{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read it in the data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CountryContinentGDP_per_capitalife_expectancyPopulation
0AfghanistanAsia66354.86322856302
1AlbaniaEurope419574.2003071856
2AlgeriaAfrica509868.96330533827
3AngolaAfrica244645.23413926373
4Antigua and BarbudaN. America1273873.54477656
\n", "
" ], "text/plain": [ " Country Continent GDP_per_capita life_expectancy \\\n", "0 Afghanistan Asia 663 54.863 \n", "1 Albania Europe 4195 74.200 \n", "2 Algeria Africa 5098 68.963 \n", "3 Angola Africa 2446 45.234 \n", "4 Antigua and Barbuda N. America 12738 73.544 \n", "\n", " Population \n", "0 22856302 \n", "1 3071856 \n", "2 30533827 \n", "3 13926373 \n", "4 77656 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"country-gdp-2014.csv\")\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Change the background color" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can change the background color with `ax.set_axis_bgcolor`, but it will only change the area **inside of the plot**. This is useful when you have multiple plots in the same figure (a.k.a. multiple charts in the same image) but most of the time is just a headache." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAELCAYAAAAlTtoUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XPV97/H3V9JotGskI0vYquVaDibkAQIhkBRSkgDZ\nWkKeextabheW29y0TW7S9rbF5Glvm/ZpE5InbZOmadM05bo0aUNWliyAIaSFlCSAAy6Lie3YxiYS\nBlnWPpJG3/vHOTMayRrpjDyr/Hk9jx/PnJlzzndG0vme327ujoiISBQ15Q5ARESqh5KGiIhEpqQh\nIiKRKWmIiEhkShoiIhKZkoaIiERWV+4AVmJm6hMsIrIK7m6FPmbFJw2AGz/86XKHsGoP3nsnl1xx\nZbnDWLVqjr+aYwfFX27VHv/N299dlOOqekpERCJT0hARkciUNIps05Yzyh3CSanm+Ks5dlD85Vbt\n8ReLkkaRberfVu4QTko1x1/NsYPiL7dqj79YlDRERCSyqug9JbKYAX29PbS3NnN8dJwDhwfKHZLI\nKaEkScPMbgJ+BUgBu4HrgWbgC0AfcAC42t2PlyIeqX59vT1s7dsIQFdnAkCJQ6QEil49ZWZ9wLuA\n89z9HIJEdQ2wHdjp7tuA+4Gbih2LrB3trc3LPheR4ihFm8YIMA00m1kd0AgcAa4CdoTv2QG8owSx\nyBpxfHQ853MDNvf2cO7L+9nc21PiyETWtqJXT7n7MTP7GHAImADucfedZtbt7oPhewbMbH2xY5G1\nI10VtbVvI9h8omhvbaaxIU5LUyNQuKortaGIBIqeNMxsC/A7BG0Xx4EvmtkvA4vnlNIcU3KCSBdr\nh1edHXSPHB4Zo7urg2RyhuGRMWC+6irXsaKcQ20oIoFSNIRfADzk7kMAZvZV4GeAwXRpw8x6gBdy\nHeDBe+/MPN605Qz1n64ChbozX+5inWhtJtHWQjweo7mxgfHJKQCSyRni8VjmGOmqq1zHipIQ1IYi\nle7Qvj0c2v9s0c9TiqSxB/gjM2sAksBlwA+AMeA64GbgWuD2XAeo5knD1rLFieFgeAEuZBXRchfr\nhoY4nYnW4HG8nunpWSAobYxNTDI5lVyQsHIdK0pCOD46nvkc6eeVSNVop65N/dsW3FA/dN9dRTlP\nKdo0HjezfwYeJehyuwv4B6AVuM3MbgAOAlcXOxZZnVwXosV36D1dnZlEkauKKF/LXawnp5IMDY8S\nj8cYGh5leHSMo0PDOS+Wi481MjrO5t4eujoTJNpaMrE2NsQ59+X9C46TnXiiXIzLdfFWNZoUW0nG\nabj7R4GPLto8BFxeivPLycl1IVqcCLrXJYjFYsTjMWK1dRCff221d+bLXawXH3PvgSMcPDzA5t4e\nLr/kVeCw9+CRnBd+IPO5ADAYG5+kpamRlqbGEy66+Vx8y3XxVjWaFJtGhOfhVC3657oQLb5zb2ps\noGf9OlKpFFPJaY4ODC975x9FvivI9PX28Kqzt2WqrRJtLcDSF/5zX96feTw8EpRSgExpCVZ/0S3X\nxbtaqtFOFWvxmqGkkYdTreif/oXvWpcg0TpffZO+EGXfuTc2xOnu6iCVSlFbW8v09CyHB47y+NP7\nTiqG5b7z9tbmTEzp58CCRvB4PJbzgp3rAluIi265Lt75VqNJca3Fa4aSRh5Wc/dYbXca2fFmGrOz\nOkNnV/fA/B/AuS/vJ5mcYSo5DcBMarYgF8rlvvNcF+ZkcobmxobM46XisOwHfuLnOtmf12ov3oX4\nfan037FTyVqsLlTSyLLSH+xq7h6r7U4jO97sxux09U2u2I+Pjmfu+uPxGPsOPl+Qz7ncd77chXnr\n5o2ZZJBu58h+X+ZzLjE6qFA/n9Ucp9p+X9ayQiTwtVhdqKSRZaU/2NXcPZbzTiPfX3ojaBhOJ4tc\n4x2Wsvi7WepCvRorfedLHffA4YEF2zcv8XOt1DvASo3rVFSIBL4WqwuVNLJE+YPN94dezjuNfH/p\n+3p7SLS10NzYQHNjA0PDo+w7+PwJ4x1yWelCfbKJY7WW+rlW6h1gpcaVVm3VrSejUAl8rX1HShpZ\nivEHW847jXx/6bMbluPxGMOjYzy866mSnLuYlvq5VuodYKXGlXYqVZ9VegIvFyUNFt49LTWS+GTu\nrvLtMlooBpkeTel2iZV+6dN/JOnEsffgkVWfv5L+4HJdiCv1YlepcUFl3QwUW6Un8HJR0mDh3RPA\nwNGhBb8gK91dLZdUynVn1tfbQ0tTY6ZdYmxiMnL1UiFGPVfaH1y5z79WVNLNQCno9+ZEp0zSWO4C\nl75bSrS10JFopburA1h44cu2+PlKYwnSEm0tnHPmlgWvF0v6vOlSw+RUMtJ+hRz1XK4/uFOp3r3U\nKu1mQEqvKpPGai4Ky13gjo+O87LNvWzoXkdjQ5zGeD0XhFNtHzg8sOLd1XJJZSQ8dkeilcZ4Pc8P\nvrSgVFOsP75S3BFWalXFqVTvXg76Lk9tVZk08r0oLO5KOjwytuACd/DwABecvY14fYxUao6p5PSC\nkcQr3V0td4FODwOI1dUu2Cc7caT3zZ4l9mQTSSnuCCu1qqJSk5nIWlCVSSPfi8LirqQw38hrwEXn\nnUVnohV3p7a2loZ4PUPDo5lZUNMX3lxTYix3gc7ukdSZaJ0f9xCORM5+X19vT5C84jGSyZkFx14s\nSmmr2HeElVpVUc5kpqoxWeuqMmnke1FYqitp9vTe/X0bAJiemcVnZhkaHuGR3XsAIpdoFm/PNW/T\n8OhYJmFllzaOj46ztW9jZqK95sYGtvZtzHm+SqmCqcSLYjmTWaX8XESKpSqTRr4XheW6kra3Nmfm\nKppKTjM+OcVDj/wXBw4PLJgFNf3e5aTXqe7fvJFEazC7avaEeo/s3nNCrNmfYevmjQteW66/bqGr\nYJZbUCnqhbeS7rLLdW5VjclaV5VJA1bu8rp4296DR3KuybB4zqT0FBi5ZnddSrqa65wzt9AQr6e2\ntpZUKgWQc96mxc/3HjhCorUlUz2178CRnFNxpBNhernTsYnJ1XyNGcstqBT1jll32ZXbziNSKFWb\nNNLSF+v+vg0LVoqDoPonfVHdd/D5JUc3L1VqyUyB4dDS3JhzAr7FM8L2922guamR+lgdqdQcMD9N\nd5SLx+JY0p8BTrwIHzg8QE9XZ6Zxv6Wpkc29Pau+SC++I16/LsHEZDLn61GOcSreZVdqO49IoVR9\n0ki3SWQ3cm/t20hTY5zO9jbq64OP2N+34YRBe2nZVTHpO3sIxlXUx+qYmZ094aK8OFmlV6tLpVIQ\nqyM1N8ex4VEGXzx2wrTby8l+30rVY5NTSQaPHsv5ej4W3yG/8NLwgsWIoiQ93WUHlChkLSt60jCz\nM4AvEPQVMmAL8EfAreH2PuAAcLW7H8/3+NltEgAdYUNy+nF6FblYXV1mYN3i+npgQa+lwwNHgflS\nQron09a+jQv2yU5W0zOzzMzO8vzgS3QmWhk6PsojT5zYhpFPvf9KF+FCXqRzlbjyuWPWXbbI2lf0\npOHuzwLnAZhZDXAY+CqwHdjp7h8xsxuBm8JteVncJpGuokq0tcyvIjczS32sjvpYjAvO3pYZuDc8\nMpZpF+hMtNLW0kwsVktrUyNP7z9ENx3U1tTSkWhlQ/c6RsYmAHjZ5t5MySLdfsHEJM/sO7TijLD5\n1PtHnRa8UBfpKNOO53sMEVlbSl09dTmwz92fM7OrgEvD7TuAB1hF0liqHeCCcI3oqeQ009OzzKRm\nwYNxEg3xemZTKWZn5xup4/EYbS3NNDcFpZUNPadlhlB0JloAYzZs1O49vYv6WPC1NcTraWpswAym\npqZzVn9ly7feP5/pyEVEiq2mxOf7ReDz4eNudx8EcPcBYP1qD3ownOpja9/GTLfV8ckphoZHOTxw\nlGRyhvr6OpqbGmlsiONBGzXxeIxEWwvJ5Ay1tTWk5uaYnU0xM5uiIxHMQ2U1NViNZUot6WqwoeFR\nHKirqyWVcmKx2gXjLnJZqopJRKRalKykYWYx4O3AjeGmxQttLrHwZuDBe+/MPN605Qw29W9b8Hp6\nJHV6YNz0zCxj40EX1HTvounpWZqbIJVKMTI+nmmngKC0MTI6QVtr0/zEfmELjM8FYaXmnGPDo5mu\nrcMjY2xYvw6fc8yCacgTbS0rfg+q9xeRYji0bw+H9j9b9POUsnrqrcCj7v5i+HzQzLrdfdDMeoAX\ncu14yRVXLnvg9tbmBcuSzszOAvNtHC1NjbS1NjE+MUlDvJ5kcoZHd++hf/NGuk/rINHWwo8OHKb3\n9C5qzBh88RgvDY/Q37eBkbEJ6mN1Cxq20w3Ezx9tYYORGZOR3d13OUoUIlJom/q3Lbihfui+u4py\nnlImjWuAf816fgdwHXAzcC1w+2oPfHx0fEEPqsXjNeLxWGa099DwKMOjY/Rv3khvd1dQbdXYQEtz\nI2Pjk5n9Bo4OMXB0aNm1Io6Pji/odbXUokWVNEpaRORklSRpmFkTQSP4/8rafDNwm5ndABwErl7t\n8dMX4q19G8Fg34EjdHd1ZsZQpP+le1WlR13X19fNN5SzcMqP9tbmnBMULj7vcglBo6RFZC0pSdJw\n9wmga9G2IYJEUhAHDg9kLsabF61aN3x8jORM0IaRTgy9PV00NzXiTHL40FHi9bG8lkbNPu9yNEpa\nRNaSqh8Rni1dFXTOmVuoj8UyJYv+vg3MplJMTCR5Zv8henuCaqlUKoUBXZ3t1NTWEKsLvo4oS6NG\npVHSIrKWVG3SqAEuPO8s1q9L8MJLw3xv11OZaT1itXWZ6UM2dK+jtbmJ2VSK1uYmxiYnM2MzhoZH\nAVh/WiIzbmNsfDLy0qhRqLdU9VE7lEhuVZs0LgxnlAXo6epkXaKNDT2n0dLUGHSrHZ1gemaGqeQ0\njQ3xzH7x+hh7DxzJdPDt7upgYiKZSTLxeKzgpQFddKqL2qFEcqvKpGGQmVE2PbdUX283dbW1wWjt\nWB2TyWmeeGY/L7w0zIXnnpnpFps9W217azNjE5O0NDUumA1XF4hTm9qhRHKryqTR19sTVEGFCQJg\nZHQiU1qora3l2PDogsbxdDVWenr07MSQ78R8srapHUokt6pKGtkN3WMTkzSOxmlubmBkbIIHvvfD\nBWMm0su1Akuuo5FttYlCdd9rk9qhRHKrqqSRrmuuj8XY0L0OgJHR8cyUIY/s3lPSP3TVfa9d+jmK\nLK2qkka6bnl4ZIyORCuxutpghPfI2JKD8YpdElDdt4icaqoqaWTXNR8Lu8sut353sUsCqvsWkVNN\nVSWN7Lrm9DxP6fW500u1Zi/HurVv44JR3oUuCajuW0RONVWVNGzR8/SMs12dCVqaGheUJvp6e0i0\ntSxYO7wYEwoqUYjIqaSqkka6uik9pqKnq/OE0dvtrc0Y8LLNGzMr9U0lpxkeHdOEgiIiJ6mqkkZ7\na3NmPW+Ac87cwtDwKC1NjcykZjPTk/f19rCxu4uO9tbMvukeVksdc7nnIiIyr9TLvZ6U46PjmcWW\nGuL1NMTr6Uy00tbaRFNYBQXBhX8mNcvkVJLpmVkmk9M555PS8qsiItFVVUnjucMDNF58Pl2dCVJz\nc0xMTmWmEpmYnMo0dqcXZZpKTgNBT6tcyUCN2SIi0VVV0njLG17Duo52AJoa4zTEY4yNT1EfqyNW\nG3yU7Av/1s0bwYMG8OWSgRKFiEg0VZU0uk/rOGFbam6O8Ykpho6PLEgO2fNOiYhIYZSkTcPM2s3s\ni2b2tJk9aWYXmVmHmd1jZnvM7G4za1/pOIMvHguOV2O4E6z7PTHJyPg4TzyzX0lCRKTIStUQ/nHg\nG+7+cuBc4BlgO7DT3bcB9wM3rXSQr3/7Yf5rz48ZGh5h4IUh9h54nvHJKYaPj2UG94mISPEUvXrK\nzNqA17n7dQDuPgscN7OrgEvDt+0AHiBIJMv6+rcfBuanM29siGcG9nV1JjCC9ZXUsC0iUnilaNP4\naeBFM7uFoJTxCPDbQLe7DwK4+4CZrY96wOyR4S3NjZlV+AD6w8ZvqL7BeppqXUQqXSmSRh1wPvAe\nd3/EzP6KoEThi963+HnGg/femXm8acsZ/Oyll2ZGcSdaW4D5iQsTrS2ZNTWKMd9UMWl0uois1qF9\nezi0/9min6cUSeMw8Jy7PxI+/zJB0hg0s253HzSzHuCFXAe45IorFzzPTgTpZHF0aJjGhnik+aYq\nlUani8hqberfxqb+bZnnD913V1HOU/SG8LAK6jkzOyPcdBnwJHAHcF247Vrg9pWOZZCZoDDRFpQw\nEm0tYMH4jMmpJMMjYwwNjwYN5Dnmm6pUGp0uIpWuVOM03gd8zsxiwH7geqAWuM3MbgAOAlevdJDs\n6huARHtLUKnlwTToYxPB/FLp0kc1lTJAo9NFpPKVJGm4++PAq5d46fJ8jpMIJyyMx2PEauuoqTHm\n5jzThnF0aJiBo0NVfdGtxphF5NRRVSPCGxriwQSFLU00NMRJTs9QY8bkVJKp5DSNDfETlnwVEZHC\nqapZbienktTW1NLU2ECNGXW1NZgZ8fpYMJttjplsRUSkMKoqaTQ2xGloqCeVmsPMqKmpoa6uluT0\nDPWxOhob4uUOUURkTauq6qnJqSTHhkchAbU1hpkxNj7FyHgwFbpKGiIixVUVSSM9UrqrM8HYxCRj\nE5PE4zGGj4+RnJ7JvK+YXVQ1WltEJI+kYWZfAT4LfNPd54oX0okWd7UdHh1j7+5gGvTNJbqQa7S2\niEh+JY1PEYyv+ISZfRG4xd33FCeshdqzutomkzOZbZt7eyJduAtRStBobRGRPJKGu+8EdobrXlwT\nPn4O+AzwL+4+s+wBTkJTQ5wN3euora2ltqaGF4eOg0e/4y9EKeH46Hhm3/RzEZFTTV5tGma2DvgV\n4FeBXcDngEsIpgF5faGDS2tubsw8rqmtob5+Puwod/yFKCVotLaISH5tGl8FtgG3Ale6+0/Cl75g\nZo/k3rMAwlX6ABri9Qumw41yx1+oUoIShYic6vIpaXzC3b+91AvufkGB4lnS3oNHSLS10JFoZSo5\nzfMDL3J0aDjyHb9KCSIihZFP0jjLzHa5+zCAmXUA17j7p4oT2rwDhwfo6erMNIQnp2fyvvgrUYiI\nnLx8RoS/K50wANz9GPCuwoe0tMmpJINHjzE8MkairYVzztyiNcFFREosn5JGrZmZuzuAmdUC9cUJ\na6HFa2h0JloZGh7N9IhaqhShwXgiIoWXT9L4FkGj96fD5+8OtxXdBWdvy0yHPpOaZWh4dEGJA05M\nHBqMJyJSePkkjRsJEsVvhs/vBf6x4BEtoTPRmnk8NjyZSRjLlTg0GE9EpPDyGdw3B/xd+K/kGuL1\nNDbEceDwwFGaGuOZEgecmBQ0GE9EpPDyGadxMfAnQF+4nwHu7lsi7HsAOA7MATPufmHY++oL4fEO\nAFe7+/Gl9p+enqWjvZV4LEZneytnbtnEM/sP0dI0P+hvcVJQN1sRkcLLp3rqs8DvAI8CqTzPMwe8\nPuxxlbYd2OnuHzGzG4Gbwm0nODx4lPWndWA1wYJLp3d3MjY5ySNP7Fk2KZQzUaghXkTWonySxnF3\n/+Yqz2Oc2L33KuDS8PEO4AFyJI2x8UnMoKamhpoaA6CzPWjnqNTlXdUQLyJrUT7jNL5tZh81s9ea\n2fnpfxH3deBeM/uBmf16uK3b3QcB3H0AWJ9r5/QYjdTcHD7npFJzDA2PVnTjthriRWQtyqekcVH4\nf/aUIQ68McK+F7v7T8ysC7jHzPaE+2Zb/Dzj+Og4YxOTTExM0dBQn1l4qZIbt9UQLyJrUT69p96w\n2pOkJzd096Nm9jXgQmDQzLrdfdDMeoAXcu3/L7d8hu9uOp2O9lZe97qf5fwLXs3w6BgHS7gIU77U\nEC8ipXRo3x4O7X+26OfJd2r0nwNeATSkt7n7n66wTxNQ4+5jZtYMvAn4IHAHcB1wM8HU6rfnOsYl\nV1zJa847KzOQD4J2jqjtBuVqlFaiEJFS2dS/jU392zLPH7rvrqKcJ58ut38PNAFvIBjU9wvA9yPs\n2g181cw8PN/n3P2ecDr128zsBuAgcHWuA2zu7WH9ugTT07PMpGZJJmeYnEpGbjdQo7SISGHkU9L4\nGXc/x8yecPcPmtnHgBV7U7n7j4FXLrF9CLg8yom39m2kPhajrbWJqeQ0yeRMpo0gSruBGqVFRAoj\nn6QxGf4/YWYbgJeA0wsf0okSbS2c3r2O1uYmamtrGRoeBaK3G+RqlNZYChGR/OSTNO4yswTwUeAx\ngt5OJZl7akP3Otpam6mtqaG2poaW5sacExUuJVdyUbWViEh+8kkaH3H3JPBlM7uLoDF8qjhhLTSV\nnKYhHidWVxuMCF/fCR7Mfrt180b2Hjiy4sV+qddVbSUikp98ksZ/AucDhMkjaWaPpbcVkwNTySRz\nc3U0NMSZmZqlrbWJ0zrbmZxKkmgN1tnIt5SgsRQiIvlZMWmEYyg2Ao1mdh5BUwBAG0FvqqI7NjxK\nY/c6UnPOS0MjpOZSdLS3EovVMT0zQ2eila2bN+adNDSWQkQkP1FKGm8mGE/RC3yM+aQxAnygOGGd\naCo5nXk8PT3L9MwMqdTc/Pac48mXp0QhIhLdiknD3XcAO8zsv7v7l0sQ0wni8RhAptfU9MwMz+w/\nRG9PF/F4jGRyhn0Hj1Ts6HARkbUinzaNV5nZfe4+DBCuh/F/3P0PixPavMGjx0i0tWQWXNp7MGj4\nzk4SgHpCiYgUWT5J463unqmOcvdjZvY2oOhJY+dDjy5ZishOCue+vH/BPuoJJSJSePlMjV5rZvH0\nEzNrBOLLvL9gbOW3nNDzST2hREQKL5+SxueA+8zslvD59QSLJxVdehBeoq2FeDxGT1cnD+96asF7\n1BNKRKT48pka/WYze5z5+aL+zN3vLk5YC7W3NpNoa6EzEazW19+3gYGjQyckBiUKEZHiymtqdOBp\nYNbdd5pZk5m1uvtoMQLLdnx0PNODCiCZnFGbhYhIGURu0zCzdwFfAj4dbtoIfK0YQS124PAA+w4+\nz/jkFEPDowyPjKnNQkSkDPIpabyHYMW97wG4+4/MLOe63oX28K6nGDg6pDYLEZEyyqf3VNLdM8Oy\nzayOVY/DXp2Dhwc4PjpOe2szm3t7SnlqEREhv5LGd8zsAwRzUF0B/BZwZ3HCWpqmMhcRKa98Shrb\ngaPAbuDdwDfIY2CfmdWY2WNmdkf4vMPM7jGzPWZ2t5m1r3QMTWUuIlJekZOGu88RjMv4M+CDwA53\nz6d66v1A9uCK7cBOd98G3A/ctNIBNIBPRKS88uk99XPAPuATwCeBvWb21oj79gJvY+FKf1cxPzhw\nB/COlY5z4PAAew8e4ejQcGb+KRERKZ182jQ+BrzB3fcCmFk/8HXgmxH2/Svg94HsKqhudx8EcPeB\nqD2xlChERMonnzaN0XTCCO0HVhzYF5ZQBt39hyw/jVRJe2KJiEj+8ilpPGJm3wBuI7jAvxP4gZn9\nNwB3/0qO/S4G3h7OiNsItJrZrcCAmXW7+2C4OuALuU784L3znbQ2bTmDTf3b8ghbRGTtO7RvD4f2\nP1v081jUtuysiQqX4u5+Q4RjXEqwBsfbzewjwEvhnFY3Ah3uvn2JffzGD3/6hGOJiEhuN29/N+4e\nZZLwvOQzYeH1i7eZWX32gL88fRi4zcxuAA4CV6/yOCIiUiKRk4aZPQBc5+4HwuevJugNdW7UY7j7\nd4DvhI+HmJ8xd1laxlVEpDLk06bxIeBbZvYJgskK30awpkbRaRS4iEhlyKd66m4z+w3gXuBF4Dx3\nL/nVW6PARUTKJ5/BfX8E/A3ws8CfAA+E3WlLSqPARUTKJ5/qqXXAhe4+CfynmX2LoE3j60WJLMve\ng0fUpiEiUgHyqZ76bQAza3L3CXc/CFxRtMiyKFGIiFSGfKqnXmtmTwHPhM/PNbNPFS0yERGpOPlM\nI/LXwJuBlwDc/XGC9g0RETlF5JM0cPfnFm1KFTAWERGpcPk0hD9nZj8DuJnFCNbHeLo4YYmISCXK\np6TxG8B7CAb2HQFeGT4XEZFTRD69p14EfjnX62Z2k7t/qCBRiYhIRcqrTWMF7yzgsUREpAIVMmkU\nfApeERGpLIVMGlp5T0RkjVNJQ0REIitk0vhiAY8lIiIVKJ9pRM4ws/vM7L/C5+eY2R+mX3f3vyhG\ngCIiUjnyKWl8BrgJmAFw9yeAXypGUCIiUpnySRpN7v79RdtmV9rJzOJm9j0z22VmT5rZX4TbO8zs\nHjPbY2Z3m1l7PoGLiEjp5ZM0XjSzfsJeUmb2C8BPVtrJ3ZPAG9z9POAc4I1mdjGwHdjp7tuA+wlK\nMSIiUsHymXvqPcA/AGea2RHgxywzQjybu0+ED+MEieoYcBVwabh9B/AAQSIREZEKtWJJw8zeHz48\n3d0vB7qAM939knAhphWZWY2Z7QIGgAfc/Smg290HAcK1xtev6hOIiEjJRClpXA98nGB98PPdPe9F\nut19DjjPzNqAu83s9Zw4GDDn4MAH770z83jTljPY1L8t3xBERNa0Q/v2cGj/s0U/T5Sk8bSZ/QjY\nYGZPZG03wN39nKgnc/cRM/sGcAEwaGbd7j5oZj3AC7n2u+SKK6OeQkTklLSpf9uCG+qH7rurKOdZ\nMWm4+zXhRf1u4O35nsDMTgNm3P24mTUSrCv+QeAO4DrgZuBa4PZ8jy0iIqUVqSE8bHM4d5XnOB3Y\nYWZG0IZyq7vfF7Zx3GZmNwAHgatXeXwRESmRFZOGmd3m7leb2W4WtjtEqp5y993A+UtsHwIuzzNe\nEREpoygljXTvqZ8vZiAiIlL5orRp/CT8P1L3WhERWbuiVE+NsnR32HT1VFvBoxIRkYoUpaTRWopA\nRESk8hVyPQ0REVnjlDRERCQyJQ0REYlMSUNERCJT0hARkciUNEREJDIlDRERiUxJQ0REIlPSEBGR\nyJQ0REQkMiUNERGJTElDREQiU9IQEZHIip40zKzXzO43syfNbLeZvS/c3mFm95jZHjO728zaix2L\niIicnFKUNGaB33X3VwCvBd5jZmcC24Gd7r4NuB+4qQSxiIjISSh60nD3AXf/Yfh4DHga6AWuAnaE\nb9sBvKMPZouWAAALOUlEQVTYsYiIyMkpaZuGmW0GXgk8DHS7+yAEiQVYX8pYREQkfyuu3FcoZtYC\nfAl4v7uPmdniJWSXWlIWgAfvvTPzeNOWM9jUv604QYqIVKlD+/ZwaP+zRT9PSZKGmdURJIxb3f32\ncPOgmXW7+6CZ9QAv5Nr/kiuuLEWYIiJVa1P/tgU31A/dd1dRzlOq6ql/Ap5y949nbbsDuC58fC1w\n++KdRESkshS9pGFmFwO/DOw2s10E1VAfAG4GbjOzG4CDwNXFjkVERE5O0ZOGuz8E1OZ4+fJin19E\nRApHI8JFRCQyJQ0REYlMSUNERCJT0hARkciUNEREJDIlDRERiUxJQ0REIlPSEBGRyJQ0REQkMiUN\nERGJTElDREQiU9IQEZHIlDRERCQyJQ0REYlMSUNERCJT0hARkciUNEREJLKiJw0z+6yZDZrZE1nb\nOszsHjPbY2Z3m1l7seMQEZGTV4qSxi3Amxdt2w7sdPdtwP3ATSWIQ0RETlLRk4a7PwgcW7T5KmBH\n+HgH8I5ixyEiIievXG0a6919EMDdB4D1ZYpDRETyUCkN4V7uAEREZGV1ZTrvoJl1u/ugmfUALyz3\n5gfvvTPzeNOWM9jUv63Y8YmIVJVD+/ZwaP+zRT9PqZKGhf/S7gCuA24GrgVuX27nS664smiBiYis\nBZv6ty24oX7ovruKcp5SdLn9PPBd4AwzO2Rm1wMfBq4wsz3AZeFzERGpcEUvabj7/8jx0uXFPreI\niBRWpTSEi4hIFVDSEBGRyJQ0REQkMiUNERGJTElDREQiU9IQEZHIlDRERCQyJQ0REYlMSUNERCJT\n0hARkciUNEREJDIlDRERiUxJQ0REIlPSEBGRyJQ0REQkMiUNERGJTElDREQiK2vSMLO3mNkzZvas\nmd1YzlhERGRlZUsaZlYDfBJ4M/AK4BozO7Nc8RTLoX17yh3CSanm+Ks5dlD85Vbt8RdLOUsaFwI/\ncveD7j4D/BtwVRnjKYpD+58tdwgnpZrjr+bYQfGXW7XHXyzlTBobgeeynh8Ot4mISIVSQ7iIiERm\n7l6eE5u9BvgTd39L+Hw74O5+86L3lSdAEZEq5+5W6GOWM2nUAnuAy4CfAN8HrnH3p8sSkIiIrKiu\nXCd295SZvRe4h6Ca7LNKGCIila1sJQ0REak+FdsQXkkD/8zss2Y2aGZPZG3rMLN7zGyPmd1tZu1Z\nr91kZj8ys6fN7E1Z2883syfCz/TXWdvrzezfwn3+08w2FTD2XjO738yeNLPdZva+Kos/bmbfM7Nd\n4Wf4i2qKP+scNWb2mJndUW3xm9kBM3s8/Bl8vwrjbzezL4bxPGlmF1VL/GZ2Rvi9Pxb+f9zM3lfW\n+N294v4RJLO9QB8QA34InFnGeC4BXgk8kbXtZuAPwsc3Ah8OH58F7CKo+tscfo50ie57wKvDx98A\n3hw+/k3gU+HjXwT+rYCx9wCvDB+3ELQjnVkt8YfHbAr/rwUeBi6upvjD4/4O8C/AHdX0+xMecz/Q\nsWhbNcX//4Drw8d1QHs1xZ/1OWqA54GfKmf8Bf9gBfpyXgN8M+v5duDGMsfUx8Kk8QzQHT7uAZ5Z\nKlbgm8BF4Xueytr+S8DfhY+/BVwUPq4Fjhbxc3wNuLwa4weaCDpMnFVN8QO9wL3A65lPGtUU/4+B\ndYu2VUX8QBuwb4ntVRH/opjfBPxHueOv1Oqpahj4t97dBwHcfQBYH25fHPuRcNtGgs+Rlv2ZMvu4\newoYNrPOQgdsZpsJSkwPE/zCVUX8YdXOLmAAeMDdn6qm+IG/An4fyG5ArKb4HbjXzH5gZr9eZfH/\nNPCimd0SVvH8g5k1VVH82X4R+Hz4uGzxV2rSqEaF7FFQ+L7VZi3Al4D3u/sYJ8ZbsfG7+5y7n0dw\nx/46M3s9VRK/mf0cMOjuP1zhuBUZf+hidz8feBvwHjN7HVXy/RNU05wP/G34GcYJ7sarJf7ggGYx\n4O3AF8NNZYu/UpPGESC7MaY33FZJBs2sG8DMeoAXwu1HCOoc09Kx59q+YB8Lxq+0uftQoQI1szqC\nhHGru99ebfGnufsIQV3sBVUU/8XA281sP/CvwBvN7FZgoErix91/Ev5/lKB680Kq5/s/DDzn7o+E\nz79MkESqJf60twKPuvuL4fOyxV+pSeMHwFYz6zOzeoL6tzvKHJOxMAPfAVwXPr4WuD1r+y+FPRJ+\nGtgKfD8sQh43swvNzIBfW7TPteHjdwL3Fzj2fyKoz/x4tcVvZqele4aYWSNwBUFDX1XE7+4fcPdN\n7r6F4Pf4fnf/VeDOaojfzJrCUipm1kxQr76b6vn+B4HnzOyMcNNlwJPVEn+WawhuOtLKF38xGmwK\n1OjzFoKePj8Ctpc5ls8T9FpIAoeA64EOYGcY4z1AIuv9NxH0WngaeFPW9lcR/MH9CPh41vY4cFu4\n/WFgcwFjvxhIEfRA2wU8Fn63nVUS/9lhzLuAx4HfC7dXRfyLPsulzDeEV0X8BG0C6d+d3em/xWqJ\nPzz+uQQ3oj8EvkLQe6qa4m8CjgKtWdvKFr8G94mISGSVWj0lIiIVSElDREQiU9IQEZHIlDRERCQy\nJQ0REYlMSUNERCJT0hARkciUNKTimdl6M/ucme0NJ817yMyuMrNLzWzYzB61YO2VB8K5ntL7/bGZ\nHQ4nqnvCzK4s5+dYLTM73cxuCx+fa2ZvLXdMcupS0pBq8DWC2W23uvurCabj6A1f+3d3f5W7nwm8\nH/ikmb0ha9+/9GCiuqsJplMpuHC+nqJx95+4+9Xh01cSTBwoUhZKGlLRzOyNQNLdP5Pe5u7Pufvf\nLn6vuz8O/Cnw3iVeewaYNbPTcpznFjP7u7Ak80y6xBJOy/4RC1YP/KGZvSvcfqmZ/buZ3U4wl1Gu\n+H/N5le92xFu+3kzezgsId1jZl3h9j82s382s+9asCLbr4fb+yxYdbEu/HxXh6Wnd5rZq8P3P2pm\nD5rZyyJ+tSKrUlfuAERW8AqCuaeiegz4vcUbzewiIOXzs4Qupc/dX21mW4Fvm1k/wURuw+5+UTh5\n5kNmdk/4/vOAV7j7oaUOZmZnAR8AXuvux8wsEb70H+7+mvA9/xP4A4L1NiCYa+sioBXYZWZ3hdvd\n3WfN7P8Cr3L39LK9LcAl7j5nZpcBHwJ+YYXvSGTVlDSkqpjZJwmW351m/kK74C2Lnv+umf0KMEpQ\nRbWc2wDcfa+Z7SNYFvdNwNlm9s7wPW3Ay4AZgtlDl0wYoTcCX3T3Y+Fxh8PtPxW2UZxOsJzxj7P2\nud3dp4GXzOx+gmnIH1/mHAngn8MShqO/aSkyVU9JpXuSYHZOANz9vQTTW3ex9MIz5xPM7pn2l+5+\nvrtf6u7fXeFc2cez8LkB/9vdzwv/9bv7zvA943l+lrS/AT7h7ucAvwE0rBDDcv6MYLr1s4ErFx1L\npOCUNKSiufv9QNzM3p21uZn5i2mmZGFm5wB/CHxylad7pwX6CaYE3wPcDfxW2J6Amb3MguVCo7g/\nPGZnuG9HuL2NYKp9mF/HIO2qcC2EdQRTqf9g0euj4f5pbcwvpnN9xLhEVk1JQ6rBO4DXm9k+M3sY\nuAW4kSBhXJLucktwB/9ed39glec5BHwf+Drw7rCa6B+Bp4DHzGw38PdApN5SHqxl/ufAdyxY4/xj\n4UsfBL5kZj8gWCch2xPAA8B3gT/1YPGcbN8Gzko3hAMfAT5sZo+iv2cpAa2nIULQewq4092/UsYY\n/hgYdfe/LFcMIivRnYlIQHdPIhGopCGnFDP7AME6yOlGbifo4fShkzhmJ3AfC9tZHLgs3XNKZK1Q\n0hARkchUPSUiIpEpaYiISGRKGiIiEpmShoiIRKakISIikf1/34G6RhP/FVwAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = df.plot(kind='scatter', x='GDP_per_capita', y='life_expectancy', color='white', alpha=0.5, linewidth=0)\n", "ax.set_ylim((0, 85))\n", "ax.set_xlim((0, 70000))\n", "# Specify background color for the axis/plot\n", "ax.set_axis_bgcolor(\"lightslategray\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Actually, really change all of the background color\n", "\n", "In order to change the background color of *everything*, you need to create a figure and set the `facecolor`. On top of that, **you need to specify the facecolor when you save**, or else it will show up as white/transparent in Adobe Illustrator even though it looks right in the Python world." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAELCAYAAAAlTtoUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtck+fdP/DPnSAhR46CqIAKSEEUPFSwWqGtVrS1Wltb\nq13tnHV7tv3auu3pDs+217Zn67o967aue9pHXadtV632aNVqp1ZtFVBBpVAVEEU8oxzDMZDk9wck\nJiGBO5ibJPh5v159ldxJ7vubCNf3OtzXdQk/fmmNGURERCLIvB0AERH5DyYNIiISjUmDiIhEY9Ig\nIiLRmDSIiEg0Jg0iIhItwNsB9OUPP/m2t0MgIvJLP35pjcfP6fNJA5Dmgw+Ug7u3Ycbs+d4Oo9/8\nOX5/jh1g/N7m7/FLVeFm9xQREYnGpEFERKIxaUgsdsxYb4dwS/w5fn+OHWD83ubv8UuFSUNisfFJ\n3g7hlvhz/P4cO8D4vc3f45cKkwYREYnmF3dPETkSBAFZGWmIGxGF85eu4UD+CXC5ZiLpDUjSyNu3\nE18fPwyZTIahw0Zg3qPL0WFox9ZN69BYVwtdaDgWLlsFRZByIMKhQSArIw05WVMBAMkJcQCA/fkn\nvBkS0W1B8qTRUFeDoqMH8cwPfg15QAC2blyLk0VHUVN9GaMSkpGRNQf5+3chb99OZM9dJHU4NEjE\njYjq9TERSUPyMQ2FIghyuRwdhnaYjEZ0dnRAqwtB+ckipE6aBgBInTwN5SdZSyTxzl+65vKxIAjI\nzkzH8kfmIDszHcJAB0c0iEne0ghSqXHn3bPx+ks/RUBgIEYnpmBUYjKa9XqotToAgEYbjJYmvdSh\n0CByoLsralJqIoCbiSJuRBTkchnGjo4B4LmuK46hEHWRPGnU11xHwcG9+M5Pfg9FkBJb31mDr48f\nhuBY/etxgMh1YW0psCPDQwEAc2be6fIclq4rV+cSkxA4hkLURfKkceXSeYyIi4dSpQYAJI6biEvn\nK6DS6NCsb4Raq0OTvgEqtdblOQ7u3mb9OXbMWN4/7Qc8VTPvrbAWO45h6bpydS4xCYFjKOTrqipK\nUXW2TPLrSJ40wiOikLt3Bzo7OiAPCMD5M6cRHROHQIUCxYW5yMzOQUlhHhJT0lyew58XDRvMHBPD\nF4eLMLP7sae6iHorrOVy10NyZecuwGg0WRNWb+cSkxDOX7pm/RyWx76I3Wi3r9j4JLsK9aG92yW5\njuRJI3J4DFInZWLDq7+DTCZD1PAYpE2dCUN7G7ZuXIviglzoQsOwYOkqqUOhfnJVEDnW0MfERlsT\nhaP+1sx7K6yNRpPda6tr6lBT1+iysHQ8V9XlamRnpiM8VGf3OrlchuWPzLE7j23isU1Ernir8GY3\nGkltQOZpZGTNQUbWHLtjSpUaS1auHojL0y1yVRA5JoLoyHCX5+hvzby3wtoxCRwrKceBw0XIzkzH\n6pWLbx5zUfADsH4uoCvp1Dc2OW0hmeFe4eutwpvdaCQ1zgh3w+3a9HdVEDkW2jKHmxlu1Nbjem2D\nqJq5S73cINHjXgp0Fda2g+KWgttZwb/8EfuKTE1dY49r9LfQ9Vbh7S/daLeLwVhmMGm44XZr+lt+\n4R27bywFkW3N3XYMw+J6bQPe/OCzW4qht+881qEgdnxs4arAdlXAeqLQ9Vbh7W43GklrMJYZTBpu\n6E/t0d9qGrbxOiaC6po6a3cPALuau2OtHfBMQdnbdy6m0HcVhyAIEND1mQDYfS7LdW6l0O1v4X2r\nvy/udqORtAZjdyGTho2+/mD7U3v0t5qGbbyOauoaXcbu+N2UnbvgkVpub9+5q4JZADCxe9LfsZJy\nfNE9zmH7uqyMNMxx+JyWf2tP/Pv0t/D2t9+XwcwTFb7B2F3IpGGjrz/Y/tQevVnTcPeXXhAE6wxr\nZ3r7hXf8br44XIQsh4K6Py2s3r5zVwXzvvwT2GdzPDszvce/q6/WAH01rtuRJxL4YOwuZNKw0dcf\nbH9qj96sabj7S5+VkWadYW3hbL6DM47fjbOCuj81Zk90tzj7d/XVGqCvxmXhb92tt8ITCXwwdhcy\nadiQ4g/WmzUNd3/pHZ+vrqnD+i07+1Uo+FKN2dm/q6/WAH01LovbqfvM1xO4tzBpwL725KxmfUu1\nKy+tqSUIQo8Z03390jub99DfWqQv/cE5K4h9tQboq3FZ+FJlQGq+nsC9hUkDPQd/dx04YveH21ft\nqrek4q2aWVZGmt2dT2IGpj0569mX/uB8vSD2J75UGZAaf2+cu22SRm8FnGNt6Z5pXXswWCaE9VW7\ncmdRvelTUgFA8r5gx+sajaY+r+fJWc/e/IO7nfrdB5ovVQbIO/wyafSnUOitgHOsPSkCAzEna6q1\n4OurdtVbUqm6XG33Xq1aZdeqkapgG4gaoa92VdxO/e4DjbVv8suk4W6h4OxWUtsC7ovDRZhx53ho\nVEqnr+mrdtVbAW02O08Fk1ITrXcqWd574HCRx2rIA1Ej9NWuCl9NZkSDgV8mDXcLBWe3kloKOEEQ\n8PTinB4JA7i5Cqql4H3rg8+cFuK9FdBiC6y4EVFuJcO+WlsDUSP01a4KbyYzdo3RYOeXScPdQsHZ\nraSWAs5xwBgA2g0G7M/r+mMXU4g7K6BdrdtkWYpDAOxmJJ+/dK1Ha2hSaqLLgt8XumB8tavCm8nM\nF/5diKTkl0nD3UKht1tJnbUE9uWdwP78Ez3WU+qr1WDZp3riuASolEF2rRfbdZvM6FrqwjLIbvkM\nvc3GduTpLpjeNlQSW2P2lVq2N5MZu8ZosPPLpOFYKAiCgGyHwgoOBdhnB44gVsSeDGXnLljXKnK1\nuqszgiDgm4tzXG5C5Lhuk7OC7XhJuV3r4/jXZ3qsmWQphB3jlstl1kTUH71tqCS2xsxatu+O8xB5\nil8mDVuOhbXtH6xtAVZ27oLT2c3OWi1ZNktgAF3dVecvXcMXLrqgXC0NbktM4WF7i6/jJkGOhfCB\n/BN2BfvY0THIykzvdyHd14ZKYmrMrGX77jgPkaf4fdJwNiYxKTURyiCF3TFXhaoZ9nctWRbZs6UI\nDMTY0TGYafP+vloWFo7Lifemr02CbOMyo+d2p7dSSDvWkK9U10A7WmX3vLvnuB1r2b46zkPkKZIn\njdrr17B14zoIAmA2A/W113H3/QuQOjEDWzetQ2NdLXSh4Vi4bBUUQT3vYOqLs4LS8U4pC8vEOsf+\neqBnq8SZSamJdu/pLWE0tbTi4NHiHv367vT791UIe7KQ7rFKbf4JzHToGnP3HKxlEw0+kieNsKFR\n+OZzPwcAmE0mvPb7n2DsuHTkH9iFUQnJyMiag/z9u5C3byey5y5y+/yOBWdTS6vT22eBmxPrbOdk\nJCfEoaml1e51cSOGoezcBcSNiIIiMNB6PDI8FJHhoUhOiEO7wdDj/I7rVjlLBu70+/dVCHuykHZW\nQ3a3xsxaNtHgN6DdU5VnTiMkfCh0IWEoP1mEpat+BABInTwNm9a+3K+k4VhwOt7KCnSNSdgW/o5J\nZUiA3O6xInBIn91OtuezOFt1pc9C051+/74KYRbSRDTQZH2/xHNOfVWAlPSuAr1Zr4da23V3kkYb\njJYmfb/OaRmTsMxzmJia2KPl0NFp7PUcfT0vlphbZp11MRER+YsBa2kYjUacOVVkbU30WDG8lyXE\nD+7eZv05dsxYxMYn2T3f2xalvbF0ZbnqzurtPc6olEF9vp/9/kQkhaqKUlSdLZP8OgOWNM6WlmDY\niFio1BoAgEqjQ7O+EWqtDk36BqjUWpfvnTF7fq/ndtbFY1u4OxbyTS2tOFRQgonjEuyeazd0QC6T\nob5Rj9oGvV0XVVNLKw51D2xbBohjhkfavb+lta3XOAF2KRGRNGLjk+wq1If2bpfkOgOWNE4VHUVy\n2s3WQGLKBBQX5iIzOwclhXlITEnr97kdB8OBrgLcVYugpbUNE8cl9LjLShE4BAAQERaCguIynK26\n4vQuJ0uhn+0wn+NYSXmPa/nKLGkiIk8YkKTRYTCg8swpzFn0pPVYRlYOtm5ci+KCXOhCw7Bg6ap+\nn9/SxWMZUzj+9RmMjhnm8tZbZ8cdB8vjRkThzQ8+E3Xd3rqaOEuaiAaTAUkaQwID8ewvXrY7plSp\nsWTlao+c39LlY9sCsO1aulFbD5PNEuXOkoa+qQWKsJtJQ8wAtZiuJs6SJqLBZEDvnpKaZcFAyyQ+\ni4iwEOsci/rGph7va25pRURYiPWxmK1RxeLdUkQ0mPjtMiIymQxPPzoH0ZHhuFJdgzff24XlIpb1\nGB4VgeqaOrvWhtph7EPM1qhi8W4p/8NxKCLX/DZpPP3oHGuC0I5WYfXKxXatBQDQN7dAGaRAgPzm\n5L0hAXIcKynv9RZdT7YGeLeU/+E4FJFrfpk0BEHoMTYQGqLr8bpDBSV2K8ECsKvtO1ud1pNdU+Sf\nOA5F5JpfJo2sjLQey3h0dhohD7w5RNPU0ooD+SfwRf4JPP3YXGs31obu5dGtq9UC1pVt2RVBAFfr\nJeqNXyUNS1+z40B3u6EDB/KO436bLqdDR4thRlf30D+37HR5zlvpPmLf9+DEcSgi1/wqabhaLkQR\nOAQmALsOHBnQP3T2fQ9OHIcics2vkkZvfcvOJuNJ3RJg3zcR3W78ap5Gb33Lzp6ztASSE+KQkzUV\nWZnpksbDvm8iGuz8qqXhbO+M2O47oOJGRCE7M93amhAEocdS5Z5uCbDvm4huN36VNByXT9+ffwJZ\nNosG2o4rZGWk9VguxFlL4Fa6sNj3TUS3G79KGo4Dz2Nio2E0muxeEzciqruVMdbueHVNHRcUJCK6\nRX6VNBy7l8aOjumxS1/VpWvdrQz72eH1jU1OWxAczCYiEs/vB8Id98www3nB79gicXVODmYTEbnm\nVy2Ng0eLce+0iQjs3izJGcvYhOOmTK6SAQeziYjE86uk8fyKR3pNGMDNtaUEABO77546VlLuMhlw\nMJuISDy/ShohOtf7iOubW3CooMR699O+/BPYx2RARORRA5I02ttasfODt3D96mUIgoB5jy5HWEQk\ntm5ah8a6WuhCw7Fw2Soogpzv6W1R36jvsfy5xaGCErYYiIgkNiAD4Xs+2YwxSal45oe/xornfoHw\nyGHIP7ALoxKS8cyPfoO4+CTk7XO9qKDFX9ZtwY3aehhN9oPaN2rrrZP7BBfvJSKiWyd5S6O9rRUX\nK8vxwGNPAwBkcjkUciXKTxZh6aofAQBSJ0/DprUvI3vuol7PZQTwp3Vb7JYzt+yHEREWguSEOAiC\nALPZzJVniYgkIHnSaKi9AaVagx3vbcD1KxcxbGQc7nvwcTTr9VBruzZO0miD0dKkF39Sm5nhITqN\n3VMTxyVYZ4L722Q9LrVORL5O8qRhMplw7VIVZi94AtEjR2Hvti3I37/LcUWQHkuE2Dq4e5v159gx\nY/HUssddbteqUgbZPfanyXqcnU5E/VVVUYqqs2WSX0fypKENDoU2JAzRI0cBAJLGT0L+/l1QaXRo\n1jdCrdWhSd8Aldr1nVEzZs+3e+yYCKpr6lBT19hj61bAvybrcXY6EfVXbHwSYuOTrI8P7d0uyXUk\nHwhXa3XQBYei9npX4V155hQioqKRmDIBxYW5AICSwjwkpqT1eS5BEJCdmY7w0J77gZ+/dK3HrG9X\n6035Ks5OJyJfNyC33M6a/zi2bX4DJqMRIWERmLf4aZhMJmzduBbFBbnQhYZhwdJVfZ7Hcee+ppZW\naFRKRIaHIidrKsrOXbB7/bGScr8aE+DsdCLydQOSNCKHx2D593/W4/iSlavdOo9jd01QYKDdY6PR\nNOBbvnoSZ6cTka/zqxnhcrl9b1pAgLzH8yx0iYik41er3LpaqVbs80REdGv8Kmk4tjTcfZ6IiG6N\nX5WybGkQEXmXX4xpWGZKO95qe6O23m4BQylvUeVsbSIiN5LGR2+/jgl3zsCYseMgyAa2geJ4q211\nTR2OlZTji/wTmNm9BpXUd0txtjYRkRtJY2JmNooLc7Hnk3eRNH4yxk+5C+FDh0kZm5WzmdFxI6Iw\nMzNdVI3fE60EztYmInIjaYxKTMaoxGS0t7Xi5Ikj2PyPv0IbHIq0qTMwbmIm5HJ53yfpJ8dzR4aH\nIjI8VHSN3xOtBMctZDlbm4huR26NabQ2N+Hr44fx9fF8RA2PQUr6VFysPIOSwnws/fYPpYoRITq1\ny+fE1Pg90UrgbG0iIjeSxodvvY7aG9cwbmIGHln+fWh0wQCA5LQ78earv5MswL6IqfF7opXA2dpE\nRG4kjcnT70WczQqKtpb/v//yWEDOHCsptxsIv1Fbj+u1DaJr/GwlEBF5huikUVN9GVHDYxCkVAEA\n2lqacbLoKCZNy5YqNqsD+ScwJjbauux5RFgICorLRNf82UogIvIM0ffOFh05aE0YABCkUqPoyEFJ\ngnJkRs+Je9OnpHJPcCKiASa6pWEymWA2myF077BnMplgNHZKFpgtZ3toaNUqa5eVs1YEJ+MREXme\n6KQxJmkctm5ch/SMuwEAJw5/iTFjx0kWmC3b8Yx2gwEKmyXRp09JBYAeSYGT8YiIPE900sjOWYQT\nR77E8fwvAACjE5Mx4c4ZkgXmSkenEQqbbTRctTg4GY+IyPNEJw1BJsPEzCxMzMySMp4+BQUOQdm5\nC4iODIdWfXOMxTEpcDIeEZHniU4aFyvP4OCe7Wisr4HJZALMZkAQ8J0X+p6j8fpLP4MiSAlBECCX\ny/HU93+KtpZmbN20Do11tdCFhmPhslVQBCn7DjggAGNHx6Ds3AVoR99MGo5JgbfZEhF5nuiksfOD\nt3Dvg49h2IhYyAT3FiwUZAKWrvoBglQ3Z3bnH9iFUQnJyMiag/z9u5C3byey5y5y+v7qmjpEhofa\nHRseFYHPDhxBrIuk4O3bbDkQT0SDkejSXxGkRHxSKtQaHZRqjfU/UcxmmM32RWb5ySKkTpoGAEid\nPA3lJ10X8PWNTT2OaVRKmAG8+cFn2O+DBbJlID45IQ45WVORlZnu7ZCIiG6Z6JZG7Jgk7Pv0fYwd\nNxHygCHW48NGxPb9ZkHA5jf+CkEmQ/rUmUibOgPNej3U2q7baDXaYLQ06V2+3dXmSr48uM2BeCIa\njEQnjSsXzgEArl48b3NUwBOrftDne5/8zgvQ6LoSw+Y3XkHY0CgIjrPyehy4yXFQ2/a4r+JAPBEN\nRqKTxhOr+r+KrWVxQ5VGi8RxabhyoRIqjQ7N+kaotTo06RugUmtdvv+3//3f2LtjHNSqIGRnZyM7\nOxvVNXX44nARsh02YfKVbioOxBPRQKqqKEXV2TLJr+PW0ugVp4tx49pldHZ0WI9Nn/Vgr+/pMBhg\nNpsQqAiCwdCOyvJTmH7fg0hMmYDiwlxkZuegpDAPiSlpLs8xY/Z8rHhsrnXtKaBrnGOmyAl83hiU\n9vZAPBHdXmLjkxBrs6jsob3bJbmO6KTx2UfvoMNgQNXZUky4czpKi48hOmZ0n+9rbmrER2+/DkCA\nyWTEuIkZGD02BcNGxmHrxrUoLsiFLjQMC5aucnmO7Mx0REeG2x0zGk2ixw04O5yIyDNEJ41L5yuw\n4vlf4p9//Q1mzJqPqXfPxnvrX+3zfSFhEfjmc7/ocVypUmPJytWirm27jIiFZYxAzLgBB6WJiDxD\ndNIIGDKk+/+B0DfWQ6lSo0nfIFlgfRFws7XQ17iBq0FpzqUgInKP6KQRf8cEtLW2IGPm/Xjzb78D\nBHhl7SmLu6akwoyeCxU642pQmt1WRETuEZ00MrLuR0DAECSNn4T45PEwdnZCHuDWOLpHWRYqnJSa\niGMl5b0mD1eD0uy2IiJyj+gZ4f967Q/WnwMChkARpLQ75i2R4aHIyZqK7H7MuHYcA+FcCiKi3vXZ\nVGjSN6CpoR4dHR24dqnKWps3tLWio8MgcXj2TCYTZDLneW5iaiL2udm1xLkURETu6TNpnCs7iZLC\nXDQ11OHzHe8D3WkjUKHEzDkLpY7PjquE0V+cS0FE5J4+k8b4ydMwfvI0lBYfQ9L4SQMRU5/0zS24\nUl1jN9nv+NdnfHZ2OBHRYCF6JPvqpfOIS7gDQcquPSzaWppx5MvdA9LacFwa/VBBCQ7kn0CWTZIA\nwDuhiIgkJjppnC39Glk5D1sfB6nUOFtaMiBJ4y//eM8uQVhaEbZJYfkjc+zewzuhiIg8T/Qggdls\nQmfnzTWnOjoM6OzslCSoHnpZAdeCd0IREUlPdEsjJX0q3l33F4yfchcAoLggF+MnT5MsMFuOk/DG\nxEZj/ZaddmMWvBOKiEh6opNGZnYOIqNHovLMaQDAXfc9gDFjx0kWmC3Hrqaxo2OQlZlu1z3FO6GI\niKTn1pTu8MhoyGRyjEpMRofBgPb2NigUQVLFZuVsEyaOWRARDTzRYxonjnyJj99Zg88++hcAQN9Y\nh4/eek2ywGwdyD+BsnMX7I5xzIKIaOCJThrH8/bjye+8gECFEgAQFhGF5l729fYkM4D1W3Zi14Ej\nOHXmPHYdOMIxCyIiLxCdNOQBAXYLFJqMRggi7mryFDOAA4eLcP7SNcSNiEJWZjoG7upERAS4MaYR\nM3os8vZ9is5OA86Vn8TxvANISJ4gZWw9cClzIiLvEp00snMeRlHBIQwdNgInDn+JMXekIs2N/TTM\nJhPe/PuL0AaH4pHl30NbSzO2blqHxrpa6ELDsXDZKiiClL2eg0uZExF5l+ikIchkGD9pGobHjIYg\nCAiLiHKre6rg0OcIj4yGob0NAJB/YBdGJSQjI2sO8vfvQt6+ncieu6jXc7jagY+IiAaG6KRRcboY\nn330DkLChgIwo772BuYsehLxSal9vrexoQ4VpSW46565OHpwDwCg/GQRlq76EQAgdfI0bFr7cp9J\ngxP4iIi8S3TS+HzHe3jimR8gNCISAFBXcx3vb3hVVNL4fPsW3DPvEbS3tVqPNev1UGt1AACNNhgt\nIu7E4gQ+IiLvEn33VKAiyJowACAkLAKBIib2VZwuhlqjQ9TwGMDcy2LlA3gnFhER9Y/olsawEXF4\nb/2ruGP8ZEAQUFpciOiRo1BacgwAkJTqfK+Ni5VnUH6yCBWlJejsMMDQ3o7tm/8JtVaHZn0j1Fod\nmvQNUKm1Lq99cPc268+xY8YiNj5JbNhERLeFqopSVJ0tk/w6opNGZ2cHVBotqs51BaVUa9DRYcCZ\nU19BgOAyaWTlPGxdUr3qbBmOfrkbDz6+Avs+/QDFhbnIzM5BSWEeElPSXF57xuz57nwmIqLbTmx8\nkl2F+tDe7ZJcR3TSeGDx0z2OGTs77Sb8uSMzOwdbN65FcUEudKFhWLB0Vb/OQ0REA0d0ib9xzct4\nYPFyBIdFAACuXKjEzg/exornfyH6YrFjxiJ2zFgAgFKlxpKVq0W9j9u4EhH5BvFLo9+Tgy3r/4bJ\nd92LpsZ6VJwuwbzFy6WMzYqzwImIfIPopDFm7DgELFyGzW/8FUq1Bk8/+3NotMFSxuYUZ4ETEXmP\n6KRxaO8OnP6qAEu//SNcv3oJm9a+jHsfWIz4O8ZLGV8PnAVOROQ9opNGa0sTnvr+TzFkSCBGxMVj\n9Nhx2PnB2wOSNHYdOMJZ4EREPkB00pg1/3EAQIfBgCGBgQgODceSlc9LFpgtjmEQEfkG0TPCL52v\nwD/+/Cuse/mXAIDqyxfw7483ShYYERH5HtFJY+/2LXhsxbNQqjQAgMjhMbhwrlyywIiIyPeIThoA\noAsJs3ssCG69nYiI/JzoMQ1tcBgunq+AIABGoxEFh/YiPHKYlLEREZGPEd1UmPPwMhzP2w99Yz1e\ne/HHqL58AfcveELK2IiIyMeIbmmo1BrMX/Itl8/n7duJaffM9UhQRETkmzw2KFFaXOipUxERkY/y\nWNLobX8lIiIaHDyWNLjxHhHR4MeWBhERieaxpHHHBOc79xER0eAhOmnUXr+Gd9f9GW/85dcAgOor\nF5G7d4f1+Wn3zPN8dERE5FNEJ41dH76NmTkPQyaTAwAio0fi1FcFkgVGRES+R/Q8jY4OA4bHjLY7\nJpP1nXM6Ozuwcc2fYOw0wmjsRGJKGrJyHkZbSzO2blqHxrpa6ELDsXDZKiiClO5/AiIiGjCik4ZS\npUFdzXXrXVKniwuhFrFzX0DAEDzxzA8xJDAQJpMJ/3r9j7hYeQZnThVhVEIyMrLmIH//LuTt24ns\nuYv6/UGIiEh6orun7l/wBD776F+ouX4V//vij1FwcC/mPLxM1HuHBAYCAIydnYDZjCClCuUni5A6\naRoAIHXyNJSf5J4ZRES+rs+WRsHBvZgy4z406RuwZOVqGAztMJvNUCiCRF/EbDJhw6svor72OtIz\nZiIiajia9XqotToAgEYbjJYmff8/BRERDYg+k0ZxYS6mzLgPez55F08/+3MEBircvoggk+Gbz/0c\n7W2t2PLPV1BVUdpzMmAvswMP7t5m/Tl2zFjExie5HQMR0WBWVVGKqrNlkl+nz6QRHhmNtf/zCzQ1\n1uOff/2N9bjZbIYgCFjx/C9FX0wRpMSYpPG4cuk8VBodmvWNUGt1aNI3QKXWunzfjNnzRV+DiOh2\nFBufZFehPrR3uyTX6TNpPPTESjTpG7Dljb/hkeXfdfsCLc1NkMvlUAQp0dFhQGX5SUyf9SASUyag\nuDAXmdk5KCnMQ2JKWr8+ABERDRxRd09ptMFY8fwv+nWBZn0DdmxZD7O5q3UyblIGRiUkI2p4LLZu\nXIviglzoQsOwYOmqfp2fiIgGTp9J4+N31mLhslV44y+/hmAz7iC2e2rosBF4+tmf9ziuVKmxZOXq\nfoRMRETe0mfSmDX/cQDAo09/X/JgiIjIt/WZNDS6rgl8waHhkgdDRES+rc+k8ZdfPuv8dlizGRAE\nrP71K1LERUREPqjPpLH6N38biDiIiMgPeGw/DSIiGvyYNIiISDQmDSIiEo1Jg4iIRGPSICIi0Zg0\niIhINCYNIiISjUmDiIhEY9IgIiLRmDSIiEg0Jg0iIhKNSYOIiERj0iAiItFEbfd6Kxob6rBj83o0\nNzVCEASkTb0bU6bfi7aWZmzdtA6NdbXQhYZj4bJVUAQppQ6HiIhugeRJQyaT4d4HFyNqeAwM7W14\n89UXMTpY+c31AAAQb0lEQVQxBcWFhzAqIRkZWXOQv38X8vbtRPbcRVKHQ0REt0Dy7imNNhhRw2MA\nAIGKIIRHDoO+oQ7lJ4uQOmkaACB18jSUnzwhdShERHSLBnRMo6H2Bq5dvojhsaPRrNdDrdUB6Eos\nLU36gQyFiIj6QfLuKQtDexs+fmcNZs1/DIGKoJ47yDrbUrbbwd3brD/HjhmL2PgkiaIkIvJPVRWl\nqDpbJvl1BiRpmIxGfPzOGoybmInEcekAAJVGh2Z9I9RaHZr0DVCptS7fP2P2/IEIk4jIb8XGJ9lV\nqA/t3S7JdQake+rT999CeGQ0psy4z3osMWUCigtzAQAlhXlITEkbiFCIiOgWSN7SuFh5BidPHMbQ\nYSOw/pXfQhCAmXMWIiMrB1s3rkVxQS50oWFYsHSV1KEQEdEtkjxpjByVgBd+/39On1uycrXUlyci\nIg/ijHAiIhKNSYOIiERj0iAiItGYNIiISDQmDSIiEo1Jg4iIRGPSICIi0Zg0iIhINCYNIiISjUmD\niIhEY9IgIiLRmDSIiEg0Jg0iIhKNSYOIiERj0iAiItGYNIiISDQmDSIiEk3ynfs+ff8tVJz+CmqN\nDiue/yUAoK2lGVs3rUNjXS10oeFYuGwVFEFKqUMhIqJbJHlLY8KUu/DYiufsjuUf2IVRCcl45ke/\nQVx8EvL27ZQ6DCIi8gDJk8bIUQkIUqrsjpWfLELqpGkAgNTJ01B+8oTUYRARkQd4ZUyjpUkPtVYH\nANBog9HSpPdGGERE5CbfGAgXBG9HQEREIkg+EO6MSqNDs74Raq0OTfoGqNTaXl9/cPc268+xY8Yi\nNj5J6hCJiPxKVUUpqs6WSX6dgUkaZjPMZrP1YWLKBBQX5iIzOwclhXlITEnr9e0zZs+XOkIiIr8W\nG59kV6E+tHe7JNeRPGl8sukfuHC2DK0tzXjt9z/BjNnzkZmVg483rkVxQS50oWFYsHSV1GEQEZEH\nSJ40HnpipdPjS1aulvrSRETkYb4xEE5ERH6BSYOIiERj0iAiItGYNIiISDQmDSIiEo1Jg4iIRGPS\nICIi0Zg0iIhINCYNIiISjUmDiIhEY9IgIiLRmDSIiEg0Jg0iIhKNSYOIiERj0iAiItGYNIiISDQm\nDSIiEm1g9gh34WxpCfZu3wKz2YwJU6YjMzvHm+EQEVEfvNbSMJtM2P3Ju3hsxXP41upf4VTRUdRU\nX/VWOJKpqij1dgi3xJ/j9+fYAcbvbf4ev1S8ljQuX6xEaHgkgkPDIZfLkZx2J8pPnvBWOJKpOlvm\n7RBuiT/H78+xA4zf2/w9fql4LWk0NdRDFxJqfawNDkFTY723wiEiIhE4EE5ERKJ5bSBcExyCxvpa\n62N9Qz00uhCnr/3DT749UGFJ4tDe7d4O4Zb4c/z+HDvA+L3N3+OXgteSRvTIUairuY6GuhpotME4\nVXQU859Y2eN1P35pjReiIyIiZ7yWNGQyGWY/tARb3nil65bbO6cjIjLaW+EQEZEIXp2nMSYpFWOS\nUr0ZAhERucGrSaM3vjTx79P330LF6a+g1uiw4vlfAgDaWpqxddM6NNbVQhcajoXLVkERpAQA5O3b\nieKCXAgyGWbNfxyjx6YAAK5eqsKn721AZ2cHxiSlYtb8xwEAxs5ObN+yHtcuVUGpVmPB0lXQhYR5\nJPbGhjrs2LwezU2NEAQBaVPvxpTp9/pN/J2dHdi45k8wdhphNHYiMSUNWTkP+038FmaTCW/+/UVo\ng0PxyPLv+VX8r7/0MyiClBAEAXK5HE99/6d+FX97Wyt2fvAWrl+9DEEQMO/R5QiLiPSL+GuvX8PW\njesgCIDZDNTXXsfd9y9A6sQMr8UvnzFr/q888uk8yGwy4b0Nr+Lxbz2PzOwc7N22GbFjkqBSa7wS\nj1KlxoQp01H+9QlMzMwCABzcsw1Do0bgoaXPoKmxHpXlpzAqMRk3rl1G7t5PseK5XyAxeQK2blqH\nyXfdA0EQ8OHbr2HOw08ie+4iFObug1KtQWh4JIqOfAlDexse+9ZzCAxUoDB3H+4YP9kjsXd0GDBy\nVAJm3r8AqZMyseuDtzEqIRnH8vb5RfwymRwp6RmYPP0epGfMxJf//gThkcPwVcEhv4jfouDgXphM\nXYkvJX2q3/z+AEBh7uf4xn+8gDvvnoW0qXcD8J/ffwD47MN3MCoxGfMefQrpU++GQqlE/v6dfhG/\nUq3BxMyZSM+YifSpM3Asbz/ufeBRHD24x2vx++Qtt7428W/kqAQEKVV2x8pPFiF10jQAQOrkadb4\nzpz6CslpUyCTyxEcFoHQ8EhcuVCJJn0DDO3tiI4ZBQAYNykT5V+f6D7XCeu5ksZPxvmK0x6LXaMN\nRtTwGABAoCII4ZHDoG+o85v4AWBIYCCArhoRzGYEKVV+FX9jQx0qSkuQducM6zF/ih9mM8xms90h\nf4m/va0VFyvLMWHKdACATC6HIkjpN/HbqjxzGiHhQ6ELCfNq/D7ZPeVs4t+VC5XeC8iJliY91Fod\ngK6CuaVJDwDQN9RhRFy89XVaXQj0jXWQyWTQBt+8pVgXHGqdzKhvqIe2+/PKZDIEBanQ2tIMpUrt\n0Zgbam/g2uWLGB47Gs16/4nfbDJhw6svor72OtIzZiIiarhfxf/59i24Z94jaG9rtR7zp/ghCNj8\nxl8hyGRInzoTaVNn+E38DbU3oFRrsOO9Dbh+5SKGjYzDfQ8+7jfx2zr1VQFS0qcC8O7vj08mDb8k\nCB47lRnmvl/kJkN7Gz5+Zw1mzX8MgYqgnuH6cPyCTIZvPvdztLe1Yss/X0FVRanfxF9xuhhqjQ5R\nw2N6X8vIR+MHgCe/8wI0uq6CafMbryBsaJTffP8mkwnXLlVh9oInED1yFPZu24L8/bv8Jn4Lo9GI\nM6eKkD13EQAn4Q5g/D7ZPeXOxD9vUWl0aNY3AgCa9A1QqbUAAG1wqH3sjXXQ6kK7P1Od9XhjQ531\nM2mDQ6Dvfs5kMsHQ1ubRWorJaMTH76zBuImZSByX7nfxWyiClBiTNB5XLp33m/gvVp5B+cki/N8f\n/wufvPsPnK8oxfbN/4Ra6x/xA4BGFwwAUGm0SByXhisXKv3m+9cGh0IbEobokaMAAEnjJ+Ha5Sq/\nid/ibGkJho2ItY7rejN+n0wathP/jJ2dOFV0FAkpad4NyqFfNzFlAooLcwEAJYV5SOyOLyF5Ak4V\nFcDY2Yn62huoq7mO6JhR0GiDoQhS4vKFczCbzfj6WL7Ne9JQciwPAHC6uBCx8UkeDf3T999CeGQ0\npsy4z+/ib2lusnbrdHQYUFl+ElHDY/wm/qych/Hdn76E77zwOzz0xDOIi0/Cg4+vQEKyf8TfYTDA\n0N4GADAY2lFZfgpDh43wm+9frdVBFxyK2uvXAACVZ04hIirab+K3OFV0FMlpU62PvRm/8OOX1ni+\nLeUBZ0tLsHfbFuvEP2/ecvvJpn/gwtkytLY0Q6XRYsbs+Ribko6PN66Fvr4OutAwLFi6yjpYnrdv\nJ74qOASZTG5/y9vF89jx3gYYOzu7bnl7qOuWt87ODmzfvB7Vly8gSKXGgidWIjgswiOxX6w8g41r\n/oShw0YAECAIwMw5CxEdMxpb/SD+61cvYceW9TCbAbPZjHGTMpAx8360tjT7Rfy2qs6W4eiXu/HI\n8u/5Tfz1tTfw0duvAxBgMhkxbmIGMrNz/CZ+AKi+fAE7P3wbJqMRIWERmLf4aZhMJr+Jv8NgwOt/\n+Cm+/cLvoFAEAYBXv3+fTRpEROR7fLJ7ioiIfBOTBhERicakQUREojFpEBGRaEwaREQkGpMGERGJ\nxqRBRESice0p8nnNTY34fPt7uHzhHIKUKsjlAciYeT8UShU+fOs1hIQPRYehHWpNMDKy7kf8HeMB\ndC3fXXTkINQaLUwmE2bev8D7Kwv0Q1NjA/Zs24yFy1ah+vIF6PUNiOfmZeQlTBrk8z5863WMn3IX\n5i/5FgCgsb4WZ04VQaFUIWZ0Ih5Z/j0AXTN/P3z7dQQMCURc91IId949C1Pvno2a6qt4Z83/4NmU\nlz0en8lkgkwmXaNdowvGwmWrAADXrlzE1YuVTBrkNUwa5NPOnzmNgIAApHdv/gMAupAwTJp2D6rO\nltm9NnJ4DO667wEcy91nTRoW4ZHDIJPJ0NLc5HQzrx3vbUBAwBBcvXQehvY23PvAYsTfMR5mkwn7\nd32EC+fKYOzsxMRp2Uifejeqzpbhy39vRZBSjdobV/HMD3/jNP6Swjwc+XIPBEFAZPQIPPDYN3Hm\n1FfI/fxTmExGKFVqzH/8W1BptDi4Zxvqa26grqYabS3NmDrzfqRNnYGGuhq8v+Hv+OazP8fB3Z+g\ns7MDl85XIDN7LoJDw7Fn22YYjZ0ICBiCeYuXIywiygPfPJFzTBrk025cu4yo4bGiXz9seCyOfLG7\nx/HLVecgCLJed39srK/F8u//DHU3qrFp3Z/x7f/8LYqP5SFIqcRT3/spjJ2d+Nf//RGjE7vW8qm+\nfAHf+sGvXG6NeePaZeTt34lv/MePEaRSo621BQAQMzoRT33vJwCAoqMHcfiLz3DPvEcBdK219dT3\nfgJDexvW/+23iE/u6moTBAEyuRwzZj+Ea5fOY9ZDSwB0LXn/5Hf+E4JMhsozp3Bg18d4+Mlvi/6+\niNzFpEF+ZffWTbhYeQZyeQCy5z3S43nHhdSOfrkHJ48fRqAiCAu6u3hcsWxxGRoRiZCwoai5fhWV\n5Sdx/eolnP7qGADA0N6KuhvVkMnliI4Z1eteyucrSpE0fjKCupeZtiwo11hfi893vI9mfQOM3Yvo\nWSSmpEEeEABlgAZx8XfgyoVKREaPdHmNtrZW7NiyHrU3qiEIAkwmU6+fkehWMWmQT4uIGo7SkuPW\nx7MXPIHW5ia8+fcX4WzbmWuXqhAeGW19bBnTEMVuIxszBEGA2QzMemiJtXVhUXW2DEMCFW58kpv2\nfPIups7sGrCvOluGQ3u228Rg+0qz089o68t/b0Vs/B14+Bv/gYa6Gmxa9+d+xUQkFm+5JZ8Wl3AH\njMYOnDj8hfVYR4fBWsDb7nFSfeUicvd9isnTsvt1rdLiQpjNZtTVXEd97Q2ERURh9NgUHM87AJPR\nCACovXENHQaDuNjjk1BaXIjWlmYAQFv3/9vb26DRdm1sVFKYZ/eeMyeLYOzsRGtzE6rOlmNY957O\nFoEKBdrb2qyPDW1t0HZvplNckOv+hyZyE1sa5PMWfeO72Lt9Cw4f+AxKtRaBgYHIzlkEM4CLlRXY\n8Orvum+51WH2Q0v6vQmOLiQMb/3v72Fob8OcRU9CHhCAtDtnoLGuBhte/R3MZjPUGi0efuq7os4X\nETUc0+6Zh41r/gSZTI6o4TGYt3g5pt/3ID5+Zw2CVGrExSehoa7G+p6hw0Zi49qX0dbSjOn3PQCN\nNtju+bgxSTi8/zNs+NtvkZk9FxlZc7Bjy3rk7vsU8Unj+/W5idzB/TSI0HX3VELyBCSlTvJaDAf3\nbEOgIkh8dxqRF7B7igiA0OfoAREB7J6i20zevk9x+qtjEATAbO4aGkkaPxnzFi/v9zlbW5rx7rq/\nWMfRLeddsnK19c4pMWbMmt/vGIgGCruniIhINHZPERGRaEwaREQkGpMGERGJxqRBRESiMWkQEZFo\n/x/QlA88piyzlQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Specify facecolor when creating the figure\n", "fig, ax = plt.subplots(facecolor='lightslategray')\n", "df.plot(kind='scatter', x='GDP_per_capita', y='life_expectancy', ax=ax, color='white', linewidth=0)\n", "ax.set_ylim((0, 85))\n", "ax.set_xlim((0, 70000))\n", "# Specify background color for the axis/plot\n", "ax.set_axis_bgcolor(\"lightslategray\")\n", "ax.set_clip_on(False)\n", "\n", "# Be sure to specify facecolor or it won't look right in Illustrator\n", "fig.savefig(\"output.pdf\", facecolor=fig.get_facecolor(), transparent=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }