ziwp\nwbhtW43rTxjTyWMb/u38ufDtPnbaGmv2bHxP+NLqdLHFXBLtS/6wMIu/fj/9hMaGf4alSyk6fNip\n9+QMLfaz00ho6v5PmzbNJePWKfrt27dn0aJFlJSU4O3tzZ49e+jRowd+fn6sW7eOhx56iHXr1jF0\n6FCb18fHx7vMeXewcOHC5uu/ouCTlYV3Xh6lQUFciogwC2U9hUPaLFpEuA372Y4dwWSyHCtr1Yoi\nG5+frJJfuPvex4kYGEHYv/9lc6wLfr0Jzo2C1lWMuZB+XU8M/UMB0OzYQez+/TWuTb//fpfO9Jv1\nZ6cJ0NT9dxV1in6XLl0YN24ckydPRq1W07VrV+644w6KioqYOXMma9euRafTsWDBAnf4K9QXioJ2\n92589ZUbpIoidBw2xuKzeRs96iEcUty1q217fDy+VWbYnmlpeKamYoyPrzxHp8Pvmkh0g3W1joVH\nW6BmZo9vmsEi+oaBAylITKzxR8wwcKDD78Vt1LIGIgj1gUN5+g8++CAPPviglS0wMFDSNJsKNoTE\n5+xZK8EH8MvSc2a5nujje20O45ua6pTo1ya2vr/9ZrGpFAW/VaswxsWRP2ECeSNGmJ86fv21zrHy\nb+pO8NaaIZriuCoBHbWajHfeMX8PUlMpjo9vnGIqC86CG5DaO80dRbEpJHmPPmrz9DYRoD+us3ms\nuMpM3CFqEdvibt2sTlUpCl7Hj2OIicHz+HHarF+P96lT5tRKtdr2WAkJaJJ3cimqEJ/Myo2BRV3A\n99cvobTKTFmtxjB4sMN/tBqiGJwsOAvuQES/meOdkWFTSAou77GojldWJjrOcJooosm02K84HGJH\nbA0DB1IwZAgBP/xQeY/BgwlZs8bibxDQ4fRpTi5bBp6e1mNZzYpV4NWVS50GYfLNx2/nKvx2Kha/\nnZ0pN1QxON+jR23bnXzCEoTaaFmib1JqTe1rjnhmZ9u0e/3xB8U9eliFeC6l/slNaUtQXY6RnyaK\nkjE34XlLvysPh9QWo66WDeR54QJ+KSlWNr+UFDrcdx8nP/vM6v7Ws2IFyn7Dp0rIqIIrmSnXVgyu\nYo3BFdS2BiI0EM1wjaXliL5JIea5wwTsOm8xFSSEkvFSj2Yt/MY2bWzai+PjMQwYgE9WFl75+Xic\nOk3UqiWolMpF0WgySR/V78pnmbXEqG2FMqoLflV7deG2Nyu2hbMz5dqKwblS9JvUgnNLoJmusTRd\nz51Esy/XSvABAnadR7OvGe8kNplAUbgUG2tltgiJSsUlnY6Czl3Qv7/dSvAr8D2WesW3ry1G7Yxo\ng1m4q2I3m8cGzs6UaysG51Iur1uk//OfnH3iCdL/+c8mLzBNmdo+v02ZFvNp8j1eaNueZqj9QgU0\nOzS0WdQGzQ4NNJWSLZdnKUGbNuGTng7ApfbtSX/vvRpCkpWcxe/ptrYvXV1oobYYtT3RvtSunUN+\nGBISKOrZ08pWMGQIBYmJ1rYrmCnbKwYXMTDCqXGuiMvrFtlTp5qfTkTwG4zaPr9NmeYV3qklZl/c\nyXbZZ6vUvhrjQeCmQGI/jLWYChILyHgno/H+ubwcgwzctKnGLMXnjz8smSxVyTuaRxpxpNKFeI5Z\n7GfaX39VoYXaYtT2QhkZb7xBhwcesAr1FAwZAopCm0WLzHHVhARinnrK6pyinj3JePttUKuvOjWz\nohhcVnIW+an5BMYHOp69U+Uz6P1nEZiUZh0+bMwoioJ+h/6KM7Ca6xpL8xH9OmL2hn4hFCSE1jhu\n6Ge7fASAJllDq1OtrGwB2wPQJGswDK7jCaEhsBGDrI6t+LY5nKFmFZOJIw0dWeiJIGzGfeiuYqZZ\na4y6lnTOk599Zo7hL11K+r33ErJmDbGPP24Zo6hnT5sLvppduyzZPVeb7aJSq9AN1jkXw6/2GQy6\neI4Y1eFmv27UGFFMCn9u+pNdH+6y2JzNwGquayzNRvRri9kb+oeCWkXGSz3Ms7A0A8Vxmjqzd3yP\n+tq2p/o2StG3FYOsjq1ZSkU4Q79dTxqdSaOzOZwxOPLqHKprU5S93PnL9qLDh0GtdnjBt6FTG+v8\nDApuIys5i8JT1iFdpzOwmsqmPidpNqJfW8ze8gunVmHoH+rwL2Bx12Lb9njb9vrG2Q1CvjZSFqti\nb5ZiK5wRnhBeP5uTnNwUVR1nFnwb+rHboc9gA9MQm84agnrLwLrKz29jpNmI/hXF7OvAMNBASbsS\nOFVpK0gswDDQ9bN8pzcImUz479hhc6wLY8eSP2pUrbOUquGMhtqcZAt7cdXqIZ7G8Njtis9gfdKY\nfq6upsEysJoAzUb0ryRmXydqyL8ln/Se6fim+lIcX2wWfDc83Tm7QUiTnGwz7FEWFkbmyy879Uja\nUJuTbGF3wfett9Ds2tWoHrtd8hmsRxrTz9XVRAyMwL+dv9WEzW0ZWI2cZiP6VxKzdwgVGAYb3B7D\nd/bx1F4YpKRdO6fFsKE2J9mklrhqo3vsrvYZzPstrFEt4jaqn6uLUalVtL2lLQk9E5zPwGrmNB/R\nB/sx+yZYfiGoSwBx/I4OPXp0pBEHqO0+ntoLg9jbkVvrvRvbo3FjFHh7VPkMli70a1Sfs0b3c3Ux\nKtUVZGC1AJqH6NdWH8OR8gsmc3qm71FfirvaCOG4u/6GycQNa+YTwHaLKZUu7BjypN3HU3thkNKY\nGKdvXzWbpwJ5NG76yM9VgOYg+nXUx6gzjc4EMdNjCNgeUOX6Khuw7JQmduX2eFupl/EcwyfJhMHe\nzNFeGOTDD+3ex14mx1VtThIaLfJzFaApib6d2bbd+hg/JmMYMrjONDpNssZK8M3XV27AqixNbC7f\ni2c0ATtPo9nxI4bEIS55q3a3fx9LxTCklhCHE2GQujI5rmhzktDokZ+r0DREv5bZvD2B9Hz2PTQv\nQ3FcN5vHK9Lo6tqAZS5NrAL/h6FVL8vxiMWFpA12zRZ7d2z/bsyZHBVPINk/ZaPfoZfZqCDUIw2S\n46aYzDUxji46in6HHsVUs7pjVWqrdmdPINvmpRL7+GOELJ9HQYL1wm7VNLq6NmAZ27QBz26gGgtF\n10NpO1DAJ1NDm4920GbRIjQ7dpgrWtYTFfF5K5/rOQ+9tkyOhqTiCWTXY7vI3p/Nrsd2sXv67jo/\nI4IgOIbbZ/pXskGktmp32Q8/TGb764n64yeb5wT8sJ309+4gd2xPm6mchoEGChILasT0KzZglUbH\nUO7zCh4FvSsH9T4J/t8S/q/1UPzd5WsSyXjrbTQ/5V19lpAbtn831kyOxvwEIgjNAbeL/pX8UhfH\n1xLuUKv57cmX+X36QXrjQQj/BTYDlTND7fLPyLn3XrLvsiGcash4J8OcvWNjA5b36VZ4GHpbX1Pa\nAcragfFPiylg+w90ePxH/CqLVF5dkxYXpyk21kyOlpRLLggNgdtF39lfasWk8N1qNYOrlf21hDvK\nFRLW9Kc1N18+MhNYB9xGhfBr9uxBs2eP/awbtf0NWJ7Zdr5Fl8qhrMoTiFdXK8GHOoptNfDegcaa\nydHQTyAtpTaN0HJxu+g7+0udlZyF/oezNcv+TrwPnUpFh+988dtR/drxwChgk5XV2X6pikmhULGd\n/UPpv6n6NIFntM3TfI8X2tws1hhaNzbGTI6GfAJpSbVphJaL2xdyne1KVPlkoCaNzvzIYNLoTP7v\nhWjKTPjZyb4piR5n0+5o15sKATj20zFSsb6mIDGfgiHWC8CX2nrYHqjkVA1Ti2zd6CAVTyAJ/0wg\nrF8YCf9McJvo1hZ6FITmgttn+s6GFWp7MvA1KtC5yObxvDFtCf+gpr3WtMcqO3PPlJ+xCMAqVhFH\nHDp0BD8ajNdfvYC3rRZafY/8hs+nh6zSOik5BOU+gHU+vztK8F5R2mMjKVdR8QSiPax161OIrCcI\nLYEGydN3JKxQIVoXfrtAcM9gLqRcsByreDIoNpqgXz7ceAF2BluOFw3JJ/vhtvgnO1F+t9rO3HDC\n0WJiG9sASLv8X3fP7sSr4wEbC62Fj8OlruDZ1rzIW3aU4q7v17iVK0rwVo1FB3YJJH1NOvrterLJ\nZtf+XXWHKRpJyKkhaej1BEFwB41jc1a13baFCTey+6m9Vo/amnYaYsbEENStcnHN4KWmoJWagJdO\nwL5AOO5HUXwxJ4dfJGaGjR6qb71lN+3R1s7caK7jWgoxd0M3X2dPAMy59UPM+wnKzM1MChITwWSq\n7O1aUR3SRgneov4hGPoG2xy7LmzFoqtTV4aUdH1qvBlNglCfNLzoG410uO8+K4E+13MA+pQRVF1y\nMJwyoN+hJ35qfOVsVaUiw98LjY8J36EXKR5RhMFLjebHnTZb7Gl27sQwxEbpBEUh4ldvm+4F4kcc\naZUtBO0JQPXc+i5dCFm9mtgnnrCcUjV7KOPF7nT4IRu/NAO098PvmiBiLhrJ8PcClXMza1uxaFvU\nFqZoCl2fXE1jzWgShPqkYUXfZKoh+ABhKbuJoz1pdLayX0i5UHO2qlJh8PbAUEWz7W3minjjDdIG\nDbKqwKnZl0tgagE+ihGw1RM2i9792xJ2b0LdAlAlt16zYwcBP/xgdbhq9pCmXMGvdyD0rnxyCCgz\noSkzYfC2syhsB3ux6OrUFqZo7F2f3EVjzGgShPqkQVsN2ev2BKDDdsaEzTIBJtDs0NBmURs0OzQU\nd7G9mcvnjz/QJCebX5Sb6PBMCrFzUgheegq+3glBJ6tdsQ5IQ3PvIHSDdU7N+GrbRQyYF6FtHbdj\nrw17seiq1BWmqAg5VaUxdX0SBKF+aNCZfm1Nr/XYFiiT0YRSbsL33Fm88/IoDQgibH4/ArZXzmIL\nhtzNpdg38EmvLuJQ+OmPZNGJhDIVfnuqpEiqAI9voX0h/GEADgCbKWnXznrx18Ha+nUVTSv2tP0H\nxJ69NmzFoiOGRNAhqQNHlh0h4X5HnlJc1HlMEIRGRYOKvj1hPE3U5U5RNSlbfJwQ4wk0UaUAeP4e\nR+vt1mGLgB8COfs/b+Pz75q5+of2qEnbs4vw+Db0qn5QBdzaFdqe4tLJ9mT1fp/8lJQq4aDaa/dX\nxV5Tk4o/IAYvNQVeagLKKgu1FXipMXg5//BVWyxae8SJtEd7nccEQWg21Cn66enpzJo1C5VKhaIo\n/Pnnnzz++OOMGTOGWbNmodfriYyMZMGCBfj7244L28OWMJ4mio/4C3FerdB5eqI3GkkrKwNgsr8/\nHTtDUVTloqOH3ragaZcN5FKXR/HJ+ANQwHia02X5pBFHHHEov7cFTQF4nTKL/WUuxAeQPyARg9cw\n84Lq4cOWY7VV+6yxy7euomkVi9BlJnyNCsWe5mwkZxdxK5BYtCAIjlCn6MfGxrJ69WoATCYTN910\nE8OHD2fJkiX079+fv/zlLyxZsoTFixfz1FNPOXf3asJ4xhjO+g9KmewfSHyrypXZ1Eul6IujiC9v\nRyl/gumIZTWiXGc7a8WjJBgP/S3QunJHbPSlFGYYBuPPcHMWZgGWipmowBjsReaNWvC0PduuLU5v\ns7RDXUXTbCxCC4IguBKnYgl79uwhOjqaiIgItm3bxrhx5vDJ+PHj2bp16xV6oMYwaBDFDzyE7r7R\nDOgTYSX4KBBfOoGh5ZOhqD/eP9+B36rJZtEGjHFplGuzbY9t1Fa71xiz4FelomIm4HmhDM1++6UQ\n3NHcRBAEwZU4JfqbN29m9OjRAJw/fx6t1iyqWq2W3NwrrBujKMQUlhGbX0rE7hxGBLS2Pl7WzizM\nVfA6Fo9nWpzlHRRcu8322J451q+NbWyfV+WPQ+D3R+y66o7mJoIgCK5ElZKS4lCOYFlZGcOHD2fd\nunUEBwdz4403snPnTsvxgQMHklyRDlmF//f//h/xtcyEvctNBF0qh53n4cwlGzeOBGPbGmaTJoPy\nqD9RF6hQ56lRlXQGU5UdreoL0Oq49UXlgVDaxYYTx8DDnApa3K6AwqGVS7z79++nb9++lecqCt4Z\nGXjm5GDUaimNibniOLw7qOF/E6Ip+w7if0PT1P2fNm2aS8Z1OHsnOTmZbt26ERxsFtbQ0FBycnLQ\narXk5OQQEmI7nzs+Pr5W59sUGQnfmQ3fHoPWNk4obQcFY2uYC29di+a/p1GhMl/nB5S1ozg2lvLC\nTDQFaaDqZH3RpRTK/Efgdf7GSluVmD4lhziQ2A6vaeMthxcuXOiyb747aMr+N2XfQfxvaJq6/67C\n4fDOpk2buOWWWyyvExMTWbduHQDr1q1j6NChV+RAsacKTl60eexEaSnLi1LIaG1d2risSyqmLgcx\ntiurNKoA71OUh35JzlMn2NROzdaLRWy7eJFfL2bwu+8B0l/pxbHv/Un/ZzopNxziNFPBNA6KNkD+\nB6QW7uCEZ7U/FIIgCM0Ih2b6xcXF7NmzhxdeeMFie+ihh5g5cyZr165Fp9OxYMGCK3LA4KWmqJM/\nfjaO7Sm+RJqxjJABqwiNjsMjS0d5hB5jXBqooVxrxOuUdeqLJvlLNNt+IyQxkb2vzyb/90KM8X2I\nGBhBaUVf3MEGsjjLV3t1xBl7ozNmoeca0ogjoWu1omeKgmbP+QYvNywIglAfOCT6vr6+7Nixw8oW\nGBjI4sWLr94DlYqTQ9rQYctZqx2yqSWllvz8c1lgHJ6GsXOa1aUewUFAaaWh5JClhWHA9u10SkrC\nMNV2uqR5F2sUadvVlho/NUoVmBQCt54j9ssq5ZlbWLlhQRCaFw1fZRPAQ83Jf/SsLAHQoTW7lqfC\nDvMmrPQ0yMxpRZS2xHKJZ2g4nv9zjbme/lc7YO9XlwW/cl3abv48jlVU1OzLpdXpYqu1hpZWblgQ\nhOZF4xB9qCwBcEMIMYVlPDj3OtL2ZaP//QJtOYGf8icm3/b4huvw8A/CM6QNKpUK+gTDJS0kt8Pc\nDP0XYDOg1Jk/X9cuVik3LAhCc6PxiP5lNGUmcz0atYpO/bTEbXgN4zk95TodHt99h2eYDtW81+FA\nnnkBOLY1bLgPmF5llHUUDHnnqvPnpdywIAjNjUYl+opJ4dwPWWQczkXXOZCO5ccoio6kfMQwyzke\nqam0fmYvqhPmxCOlNAZVQfWOU+PJTeoFattZQY5i6BdCSbQvVNl3JuWGBUFoyjQa0bfV8u/OhOOE\nj7QO0ZTHx1N2vAxvWqGgUNYhEO9fa47ne8wPw5CrE33UKvKHhZF+XU8pNywIQrOgwURfMZZj/NdG\nvH5JoaxPT7I7X0vr7T8wCD16dKQRR2l4mM1ry+JK8T7VCmO7Msq6/GlT9Ivji+vHUZWUG25yXO6I\nJmm2glCTBhF9xViO/033E3v+oNmwdxUGtT8aKhdOU+nCBSbbvL6i6kF5GyPGuDTKuqTidazyiaDo\n+jMYBhpc5r/QiDEpxDx32KrJu6TZCkIlDSL6xn9trBT8y2hM1pky8Rxjy2E99I6qcX2ZpxYowSPb\nE9RQNHkVnmmVm7f094WBWurKt0Q0+3KtBB8kzVYQqtIgou/1i+2+uNVpXXCGoojr8Muq7JdbrNOR\nM+EGLgy5gG9aIWqfdLwvncfY2bx5q1in41Kk/V6wQvNG0mwFoXbcLvqKSeFkViA9HDi3vG9Pzick\ncDErC6/8fMoCA7kUEWEdZ1fa4WPjuNAykTRbQagd5xuyXiVZyVn8eiqCVKxLHBdi/UuZShcu3ZwI\nKhWXdDoK4+O5pNPVFPS6jgstCkO/EAoSrGf0kmYrCJW4faafdzQPULOKycSRho4s9ESQFdOLiIxD\nltcXhwxiwOBIl/qimBSykrPIO5pHUNegGmUYhCaIWkXGSz0qS3pImq0gWOFW0VdMCkp5RW0cc6Gz\nimJnA/73WlQefchNzSfMRh0cV/hSfV+ALlHHgHcGiPA3ddSSZisI9nCb6NsS2ar8seYPEt5NsFsH\np77JSs6q4Yt+u56s5Cy3+SAIguBu3BbTtyWyVsd/yCIrOcvaqCj46PUEHD2Kj14PikOdHR3CHGaq\nSX5qfr3dQxAEobHhtpm+PZGtSn5qfuUsW1HQ7t6Nr77yD0WxTkfOgAH1slgb1DXIpj0wPvCqxxYE\nQWisuG2mb09kq1JVcH2ysqwEH8BXr8cnK6v6ZVeEuYmKdRinRhMVQRCEZobbZvoVImsvxKOJ1YBi\njv2r1Cq8Lth+MvDKzzenZl4ljjRREQRBaG64TfSri2xA5wBQ4PBbhyn8oxBDuoFdj+9Cl6ij/1v9\nObRKz+BeNccpC6y/8EtdTVQEQRCaGw1TcE0xz+YVk0LhH9bb5vXb9aT+K5WjX18gyhs6VqmsfME7\n2LzjtupYkmsvCILgMA2ashkQa3tr/PlfzhOnxJG3Usf+SD2lHdLIPgutR+mIr7KIK7n2giAIzuE2\n0beVslmQbrv88biz44jicnXNM3D6zGk+4iMSnrReDJZce0EQBOdwW/aOzZRNFcR1V9NvMMR2Mr/u\n6t+VqHTrcsrRRPNX/78SkWAd2pFce0EQBOdw20y/RsqmCsZOho7xJovpRCrkrdTavD68MJziXcUY\nBlc+HUiuvSAIgnO4baYfMTCC6CGVM/XYOOtFWjC/NkXa37Xrm+pbY0zJtRcEQXAct6Zs9vm/fpim\nJnM+rYDIWBNgqnFeaYc08rzzCEqvOYuv3vdWcu0FQRCcw22iX15azoYbN2IqMwv9mXTgRhvnhQVz\n+p3TeD/gjV+Kn8VekFhgs++t5NoLgiA4jttE/+fnfrYIPkB6mjmGXzXEcybPl9jnE1F5qDj52Uk0\nyRp8U30pji82C77bW74IgiA0L9wm+ucPWTerRoENq8yx/TYRkJ0FkdOvQedxWdnVYBhssFq4FQRB\nEK4Ot82dQ3vZaGihQPpx2P8j5Bg1RAySEI0gCIIrcZvoX/fSdai97N+u18xesgArCILgYtwm+h7e\nHozbM462t7TFw8fD6ljE5VTOo4uOot+hRzHVX7MUQRAEoRKHYvqFhYW88MILpKWloVarefHFF2nX\nrh2zZs1Cr9cTGRnJggUL8Pf3r3UcD28Pbnj9BkuRtIpqm+lr0tn1+C7LecE9g4kYHEFwt2BJwRQE\nQahHHJrpz58/n0GDBrF+/Xq+/PJL2rdvz5IlS+jfvz8bNmygX79+LF682OGbVqRZxk+NR6VW1aif\ncyHlAkf/eZRdj+1i9/TdMvMXBEGoJ+qc6RsMBn755Rf+8Y9/mC/w9MTf359t27bx8ccfAzB+/Hge\nfPBBnnrqKcfuqihoykz4GhVOHL5Q66lNqoBalfdV7KnC4KWul9aOguAIo0aNIjMzs17H/OCDD+p1\nPHfTFPyPiopi8+bNbrtfnaKfmZlJcHAwzz77LL///jvdunXj73//O+fPn0erNdfJ0Wq15ObmOnZH\nRSGmsIyAyzn73dpp+LWOS6x65zZWqr0vgAIvNRn+XiL8glvIzMxEUeSpuKmhcrM+1Cn6RqORo0eP\n8swzz9C9e3dee+01lixZUsNRe46npqaycOFCy2vvchNBJZXCqCgKR6L15Jy2n4+fdiKNrQu31vlm\nXMH+/fut/LdH9fdVQV4rNaUeDberzFH/GyNN2Xdo+v4L7sPW52TatGkuuVedoh8eHk54eDjdu3cH\nYMSIESxZsoTQ0FBycnLQarXk5OQQEhJi8/r4+Hgr59sUGQkvNlqdozyg8M2KE/y8+FiN64N7BjP0\n1aENtpi7cOFCh775tt4XwFlfT7L9GqRBGeC4/42Rpuw7uN//phDKEGzjzs9JnVNQrVZLREQE6enp\nAOzdu5fBORhDAAAgAElEQVSOHTuSmJjIunXrAFi3bh1Dhw516IbFnlU6XykKZefPUZKRRmDrIrCh\n67ohuiaRvVP1fTliFwRBaAgcmoLOmTOH2bNnYzQaadu2LS+99BImk4mZM2eydu1adDodCxYsqHsg\nRQFF4ZJaRatyE0WHf8Z4/iwAvYKh9WRzaQaqhCXt1cxvbBi81BR4qWvE9A21bEgTBEFwNw6Jfpcu\nXVi5cmUNuzNpmtUXOstysy2CX0HHeHMtnvTj5tdNqja+SkWGv5dk7wjCFXDp0iWSkpL48ccfufnm\nm1m1alWNc1asWMGyZcvcmunSHHFbsFlTZrKaBZcX2m5peN3/xND6tH/TrI2vUmHw9sDg3dCOCELj\nJTExkUOHDnH27Fm8vLwA+PLLL8nOzubChQt2k0Luuusu7rrrLne62ixxW+zB12idSubhb7uloc81\nbYmfGo9ucNOI5QtCk0BR4HwenDpj/nolqZ31MMapU6fYt28fYWFhrF+/3sreuXNnu4JfXl7uvL+C\nTdwm+sUV5XZMCvxyAc9tJXh6Blud4xkajmdIG3e5JAgtA0WBIyfgcBqknzF/PXLCOdGujzGAZcuW\nMWLECO677z4++eQTAObOncuLL77IypUrCQgI4OOPP2bp0qUMHDiQGTNmoNVqmTdvHkuXLmXQoEGW\nsY4cOcLIkSMJDQ1Fp9Mxf/58wJwqm5CQQHBwMFFRUTzxxBMYjTUz61oq7l1lNCnw+u/wyjFUKzPx\ne1uFX6qOVrGd8evZF78e1+Erf9AFoX7JzTfPzKtyPs9sd+cYmEV/8uTJJCUl8Z///Ifs7Gzmzp3L\n008/zZQpUygoKODBBx8EzJmCcXFxnDt3jmeeeQao3A9kMBgYMWIEo0ePRq/Xk5aWxvDhwwHw8PDg\n7bffJjc3l927d7N161bZL1EF94V3yoFf8+CnyrILKlR4fV+KT64Wr9AwVCqVpDgKQn1jKHLO7qIx\nkpOTyczMZNy4cXTq1Inu3buzYsUKu+dHRUUxbdo01Go1rVq1sjq2ceNGdDodTz75JN7e3rRu3Zq+\nffsC0KdPH/r164dKpSImJoapU6fyww8/OOxnc8e94Z2TF20f/MP8wSlTgUFEXxDqF42fc3YXjbFs\n2TJGjhyJRqMBICkpiaVLl9o9Pzo62u6x06dP07FjR5vHjh8/ztixY9HpdAQFBfHMM8+Qk5PjsJ/N\nHfduFe3Q2ra9vfmD46WAxqhI9osg1CchgRAaZB2eCQ0y2900xqVLl/jiiy8wmUzodOY6WiUlJeTn\n55OSkmLzmtpq0kRHR9tMIwd49NFH6dOnD6tWrcLPz4933nmHNWvWOORnS8C94Z1rguB668Vbrg82\n2yvOM0rBKEGoV1Qq6N4ResRBbKT5a/eOzu0hucoxvv76azw9PTl69CgHDx7k4MGDpKamMmjQoFpn\n+/YYM2YMWVlZvPvuu5SWlmIwGNi3bx9g7v8REBCAn58fqampUp6iGu4RfUUBFFCr4G+d4ekucGe0\n+evfOpvtl5GYviC4AJXKPDNvF2n+eiWbBq9ijGXLlvGXv/yFqKgowsLCLP8/9thjrFixwumUTI1G\nw5YtW1i/fj0RERF07tyZ7du3A7BgwQKWL19OQEAAjzzyCFOmTHFq7OaO68M71UsOq1XQJxj6BFOm\nMod0KnBp2QKpdS8IDcamTZts2pOSkkhKSqphv//++7n//vtrtXXr1o3vv/++xrWDBg3i6NGjVra5\nc+degdfNE5eLvrdJsdqJW8FZXw+yfTzQGBXXC7HUuhcEQQDcIPqeNfUegNZlCsWeCgYvNQZv1wpv\n9RIQAAFlJjRlJgzeHnauEgRBaH64PKZvtHMHjdFEbGEZMYVlde/qUxQ0peW0KTKiKS13ehegvcVh\nWTQWBKGl4fKZfqlaRamicGpvNvrf89F1DiSuXxtLXZ06Z9z1EJqRWveCIAhmXC76XuUKXz37M8d2\nVpZR7nJjOJNfus4i/L615ObXR2hGat0LgiCYcbnqFZ0yWAk+wLGdZ0nbl215XduMu15CM5dr3af7\ne3HW15N0fy9ZxBUEoUXictEvzC2xadcfNxdqqmvGXW+hmcu17rP9PM1PCCL4giC0QFwf3gnzsWn3\n6R5Mur9XnWmaEpoRBEGoP1yunJoYDbpEnZUtenAEvsMiHZtxS2hGEFosycnJdO3ataHdaFa4fKav\nUqkY8HZ/TFsyyU/NQ9fJnL1TeNHouHhLG0JBaDbYapdoj4EDB9bYXStcHW6psulfrhDbtw30reyK\nJZujBMF9KCaFtM1p6H/Ro+ujI25UnNPtSOtjjIp2iTExMaxfv56JEyc6db1w9bglMG4v0yawxPmN\nVoIgOIdiUlh12ypW3LqCbc9tY8WtK1h12yoUk+O/e/UxBthulwjw7bff0r17dwICAoiOjubNN98E\n4IcffrCqq//aa68RFxdHQEAAPXr0YO3atU7dX3CT6NvLtAkuNTm2I1cQhCsmbXMax9Yfs7IdW3+M\ntM1pbh0DbLdLBHj44Yf597//TUFBAYcPH2bYsGGWa6rW1Y+Li2Pnzp0UFBTwwgsvcM8993D27Nka\n9xHs43rRVxRQFC7ZeQysCPPYuu5qSi8IgmBG/4vetv2AbburxqitXaK3tzdHjhyhsLCQwMBArrnm\nGptjTJw4kfDwcMBcobNTp06WOvqCY7hc9ANLTcQajPjU8hhYI/xzufRCbGEZ4cVGx2v0CIJQA10f\nnW37tbbtrhqjtnaJa9as4ZtvvqFdu3YMHTqUPXv22B3j2muvJTg4mODgYI4cOSKtEJ3E5Qu5rcrr\nFmrvchOa0nJLzr5UxRSE+iNuVBxdxnWxCs90GdeFuFFxbhvDVrvE0tJS8vLySElJ4brrrmPt2rWU\nl5fz3nvvMWnSJDIyMqzGyMjIYOrUqWzbto0BAwYAcO2116LIZNAp3Nsj1w7BpSaCS02WQmq1lV6Q\ntE1BcA6VWsXkryebM28O6NFd63zmzdWOUdEu8eDBg1ZpmpMmTeLjjz/m+uuvZ8yYMQQEBODv74+H\nR83J3cWLF1Gr1Wi1WkwmE0uXLuXw4cMOvwfBTIOIfqGHCqOHiuBS27N5qYopCPWLSq2i0+hOdBrd\nqUHGqNousSqPPfYYjz76KIcPH+bxxx/HZDLRpUsXS6y/Kl27dmXmzJn0798fDw8P7rvvPgYOHHjF\n76el0iCi72VSKLIj4L5GhWxfDym9IAjNCGfbJVYwZMgQqzDPSy+9xEsvvVTv/rUkXC76ZTa03UcB\nSm231Cr2VFlKL0hPW0EQhPrF5aJfYmdG76NAkRr8qmi/1Wy+oUsvXG6k7ldmvcgsCILQlHFI9G++\n+WY0Gg1qtRpPT08+//xz8vPzmTVrFnq9nsjISBYsWIC/v3+Na421CKWnAukaT3zLaVyz+SrdujRl\n5raO0khdEITmgENBcpVKxUcffcTq1av5/PPPAViyZAn9+/dnw4YN9OvXj8WLFzt9c28FUKkaXY37\n2lJGBUEQmjIOr4xWz4Xdtm0b48aNA2D8+PFs3brV5nWedaTQNsbm5NJIXRCE5orDMf2pU6eiVqtJ\nSkpi4sSJnD9/Hq1WC4BWqyU3N9fmdcY6/qw0xjRMSRkVBKG54pDof/rpp7Rp04bc3FweeeQRYmNj\nrYogATVeV1CqVlHkocLPxs7cIg9Vo0zDlG5dgiA0VxwS/TZtzHXwQ0JCGDZsGIcPHyY0NJScnBy0\nWi05OTmEhITYvDb12DGeX/ovNGU1Rd/gad6k5WkyPxGUqlWNJq6PouBtUth36BfyVixuXL45wf79\n+1m4cGFDu3FFNGXfoen7L7gPW5+TadOmueRedYp+cXExiqLg5+dHUVERu3bt4tFHHyUxMZF169bx\n0EMPsW7dOoYOHWrz+vj4eB5/aCqxBmONY9WfABpjhkzpwoU87KJvvjtYuHChyz48rqYp+w7u9/+D\nDz5w272E+sWdn5M6Rf/8+fM8+eSTqFQqjEYjt956KwkJCXTv3p2ZM2eydu1adDodCxYscPrm1UM+\ndouqXc6Zl41agtB0iY2N5dy5c3h6eqIoCiqVigceeIB33323oV1rUdQp+m3btuXLL7+sYQ8MDHQ4\nTdO33HGHahRVq5IzX0FjfCIQhEaNyQSbN8Mvv0CfPjBqFKidXKO6yjFUKhXffPON3aiAo1T8wRCu\nDPc0UcHxVMfqGTKSMy8IV4nJBLfdBrfeCs89Z/56221muzvHoGbqN8C8efO49957La9PnTqFWq3G\ndHnsoUOH8uyzzzJw4EBat27NH3/8gV6vZ/z48YSGhtK5c2erCei8efNISkpiypQpBAQEcP3113Po\n0CHLcb1ezx133EFYWBgdO3bkvffec+o9NHXc0kQlvLjmVL9MBQXVBN5WhozkzAvCVbJ5M6xfb21b\nv95sd+cYtVBXNuBnn33G4sWLKSwsJCYmhilTphATE0NWVharV6/m6aefZvv27VVcW8/kyZO5cOEC\nd955JxMmTKC8vBxFURg7dizXXnster2e//73v7zzzjts2bKlXt5HU8Dlom+viYqXArk+HqT7e3HW\n15N0fy+bIZtac+alpaIg1M0vv9i2Hzjg3jGACRMmEBISQnBwMCEhISxZssSh6x544AHi4+NRq9Vk\nZWWxa9cuXnvtNby8vOjduzcPP/wwy5Yts5x/3XXXcdttt+Hh4cGMGTMoKSlhz5497N+/n5ycHJ55\n5hk8PDyIjY3l4YcfZuXKlU69j6ZMgzZR8S2HbL/ai6rZzZn3VEmsXxAcoU8f2/Zrr3XvGGAz02/e\nvHl1XhcdHW3595kzZwgJCcHPz89ia9euHT///LPN81UqFVFRUZw5cwaAzMxMS4q5oiiYTCYGDx7s\n1PtoyjRw5yxz0/RaRdpOmWVpqSgIDjJqFIwbZx2eGTfObHfnGNiO6bdu3ZqioiLLa72+ZrP1quGe\nyMhIcnNzuXjxIq1btwbMrRSrNmg5ffq01T3//PNPIiMj8fDwoEOHDhw7Vtn2saXh8vBOeS16Hl5c\n7ljD88tllqsWZpNYvyA4iFoNX38N33wDL79s/vr1185l79THGHa45ppr2LFjB6dPnyY/P5/58+fX\nen7btm1JSEhgzpw5lJSUcOjQIZYsWWK1GPzzzz9beu6+9dZb+Pj40L9/f/r164e/vz+vv/46ly5d\nory8nCNHjvDTTz9d9ftoKrhc9Evr6KEZUGaiTbHR6Xi81McRBCdQq2H0aHjmGfPXKxHrehhj7Nix\nBAQEWP6fOHEiN910E5MmTaJXr1707duXsWPHWl1jKz3z888/548//iAyMpKJEyfy0ksvWYWNxo8f\nz6pVqwgODmb58uV8/fXXeHh4oFar2bhxI7/++ivt27cnLCyM//mf/6GgoMD570cTxeXhndpm+hWE\nF5fja1ScisdLfRxBaFr88ccfdo+9//77vP/++5bXDz30kOXftir4RkZGsmHDBrvj+fj4WC3sViUi\nIsJmD96WgstFX+NguCWgokNVKwddkpaKgiAITtPAC7nWBJaaMLRy4oKGbqkoCILQxGhUoi8IgnC1\nvPDCCw3tQqOmUQXA870blTuCIAjNjgZT2dJqofeKkgyyu1YQBMF1uDy8Y/CyvbB6prWnJd++2ANC\nLpVb1dyX3bWCIAj1j8tn+kWe5tTKqhR4qS8vwJo3XKFSEWC0XVtfEARBqD9cv5DrQGplbbtrJTNH\nEASh/nBPTN9GGYWqyO5aQRCaAv7+/qSnpze0G1eF+xZyaymDXLG7tiqyu1YQmhexsbGEh4dTXFxs\nsS1ZssTpTlrbt29HrVbzf//3f/XtYp0UFhYSGxvr9vvWJ+5R1cstD2MLywgvNhJbWGZdaO1yCKiu\n2vqCIFwhJgW2pMMb+81fTVeQHXeVY6hUKkwmE2+//XYNuzMsW7aMnj172i2z4ArKy53o+drIcYvo\na0rLbZdBLq3yjawjBCQIwhViUuD+b+GujTB/r/nr/d86J9r1MQYwa9Ys3njjjSsucFZUVMSXX37J\nhx9+SEZGBr9Uae5S0Wbxk08+ISYmBq1Wy4cffshPP/1E7969CQkJ4YknnrAa76OPPqJbt26EhoZy\nyy23kJGRYTmmVqtZuHAhnTt3pnPnzhbbyZMnAbh06RIzZ84kNjaW4OBgBg8eTElJCQCTJk1Cp9MR\nHBxMYmIiv/322xW9X1fgFtEPLLWdhWPPLghCPfLfU7C5WrGzzX+Y7e4cA7j++utJTEy84tDMmjVr\nCA8PZ8CAAYwZM4alS5fWOGffvn2kpaXx+eef8+STT/KPf/yDrVu3cvjwYb744gt+/PFHwNzQZf78\n+axdu5bs7GwGDRrEnXfeaTXWunXr2Ldvn0W0qz6VzJw5kwMHDrBnzx5yc3N5/fXXUV+uPDp69GhO\nnDjBuXPn6NOnD3ffffcVvV9XIEFzQWjuHMq2bU/Jce8Yl5k3bx7vv/8+58+fd/raZcuWMWnSJACS\nkpJYuXKlVehFpVLx/PPP4+3tzYgRI9BoNNx9992EhoYSGRnJoEGDOHC5xeOiRYuYM2cOnTt3Rq1W\nM3v2bH799VerBixPP/00QUFBtGplLgpW0QRGURQ+/vhj3n33XSIiIlCpVPTv3x8vLy/A3N7Rz88P\nLy8vnn/+eQ4ePEhhYaHT79cVuEX07ZVXkLILguAGerWxbe+pde8Yl+nevTtjxozh1Vdfdeq606dP\ns23bNpKSkgAYNWoUxcXFfPPNN1bnhYWFWf7t6+tb47XBYADM4aDp06cTEhJCSEgIoaGhqFQqMjMz\nLee3bdvWpi85OTmUlJTQoUOHGsdMJhOzZ88mLi6OoKAg2rdvj0qlIifH+T+QrsAtqmvw9rCUWaig\nwFMlbQ0FwR0Mbwej2lvbRrU32905RhXmzp3Lv//9byuBrYtPP/0URVEYPXo0Op2O9u3bU1JSYjPE\n4wjR0dEsWrSI3NxccnNzuXDhAgaDgf79+1vOsbfIrNVq8fHx4cSJEzWOrVixgg0bNrB161by8vJI\nT09HURSbrSIbAvdU2VSpyAjwltr3gtAQqFWwdLQ5/p6SY56dD29ntrtzjCp07NiRyZMn8+6779Kr\nVy+Hrlm2bBlz587lkUcesdj27t1LUlISFy5cAGz34LXHX//6V5577jl69+5Nt27dyM/PZ8uWLdxx\nxx11XqtSqXjwwQeZMWMGy5YtIzw8nH379tGnTx8KCwtp1aoVwcHBXLx4kTlz5jidoeRK3Bdfkewc\nQWg41CoYEQszrjd/vRKxvsoxqgvf888/T1FRkZW9R48efP755zWu3bt3LxkZGUybNo2wsDDL/2PH\njqVTp06Wa6rfo7bXEyZMYPbs2UyZMoWgoCB69erF5s2b7V5b3bZgwQJ69uxJ3759CQ0NZfbs2SiK\nwn333UdMTAxRUVH06NGDhIQER749bsO99fQVRWb7gtBCqUh1rKBt27YUFRVZ2Q4fPmzz2htuuKHG\nuRWkpKRY/l09n75qCiZQI7f/7rvvtptZYys3v6rNx8eHN998kzfffNPqnFatWrF27Vor2z333GPz\nHg2B+0T/8gat6j1tZROWIAiC+3BbeEdTZrK9QUsqaQqCILgNt4l+bZU0BUEQBPfgNtGXSpqCIAgN\nj9tEXyppCoIgNDwOL+SaTCamTJlCeHg47733Hvn5+cyaNQu9Xk9kZCQLFizA39/f/gAONFMRBEEQ\nXIvD0+zPPvvMasvxkiVL6N+/Pxs2bKBfv34sXry47kEkV18QBKFBcUj0s7Ky+PHHH5k4caLFtm3b\nNsaNGwfA+PHj2bp1q2s8FARBEOoNh0T/9ddfZ+bMmVa28+fPo9Waiy1ptVpyc3Pr3ztBEAQX8uqr\nrzJ16tSGdsOt1BnT37FjB6GhocTHx7N//36759mrLZGamsrChQuv3MMGZv/+/eJ/A9GUfYem778r\n+OSTT3jzzTc5ceIEgYGBTJgwgVdffZXAwMAG8WfOnDkNct/q2PqcTJs2zSX3qlP0Dxw4wPbt2/nx\nxx8pKSmxFBDSarXk5ORYvoaEhNi8Pj4+3mXOu4OFCxeK/w1EU/Yd3O//Bx98YPeYoigY09Io1+vx\n0OnwjItzugjY1Y7xxhtvsGDBApYtW8awYcPIzMzk0UcfZcSIEezatQtPT/dWhWlMuPNzUmd4Z/r0\n6WzZsoXNmzfz+uuvc8MNN/Dqq6+SmJjIunXrAHN3GWebGwuC4B4URaFo1SqKVqygZNs2ilasoGjV\nKqcqUl7tGIWFhcydO5f333+fESNG4OHhQUxMDF988QXp6el89tlnmEwmXnnlFeLi4ggMDKRv376W\n0supqamMHDmS0NBQunbtyurVqy1jf/vtt/Tp04fAwEDatWvHvHnzLMcqWiguW7aMdu3aERYWxiuv\nvGI5Pm/ePO69917L68bc5rC+uOIk+Yceeojdu3czduxY9u7dy0MPPVSffgmCUE8Y09IwHjtmbTt2\nDGNamtvG2LVrFyUlJdx2221W9tatWzN69Gi2bNnCm2++yapVq9i8eTP5+fl89NFH+Pn5UVRUxMiR\nI7nnnnvIyclh5cqVPPbYY6SmpgKg0Wj49NNPyc/P55tvvuHDDz9k/fr1VvfZuXMnx48f5/vvv+fF\nF1/kWJX3UvVppTG3OawvnBL9vn378t577wEQGBjI4sWL2bBhA//6178ICAhwiYOCIFwd5Xq9U3ZX\njFERCq7oIVsVnU5HdnY2ixcv5uWXXyYuLg6Anj17EhwczMaNG2nfvj333XcfKpWK3r17c/vtt1tm\n+4MHD6Z79+6AuTTzlClT+OGHHyzjq1Qq5s6di7e3N7169aJ3794cPHjQpp+Nuc1hfeH67bCKgqa0\nnDZFRjSl5dBIuscIQkvBQ6dzyu6KMSrW/kymmgUW9Xo9Wq2WP//8k44dO9Y4furUKfbs2WNpaxgc\nHMyKFSs4e/YsYK61P2zYMMLCwggKCmLRokU1WhOGh4db/u3n52dpmViVxt7msL5wuegHlpqILSwj\nvNhIbGEZMYVlIvyC4EY84+Lw7NLF2talC56XZ9TuGGPAgAG0atWKr776yspuMBjYtGkTN910E9HR\n0TbbD0ZHR5OYmGjV1rCgoID3338fMNfEnzBhApmZmeTl5fHII49cUWvC5cuXN+o2h/WFy5fLW5Vb\nf8MqyilLf1xBcA8qlQq/yZOvKvPmascICAjg+eef54knnsDf35/hw4fz559/8thjjxETE8O9995L\nbm4uzz33HF27diUuLo6UlBTatm3LmDFjmDNnDp999hlTpkxBURQOHjyIv78/Xbp0wWAwEBwcjJeX\nF/v27WPFihXcfPPNlns7KtoGg6FRtzmsLxqk2pmUUxYE96JSqfDq1AmfwYPx6tTpisTsaseYNWsW\nr7zyCv/7v/9LYGAgAwYMoF27dnz//fd4eXkxY8YMJk2axMiRIwkMDOThhx+muLgYjUbDd999x8qV\nK4mMjCQyMpLZs2dTUlICmFNjn3vuOQIDA3n55ZeZPHlyDb9re11BY29zWF80SGKslFMWhJbJgw8+\nyIMPPmjzmFqt5umnn+bpp5+ucaxTp05s3LjR5nW33347t99+u81j7dq1q9H2sGrJmBdeeMHy79at\nWzfqNof1hctn+iUe1gIv5ZQFQRAaDpfP9PO91aT7e0k5ZUEQhEaA68M7l8spG7xdfidBEAShDiTO\nIgiC0IIQ0RcEQWhBiOgLgiC0IET0BUEQWhAi+oIgCC0IEX1BEIQ6WLFiBaNGjWpoN+oFEX1BENxC\ncnIyN954I0FBQWi1WgYNGsTPP//s1BgPPPAAXl5elgqb7uKuu+5i8+bNbr2nqxDRF4SWgAn4Fnj5\n8teaFY5dOkZhYSFjx45l+vTpXLhwgczMTF544QVatWrl8BhFRUV89dVXdOvWjc8++8xJ56+c6mUc\nmjoi+oLQ3DEBtwG3As9d/nobzgn/VY7x+++/o1KpmDRpEiqVilatWnHTTTfRo0cPh11Ys2YN7du3\n5+9//zuffPKJ1bF58+YxadIk7r33XgICAujduzfHjx9n/vz5hIeHExsby/fff285v6CggIcffpjI\nyEiio6N57rnnLNU4ly5dysCBA5kxYwZarZZ58+axdOlSBg0aZLn+yJEjlvaNOp2O+fPnA7B//34S\nEhIIDg4mKiqKJ554AqPR6PB7dAci+oLQ3NkMrK9mW3/Z7qYxOnfujIeHBw888ACbN28mLy/PiZub\nWbp0KZMnT2bs2LGkpaVx4MABq+MbN27k/vvvJy8vj2uuuYYRI0agKApnzpzh2WefZerUqZZz77//\nfry9vTl58iQHDhxgy5YtLF682HJ87969xMXFce7cOZ555hmgsjqnwWBgxIgRjB49Gr1eT1paGsOH\nDwfAw8ODt99+m9zcXHbv3s3WrVtZuHCh0+/VlYjoC0Jz5xc79gN27C4Yw9/fn+TkZNRqNVOnTiUs\nLIzx48eTnZ3t0PUZGRls376dpKQk/P39GTVqFMuWLbM6Z9CgQdx0002o1WqSkpLIzc1l9uzZeHh4\nMGXKFE6dOkVBQQFnz55l06ZNvPXWW/j4+KDVannyySf5/PPPLWNFRUUxbdo01Gp1jRDUxo0b0el0\nPPnkk3h7e9O6dWv69u0LQJ8+fejXrx8qlYqYmBimTp1q1bqxMSCiLwjNnT527Ne6d4wuXbrw0Ucf\nkZGRweHDhzlz5gxPPvmkQ9d++umn9OjRg06dOgFwxx13sHz5cqt4e9WWiL6+vmi1Wsvs3NfXF0VR\nMBgMZGRkUFZWhk6ns7Rf/Otf/2rVFjE6OtquL6dPn7bZ1hHg+PHjjB07Fp1OR1BQEM8880yja7co\noi8IzZ1RwLhqtnGX7e4cowqdO3fmgQce4PDhww6d/+mnn3L8+HF0Op1lln3+/Hm+/fZbp+8dHR2N\nj48P58+ft7RfzMvL49ChQ5ZzamsQY6+tI8Cjjz5K165dOXHiBHl5efzjH/9odO0WRfQFobmjBr4G\nvlDUQbAAAAkESURBVMGcefPN5dfO/PZf5RjHjh3jzTffJDMzEzDPlj///HMGDBhQ57W7d+/m5MmT\n7N+/n4MHD3Lw4EGOHDnCnXfeWSPE4wgRERGMHDmSp556isLCQhRF4eTJk+zYscOh68eMGUNWVhbv\nvvsupaWlGAwG9u3bB5izlAICAvDz8yM1NZUPPvjAaf9cjYi+ILQE1MBo4JnLX6/kN/8qxvD392fv\n3r3ccMMN+Pv7k5CQQK9evViwYAFgzuEPCAiwee2yZcuYMGEC3bp1IywszPL/9OnT2bhxo8OLwlVn\n78uWLaO0tJRu3boREhJCUlISWVlZDo2j0WjYsmUL69evJyIigs6dO7N9+3YAFixYwPLlywkICOCR\nRx5hypQpDo3pTlQpKSkuffZYuHAh06ZNc+UtXIr433A0Zd/B/f737Nmz0YUShLpRqVSkpKS47X4y\n0xcEQWhBiOgLgiC0IET0BUEQWhAi+oIgCC0IEX1BEIQWhIi+IAhCC8KzoR0QBKF+iIqKqnUnqdA4\niYqKcuv96hT90tJSHnjgAcrKyigrK2Po0KFMnz6d/Px8Zs2ahV6vJzIykgULFuDv7+8OnwVBsEF9\nN/mQfRLNkzrDO97e3ixZsoTVq1ezZs0a9u3bx4EDB1iyZAn9+/dnw4YN9OvXz6osqSAIgtA4cSim\n7+vrC5hn/SaTiYCAALZt28a4ceYKTOPHj2fr1q2u81IQBEGoFxyK6ZtMJiZPnszp06eZNGkSHTt2\n5Pz582i1WgC0Wi25ubkudVQQBEG4ehwSfbVazerVqzEYDDzyyCPs37+/xoKRLCAJgiA0fpwuuPbh\nhx/i4+PDV199xUcffYRWqyUnJ4e//OUvrF9fvZ+aIAiC0JioM6Z/4cIFCgsLAbh06RK7d+8mPj6e\nxMRE1q1bB8C6desYOnSoaz0VBEEQrpo6wzvZ2dk8++yzKIqCyWRi7Nix9O/fn65duzJz5kzWrl2L\nTqez1MUWBEEQGi8ur6cvCIIgNB5cVoYhOTmZsWPHMmbMGJYsWeKq2zjE888/z5AhQ7j99tsttvz8\nfKZOncrYsWN55JFHLCEsgMWLF3Prrbcybtw4du3aZbH/9ttv3H777YwZM4bXXnvNYi8rK2PWrFnc\neuut3H333ej1+nrzPSsri4ceeogJEyZw2223sXz58iblf2lpKXfddRdJSUlMmDCBd955p0n5X4HJ\nZGLSpEk88cQTTc7/m2++mYkTJ5KUlMSdd97Z5PwvLCxkxowZjBs3jgkTJnDo0KEm4396ejpJSUlM\nmjSJpKQkBgwYwPLlyxvUf5eIvslk4pVXXmHRokV8/fXXbNq0iZMnT7riVg4xYcIEFi1aZGWzt7ns\nxIkT/Oc//2HdunV88MEHvPzyy5ZuRC+//DIvvvgiGzduJD09nZ07dwLw1VdfERgYyDfffMO9997L\nm2++WW++e3p6MmvWLNauXcvy5ctZuXIlJ0+ebDL+O7u5r7H5X8Fnn31Ghw4dLK+bkv8qlYqPPvqI\n1atX8/nnnzc5/+fPn8+gQYNYv349X375Je3bt28y/sfGxrJ69Wq++OILVq1aha+vL8OHD29Q/10i\n+ikpKcTExBAZGYmXlxejRo1i27ZtrriVQ/Tp06dG/017m8u2bdvGqFGj8PT0JCoqipiYGFJSUsjJ\nyeHixYv06NEDgHHjxlldUzHWiBEj2Lt3b735rtVqiY+PB8DPz4/27dtz9uzZJuM/OLe5rzH6n5WV\nxY8//sjEiRMttqbkP1CjjWJT8d9gMPDLL79w2223AeZJkL+/f5Pxvyp79uwhOjqaiIiIBvXfJaJ/\n7tw5IiIiLK/Dw8M5d+6cK251xeTm5trcXGbP97NnzxIeHl7DDnD27FnLNR4eHvj7+5Ofn1/vPmdm\nZnLs2DF69+5td3NcY/TfZDKRlJTE0KFD6du3b62b+xqj/6+//jozZ860sjUl/wGmTp3KlClTWLNm\nTZPyPzMzk+DgYJ599lkmTZrE3LlzKS4ubjL+V2Xz5s2MHj0aaNjvv5RWvkx9bi5zRXPqoqIiZsyY\nwd///nf8/Pxcujmuvv2v2Nz3/fff8/PPP7t8c199+r9jxw5CQ0MtT1v2aKz+A3z66ad88cUXLFy4\nkJUrV/Lzzz83me+/0Wjk6NGj3HnnnXzxxRf4+vqyZMmSJuN/BWVlZWzfvp2RI0cCNf11p/8uEf2w\nsDCysrIsr8+ePUtYWJgrbnXFhIaGkpOTA0BOTg4hISGAfd/Dw8Ptvqeqx8rLy7l48SKBgYH15qvR\naGTGjBmMHTuWYcOGNTn/K9BoNAwaNIgjR440Gf8PHDjA9u3bGTVqFH/729/Yu3cvc+bMsWxKbOz+\nA7Rp0waAkJAQhg0bxuHDh5vM9z88PJzw8HC6d+8OmMMXR48ebTL+V5CcnEy3bt0IDg4GGvb31yWi\n36NHDzIyMjhz5gxlZWVs3ry5wTdvKYpi9RfQ3uayoUOHsnnzZsrKyvjzzz/JyMigZ8+eaLVa/P39\nSUlJQVEU1q9fb7kmMTHRshv5u+++o1+/fvXq+/PPP0+HDh245557mpz/zm7ua2z+T58+nS1btrB5\n82Zef/11brjhBl599dUm439xcTFFRUWA+Wlx165ddOrUqcn4r9VqiYiIID09HYC9e/fSsWPHJuN/\nBZs2beKWW26xvG5I/12Wp5+cnMxrr72GyWTitttu4+GHH3bFbRzib3/7Gz/99BN5eXmEhoYybdo0\nhg0bxsyZMzl79qxlc1nFYu/ixYv56quv8PT0ZPbs2ST8//buEEVDIADD8DvZ4gGsRi/wg9ngJQxm\nMSoIBpvVG3gJD2EwCWr2AiZBRDZsWdi6sMh8zwk+JrxlGObzAWCeZ6qq4rouwjCkKArg+4KyLEuW\nZcF1Xdq2/bOPEaZpIkkSfN/HGIMxhizLCILgFfu3bfv1uC9JEo7jeMX+n8ZxpO97uq57zf5938nz\nHGMM930TxzFpmr5mP8C6rtR1zX3feJ5H0zQ8z/Oa/ed5EkURwzDgOA7Av56/HmeJiFhEF7kiIhZR\n9EVELKLoi4hYRNEXEbGIoi8iYhFFX0TEIoq+iIhFFH0REYt8AcG4vfmx6BkvAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "fig.set_facecolor('lightgray')\n", "ax.set_axis_bgcolor('lightgray')\n", "\n", "ax.set_prop_cycle('color', ['pink', 'purple', 'red', 'deeppink', 'lightcoral', 'magenta' ])\n", "\n", "ax.grid(linestyle='-')\n", "ax.spines['left'].set_visible(False)\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['bottom'].set_visible(False)\n", "\n", "plt.tick_params(\n", " which='major', # both major and minor ticks are affected\n", " top='off', # ticks along the top edge are off\n", " left='off', # ticks along the right edge are off\n", " right='off', # ticks along the right edge are off\n", " bottom='off', # ticks along the bottom edge are on\n", " labelright='off',\n", " labelleft='on',\n", " labeltop='off', # top label is on\n", " labelbottom='on') # bottom label is on\n", "\n", "for continent, selection in df.groupby(\"Continent\"):\n", " ax.plot(selection['GDP_per_capita'], selection['life_expectancy'], label=continent, marker='o', linestyle='', markeredgewidth=0)\n", " \n", "ax.legend(loc='lower right')\n", "ax.set_ylim((30, 85))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }