{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import your data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CountryContinentGDP_per_capitalife_expectancyPopulation
0AfghanistanAsia66354.86322856302
1AlbaniaEurope419574.2003071856
2AlgeriaAfrica509868.96330533827
3AngolaAfrica244645.23413926373
4Antigua and BarbudaN. America1273873.54477656
\n", "
" ], "text/plain": [ " Country Continent GDP_per_capita life_expectancy \\\n", "0 Afghanistan Asia 663 54.863 \n", "1 Albania Europe 4195 74.200 \n", "2 Algeria Africa 5098 68.963 \n", "3 Angola Africa 2446 45.234 \n", "4 Antigua and Barbuda N. America 12738 73.544 \n", "\n", " Population \n", "0 22856302 \n", "1 3071856 \n", "2 30533827 \n", "3 13926373 \n", "4 77656 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"country-gdp-2014.csv\")\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specify axis labels with pandas\n", "\n", "When you plot, you get back an `ax` element. It has a million and one methods, two of which are `set_xlabel` and `set_ylabel`." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXJ+1MMs2lFwmggAm0XKpYaLvlIigtFnRd\nf8CPFWrXddFWF2QLiKtSWFeqLAp4YdkFBLRClx8U8Acq/n74KyCNCF5SIYBrWwQxpeXShKultDRt\nP78/vmeamXQmOWnmZGaa9/PxmEcyJ3PO+UwmOZ/zvZu7IyIiMpCacgcgIiLVQQlDRERiUcIQEZFY\nlDBERCQWJQwREYlFCUNERGJJPGGY2Xlm9vvocW60bbyZ3WtmT5rZMjMbm3QcIiIyNIkmDDN7NzAf\n+CvgcOAjZjYRWAjc7+4HAw8AFyYZh4iIDF3SJYzJwG/d/S133wY8CJwKnAQsiV6zBDgl4ThERGSI\nkk4Y/w28L6qCGgN8GNgP2Mvd1wO4+4vAngnHISIiQzQ6yYO7+2ozuxy4D3gD6AC2FXppknGIiMjQ\nJZowANz9RuBGADO7FFgLrDezvdx9vZntDXQV2tfMlEhERHaBu1upjzkcvaSao6/vBP4ncCtwN/DJ\n6CVnAD8ptr+7V+3j4osvLnsMIzX+ao5d8Zf/Ue3xJyXxEgZwp5lNAHqAs939L1E11R1mNg9YA5w+\nDHGIiMgQDEeV1PsLbHsFmJ30uUVEpHQ00jtBM2fOLHcIQ1LN8Vdz7KD4y63a40+KJVnfNVRm5pUc\nn4hIJTIzvBobvUVEZPeghCEiIrEoYYiISCxKGCIiEosShoiIxKKEISIisShhiIhILEoYIiISixKG\niIjEooQhIiKxKGGIiEgsShgiIhKLEoaIiMSihCEiIrEoYYiISCxKGCIiEosShoiIxKKEISIisShh\niIhILEoYIiISixKGiIjEooQhIiKxKGGIiEgsShhStbq7u1mxYgXd3d3lDkVkRFDCkKq0dOnttLQc\nwgknnEVLyyEsXXp7uUMS2e2Zu5c7hqLMzCs5PimP7u5uWloOYdOm5cAU4AkymVmsWbOa5ubmcocn\nUnZmhrtbqY+beAnDzC40sz+Y2RNmdouZpc1svJnda2ZPmtkyMxubdByy++js7CSdbiUkC4AppFIt\ndHZ2AqqqEklKognDzFqAzwBT3X0KMBqYCywE7nf3g4EHgAuTjEN2L62trWzZ0gk8EW15gp6eNbS2\ntqqqSiRBSZcw/gJsAerNbDSQAZ4DTgaWRK9ZApyScByyG2lubmbx4mupqzuO+vqDqas7jiuvvIyO\njg7mzz+bTZuW8/rrj7Bp03Lmzz+7JCUNlVpEEk4Y7v4q8G3gWUKieN3d7wf2cvf10WteBPZMMg6p\nXv1dqM1qgAzbtm3nnHM+z6mnnsumTRModVWVSi0iEXdP7AEcAKwEJgCjgLuAjwOv9Hndy0X2d6lO\nXV1d3t7e7l1dXbt8jFtvvc0zmQk+duw0z2Qm+K233rbj2JnMBIfHHTz6Ot5hZfS1d3smM8G7urqK\nHmugWAudK3tMkUoVXTtLfk0fnXA++ivgYXd/BcDMfgS8F1hvZnu5+3oz2xvoKnaARYsW7fh+5syZ\nzJw5M9GAZeiWLr2d+fPPJp0ObQ2LF1/L3LlzBnWM7u7uHdVLmzaFnlDz589i9uzjdzR6h+0QShSt\nwBvAd4Gjqa+fxPbt61i8+FqAose6//4H+o210LmypRb1yJJK0dbWRltbW/InSiILZR/AYcDvgTrA\ngJuAfwIuBy6IXnMBcFmR/UuadaW0+t6Zd3V1+bJly0pyR97e3u5jx06LjhEeTU1Td5wvnR7bp4TR\n5NDl8LjX1Y3zZcuW7ThnsWPFibXaShilKNlJ9SOhEkaiCSPEzReBPxC6tCwBUoQqqvuBJ4F7gXFF\n9i3xr1F2RaGLUN8qngULzvVMZoLX1x/sMKnghX6w5yx2oe7q6vJUqiGqfpoafU17Q8OhO1U39Xes\nZcuWFU1KubLvtalpasHjV4r+qt1kZKnahDGk4JQwyq7QRahwG0LGYXl0l1+4HWFXz933Qt1bYuhy\naHfo8sbGw/2mm24qep5Cx1q5cqXX1o7Li7Vv6SRrsHfuw32nX20lIUmWEoYMu8HcmcOB0cXbHW5z\nGOP19VOGfKdb6MLbG9fy6JzL80of/TVgZ3+WTSCZzP4OGc9kDvVUqtHT6bFDvkMvx51+f1V4MvIo\nYVSAkVY/PJi6/94SRnieSjUWvFMfrGK/8wULzovOeZBDxhcsOHfHhbqxcarX1o7z6667oegx8+Nf\n7ul0g9fVDb1kVK47fZUwKlO5rhlKGGU2EuuH+7sI9a3iMat1aHQ41GG8p1INQ/4nGUy32kxmgtfV\n5VcvQaZg0iiUCOvrD/L6+sOGfIdezjv9amlrGSnKec1QwiijkXr31tXV5ZdccqnX1Y0reBHK3j0t\nXHiRw5ioAXqcww1Dvkj29zsvfMGf4mPGHNSnmmyK19Y2FWyP6HvsurpxJfmMy/23MtJKwZWq3H8H\nShhlNJS7xmr9B+57d3TJJZfGHtgG472ubtyQ3vNA3WoL/TOm00194pjgDQ2HFvycrrvuBq+tbcrr\nWVWqO3Td6Uu525SUMIZBsYv7rt4tVGM1VnYsRd/qnWLvt9A/Bkz0Sy65dMhx9Pc7L3RRvu66G6J2\njSkOExwu90xmgq9cuTLvc+2vraNUCX5Xj1OtNxi7o6F8Fiph7OYJY6CL+2DvGsv9B7Mrsu8x1OWP\n8dDbyfu9O0ryfQ70Oy/0D9235LBgwXl5n+t1191QsZ9LNd5g7K5K8VmUs6SphJGguBe9wdxxlLtI\n6j64eLu6uqJSxS2eHTEdxlN0DXhRTfIfY1fu8rL7rFy5cqfPtbZ2nDc2vqesn0uxmCs1kY00pfws\n1EtqN0wYSVzcy30BGOwd0iWXXBqVKqZF1Tm3OUz0+vqDYpeo+k4TUu6qlUKfa2Pj4V5b21RxF+ZK\nuMGIoxI+16RVy2fRHyWMBCV1cS9XkXSw76e/hutdGUtRKVUrxX4P2WqpSmqULvcNRhyV8rkmrRo+\ni4EoYSQsqYt7Oe7IBnuHVMqG60r7Zyv2uVbinXIl966qtM81aZX8WcShhDEM+uslVWkXl/6UooSx\nqxeDSizOV9PnV6mxVuLnmrRK/SziUMJIUH9/GHGK4QP9YQ33H96tt94WzeY6xmGip9NjB7xDKtUd\n1Ui7Ex0p9LlWl7IlDOAg4HvRNOQPZB9JBFPg3CX8FRY20EpsA/2TxO2OO1z1vvkxdzncEnsQ3WAT\nW7HXV3txXgrT51o9ypkwHgc+CxwBTM8+kgimwLlL9gssdHEb6OI6UDF8oIQylIv3rhquqoOBEmE1\nF+elOH2u1aGcCeORJE4cK7gSJYxiF7fei+ttUVfSaQ4ZP/PMz3pXV9eACWGgi3Ph44/ZMc1GEv94\nw1F1UOnVE7qoyUg37AkjWhVvArAIOBt4e862CUkEUyCGgr+MwQ5IK3Zx6x2slp3W+rbo+0mx5heK\nU8LIP354TSrVmGg1VdJVB5XcADpSun6K9KccCePPwDPR176PZ5IIpkAMO/0iBntBGOjiFgasTYqq\njIonloEaxYtdnE87bY7DxJzzd0WN0YM7z2AleZddqSWMSo1LZLiVs0qqLs62RILrkzB25YJQaMqL\n3H1Wrlzp6XSjw3ejKqPexDLQsp+55yjWHTecO3civ1u80JrX2WnE6+sP9rq6cYMeWT3cKrEBtBJK\nPuX+XETcy5swHo2zLZHg+iSMXbkg3HrrbZ5Oj40u0mM8lWrYcXHL/1nGoTYvGUHGGxvfs8sXxJ3b\nMKY6ZDyV2nlqitGj66Oqq2k+0AJElVLtUmkXx3KXMCrlcxEpR5XU3lGPqFXAVGBa9JgJrE4imAIx\n5P0SSjkgrfB0GI0Odd7QcFiUQC4f0oVn5cqV0bxFyz23l1TfqSl6FyDKjWWML1u2bFDvSapnOhaR\nJJUjYZwBLAc2RGMvlkePnwCnJhFMgRh2+kUM5oLQX4mkvb19pyU5YapnMgf4V77ylV2a0TT3jjsb\nZybzHoeM19W1Fp2aYtmyZTtVU8HEggljuKpddqX0UCkljmqYjkUkSWWpkgJqgI8nceJYwQ2hl1T2\nQjy4EkaYcG/lypX9tnsU0ndRnjDSOn9a7ZUrVxaNNVSN9b4+nR5b8HxJ3ckWSnaDqVoZ6dUxKmFI\nJSlnG8bvkjhxrOBijsPom0ByL16pVIOn02MLlkh62zAm5rVv9NfuUez8OyefMVGyiXe32bt40ZQd\ncQ40krqh4VCvrW3KWzFuV+T+vurqxu2UvOJ0LNDFsjI7AsjIVM6EcRnwBWC/ShmHkSussDbOGxvD\nP2n+imqh3aC2tqnoNN3Zkkj254UufnV14/u9+PV2zfW8KqVQQol/AR3MXX7f9126uZ8K9+LqL9mp\nOqZXpVTLychWzoTx50oah5Grdw3nQiuq7Ty6Oo7BTPWdTTahYTv/rjw8z+SVGOIa3JQjQ7uj3/n9\nFh8nsqvxisjw0my1fXR1dUUX6vyG6/r6d/vo0ZmdLuAD9abK3hX217aRu3/2Dn/MmCnRBfYzUfKa\nEiWqy3d5AaL4U44U/vlgFHq/qVTDoKtWVB0jUjnK0Uvq+OjrqYUeSQRTIIaiv5D29vaoJJF7sbvc\nIePp9Luii/htOYlkyo5eR32rfvoOmOtdrnSqZ5crbWg4dMcgvkIlmzCG4tseuua2Fr1oxm2wH64S\nhnvhi30195ISGenKkTC+Gn29scDjB0kEUyCGor+Q3ovm5dFF/V1FLuJdnm2Erqsb56ed9rG8toGa\nmkz0usMdGn3UqIw/9NBDnk43eRj9fbvDpz0M4gsX1FGjMjuVbLLrX9fVjdsxuWBfg+lJNNAde6nv\n6HWxF9l9VGWVFGEtjQ7g0ejr68C5wHjC+hpPAsuAsUX27/eXkttbKJWq97q6Q3e6iMM+UUK4zcMA\nur5JJRNtz32e8lRqLw8jvzM71emH5+PyttXW9l/9tKvTmlTSwkwiUh2SShgWjl2cmb0NuBg4FnDg\nIeBr7v5yvzvufJwaYB1wJLAAeNndrzCzC4Dx7r6wwD4+UHzd3d10dnbS0NDA9OnHsmnTcmAK8ATw\nPqAe+DnwBvAqcA4hT2UdCNwKzIieHxb9fDRhGMoVhPWjHsnZZxLw19F++wJPMXPm0Sxf/vOica5Y\nsYITTjiL11/vPU5T0zTuv/96ZsyYUXQ/EZHBMjPc3Up93JoYr7kN6Ab+Fvho9P3tu3Cu2cCf3H0t\ncDKwJNq+BDhlF44HQHNzM62traxdu5bTTjsJOJowg8ks4FvAK8AxwFnA6cBaQjIh+vocsDHn+Tpg\nHLCdMKP7hcCf+uzTDXyfMHtKJ/AF2tp+zapVq4rG2draypYtnXnH6elZQ2tr666+dRGR4TVQEQT4\n7wLbfj/YogywGPhs9P2rfX72SpF9Bix6hfWrG6NqokkOdQ4LoraL3CqoMCYjPB8XVVdlfNSoCZ7f\nu+lfC1RbNeTsM8Hhsw77O7R77+C8SX7TTTcNGKt6EolI0kioSmp0jJxyr5l9DLgjev5RQrtDbGaW\nAk4CLsjmqb55q9i+ixYt2vH9zJkzmTlz5o7n3d3dzJt3Fj09owk1ZdmqqKOor7+fLVvWMmrURDZv\nXkUocbQCRk3NJmpqXmTr1nvYtm0mofD0f4F3EKqg9o2ORfR1b2pqnsfsebZtuwdIATcBtUAz2ZLK\npEmT+v09zJ07h9mzj6ezs5PW1laam5v7fb2ISBxtbW20tbUlfp6ibRhmtoFwITdCQ8C26EejgDfc\nvSn2ScxOAs529w9Fz1cBM919vZntDSx398kF9vNi8UFoF5g16xNs3FhPbhtDOv0u3NeSTreycePT\nQAZoI5tQ0un3k0rtx8aNv9+xz5gxk5k79xhOOeUUTj/9jLy2kNra4+jo+BWPPfYE8+efTU3NHmzc\n+BdgC9ACrCGVqufhh+9Ue4SIlN2wt2G4e6O7N0Vfa9w9FT1qBpMsInOBpTnP7wY+GX1/BmEG3EFr\nbW1l27b1hMHnvW0DW7Z00tPz0yghfJowm0luieEdbNz4VN4+b765hjvuaOf0089g/vy/J5OZRVPT\nNDKZWdx443VMnjyZuXPnsGbNau666z/JZLYAdwLXA3cyevTGgu0R3d3drFixgu7u7l15iyIilSOJ\neq7cBzCG0ErcmLNtAnA/oTvSvcC4IvsOWFcX2jAaojaMiZ5KNXkms39O19qdp7oIz8d4GA3+Hi+0\n9sXKlSv77bIapz1ipM/gKiLlQbm61ZZTnG61EO7iOzo6ANhvv/2YNu29bN58DXAC8AKp1DGMGpVi\n8+YJhF5T3wUmA8cBXwP+ndATKojb3TXbpbdQe0R3dzctLYfkVW1lMrNYs2a12i5EJFFJVUnFafSu\neM3NzZx44okALF16O9u3O2HoyGcYPdr4ylcu4qCDJjFv3lfYuDE7BqOT0LidAp4njKkICSZud9fm\n5uaiF//Ozk7S6VY2beqtCkulWujs7FTCEJGqFGfg3s3u/omBtiUhbgkja+e7+iuARYwZcyDbt69l\n27Yeenr+FbicMFv7HzFzRo1KsXXrXsDzpFI1LFnyfebOnTOk2FXCEJFyKefAvXf3CWQUYa3vitPR\n0UFNzX6EC3Q3ITHcw5tvfp/Nm+9i+3YIJY/lwGPAPbgbW7c+BDwF/JrRo9PMnn38kGNpbm5m8eJr\n8xrPFy++VslCRKpW0SopM7sQuAjImNlfspsJfUlvGIbY+rVq1Sra29s54ogjmDx5MkuX3s68eWex\nefMWQu+nt4AmwhiLVqCTbdvqyWTG5lQT/Yow9iKZaiONu6hO/bVNiYxoA7WKA99IorU9zoMivaQW\nLDgv6tl0kEPG5837TM4a3DdEkw3uV3Ciwd61truiXlLjBzUhoOze1LNNdgeUs5eUmY0nzNJXl5No\nHkwmheWd1/vGt2rVKt71runAb8gd2R1MJjRmX0Zt7b/x1lsp4OmcvSexcOEcrrrqumjw3Xbg34Cz\nCQPwnuSSS/6FL3/5okTfl1QmtTvJ7qJsbRhm9mngQcJ0IF+Nvi4qdSBxtbe3Exqs8wfihckAHyG0\nT1wAvEYq1U3u4Lx0+iU+//nP5Qy+e4WQZFYDX6CuLs2ZZ35mON+OVJBsz7ZCVZQiEq/R+zzC3N9r\n3H0WMBV4LdGo+tHd/TI7zzj7AqFLLIR/9gl88pMfZ8mSG8hkZlFffxiZzCxuuun6HV1hTzzxxJxG\n6Q+SyZzDD35wne4kRzDNKCzSvzjdale4+wwzeww40t3fMrM/uPu7+92xFMH1qZLqrTL4EPAjwjiK\ndYRprlaQW0W1cuUjTJ48ecAGTDVwSq6lS29n/vyzSaVa6OlZw+LF1w65i7XIcCvnwL11ZjYO+DFw\nn5m9CqwpdSBx9HabvQVYBbRTX38ZH/7wYfzwh0eRTSALFnyGyZPDXIb9Da6L8/P+KNnsftSzTaS4\nQU0NYmbHAWOB/+fuWxKLqvd8O0oY+d1mf03fRsmXXnopr5tt0rJ3oul0qMbQnaiIVIqkShhVMZdU\nfu+VVcA/EtaheKFkI7MHQ71pRKSSlXOkd9nl9145nhD214BOenoeZv78swtOH57U1OLqTSMiI1FV\nJIz83iudhDETf0coZRS+WC9dejstLYdwwgln0dJyCEuX7soy5HHiAfWmEZGRIM44jHOigXtlkzsv\nU0PDPOCP9Hex7u7uZv78s9m0aTmvv/4ImzYtL1oKGWo8midKREaKOL2k9gJWmNmjwA+AZTsNvx4G\nub1XHn30Mc4/fxapVAtbtvyZiy76Yt5rOzs7GT16H8J8Ut0kMbW4etOIyEgzYAnD3b9MmBZkMWFZ\n1afM7OtmNjHh2Io69dRTWLNmNV/84kcxq+Fb37ozr9rp0UcfY8OGp4HPAIcAVxStMhpKO0dzczMz\nZsxQshCRkSHupFPAYYSl6VYTlqzrAK5IYoKrnHPumEwrOylcY+NUr60d59/85rc9k5mw08SBK1eu\n3Gk7ZPy6627YaYIuTTQnIrsjyjX5oJmdB/wD8BJhwqYfu3uPmdUAT7l7YiWNwt1qe0dz19U1s3lz\n7xjCpqZpzJ17FNdffx9hfYugsXEqP//5DXlLrqprrIjsrso50nsCcKq7543udvftZvaRUgdUSGiT\naCF/wsED2bx5NXAdYc2LsLTqTTf9CRhFSCohEWze/MxO1VFaQlVEZHDidKv9GfBK9omZNZnZkQDu\nviqpwHKFbqx/Jn/CwTWExPAtwgJJM/jIR04gnZ5IqDGbBUwDjmb79p4ix+xEXWNFROKJkzC+C7yR\n8/yNaNuwaW5u5qqrriCse3EYIRlsJayJ8TRhqpAx/PSny3jrrT+RO2U5pMlkJu40TkNdY0VEBidO\nlVTelLFRVVSc/UqqqamJUaOMbdueBMZHj9wqqv0ZNWojn/vcR7nssqMIHbvWAReybdvlBUsO6hor\nIhJfnEbvu4A2eksVZwOz3P2UZEPLb/R++9v3Z9u2NGFG2meA7eSvujeTujrn2Wf/yF13/ZjzzvsC\nqdQ72bbteU0MKCIjStkmHzSzPYH/IEzi5MDPgc+5e1epgylwbnd37rjjDubM+RS5s9TCEYQatXcA\nLzBqlHHzzYt3JAZNPS4iI1XZeklFieFjpT7xYKxfvx54O/lVUPsCZwJfJZUyHn98Rd605kNZ50JE\nRHY2YMIws2bCkOnW3Ne7+7zkwso3e/ZswjrdvV1lw7CQTwLX85WvzBuWNTBEREayOFVSvwJ+CTxC\nWAsVAHe/M9nQ8hdQOuec87j66u8RqqBeJoy/mKzBdiIifZSzDeMxdz98l09gNpYwQvxQQkt1drrZ\n2wnzlHcCp7v76wX2ze2gxapVq7jqqv9kyZKlpNP771hzObenE6C2CxEZ0cqZMP4N+JW737NLJzC7\nCfiFu98YdcetBy4CXnb3K8zsAmC8uy8ssK8Xii+3Qfv++x/YsVTqpk1/wn0bY8YcpGVTRWTEKmfC\n2EC4yL8F9ABGmNiqacCDmzUBHX3nmzKz1cBx7r7ezPYG2tz9kAL795swGhoamD792D5zTM0EngRe\nqLrqKvXsEpFSKNsSre7e6O417p5x96bo+YDJIrI/8JKZ3Whmj5rZDWY2BtjL3ddHx38R2DNuwLkr\n6U2dehSwD/m9p/YjTKRbXcumJrlCoIhIKcQasR2tuHcgUJfd5u4Pxjz+NOCf3P13ZnYlsJAwniNX\n0WLOokWLdnx/+OGH71hJL0wa2AZ8mPzeU08Dc4ALq2ZuqNwVAsP7eoL582cxe/bxKmmIyIDa2tpo\na2tL/kQDzX8OfBr4PfAqsBzYBDwQZ+50wmp9z+Q8Pxb4P8AqQikDYG9gVZH98+Z4b29v97Fjp0Xr\nXIRHXV2r19aOc5joMN7htn7XwKhEhd5XU9NUb29vL3doIlKFSGg9jDiTD54HzADWuPssYCrwWsxk\ntB5Ya2YHRZs+APwBuJswiALgDOAncY638wyzbbi/wtVXf5P6+tGEtos5wBQaGw9m2rRd7tw1rDRz\nrohUgzgJY7O7bwYws1p3Xw0cPIhznAvcYmaPEaaa/TpwOXCCmT1JSCKXxT3YRRf9M5nMLOrqDgA+\nTE1NC+ec80V6el4EXohe9QRbtz5bNRdczZwrItUgTi+pHwGfAj5HmE/qVSDl7h9OPLicXlJLl96+\no/vs5s1Ps3079PT8kmzbRSp1DKNHp0mlWnaMz6i2LrXqJSUipVC2brV9gjgOGAv8zN13XpWoxIov\n0XodcClwL2F5jlaamj7ID394GePHj9cFV0RGtLJNPmhmN7v7JwDc/RfZbcAnSh1MMaFrbLb77O3A\nvwBpYDowCVjHpk09TJ06VYlCRCQhcdow3p37xMxGEa7Uw6ahoYFNm54mdKM9G7gT2EJYD+MJoI0Q\nloiIJKVowjCzC6NR3lPM7C/RYwPQRcxeTaXyxhtvkMnsDXwEeBth4HkruQP26uoOqJpBeiIi1aho\nwnD3b7h7I/BNDyO8s6O83+buFw5jjLS2ttLT00VYx7sL2EiYs7C3G+rmzc9UTa8oEZFqFKdKqj2a\ncRYAMxtnZokvz1rYIcD1wN8CTcBRhBqzmbhv629HEREZojgJ42LPmXrc3V8DLk4upJ11dnaSyRwA\nrAUmA6sJvaRGAVcCT5LJHKgqKRGRBMWZS6pQUok1B1WpNDQ0sGXLWuBCYBZhedangC8AJzIcI6M1\nRkJERro4JYzfmdl3zGxi9PgOYfW9YbF06e1Mn34sNTXjgUXU1e1JbW0n8+d/nEzmmmEZGa2ZZEVE\n4o30rgf+FZhNmFX2PuBSd9+YeHBmnslMyBmw10Zt7cl0dPyGyZMnD8td/86DBp+ounU2RGRkKdvA\nvSgxLDSz+uFIEn2FlfTeDqwA3k06fQDt7e3sscceNDc3x7poDyWxdHZ2RjH0duHNrrOhhCEiI8mA\nVVJm9l4zW0mYkhwzO8zMrk08ssibbz5FmOvwLOBgNmxYyTnnfDt21dBQq5M0k6yISBCnSuq3wEeB\nu919arTtv9390MSDM/PRoxvZuvUhehdIeh9hkaSBl2AtVXVSduLDap7YUERGjrJVSQG4+1qzvHMP\n26CHrVv3In8J1omEQXszBqwaKlV10ty5c5g9+3j1khKRES1OwlhrZu8F3MxShAWVViUbVq7nyV+C\ntZMwLcjAVUP51UlTYu1TTNz2EhGR3VWcbrVnAf9EmC72eeDw6PmwSKVqgJmEpcHfB2yksfHEWF1p\ntTCRiEjpDGo9jOFmZn7rrbcxb95Z1NRMYOvWLi699Kscd9z7BlU1pEF3IjKSlG0BJTM7ALiKMHGT\nA78Gznf3Z0odTIFzu7tz/fXf47zzvkQ6vT9bt6rRWUSkP+VMGL8BrgGWRps+Bpzj7keWOpgC5/au\nri4NnBMRGYSkEkacNowx7n6zu2+NHv8LqCt1IMVkezrl9pSqqdmXjo6O4QpBRESIlzB+ZmYLzazV\nzFrM7EvAPWY2wcwmJB1gQ0MDmzc/Q+7AuY0bn+bkk+doTicRkWEUp0rqz/382N39gNKGlHduz2Qm\nsG1bI1tmhV+EAAASrklEQVS2dAHvAF4BvgtM7rdqSg3dIjJSla1Kyt337+eRWLLI2rRpeTSW4h5g\nHfAwMAeYwujR7+See+6hu7s7bx/NLisiUnpxShiXAIs8WtLOzJqAq9z9U4kHZ+ahY1bWJOBrwN8R\nqqiOorFxElu3Prej55RmlxWRka6cjd6jCcu0TjGzEwjTxg7behi5bRfwAun0Z2lsnEro5buIDRue\nYNOm5cyff/aOaqi+jeTZ6UBERGTXxZne/EIzux/4LfAq8H53fzrxyHZ4H9AMvABs5cILL2D//Vs4\n55xvs2HDl6LX9CaFUk4HIiIiveJMb/5+4D8IdUFtwH+a2TsSjivHlujUvwNu5Ktf/Qbd3S+zdetz\nFJpyXNOBiIgkI04bRjvwSXdfGT0/Ffi6ux+SeHBm3tBwOG+8cTbwJWB/4ElGjXKuueYqzj9/YdEp\nx8vdS6rc5xeRkauc05sfnW3wBnD3u8zsF3FPYGadwOvAdqDH3Y8ws/HA7UALYfrZ09399UL7v/nm\nHwkT5P6GbBXTtm1H09nZyZo1q4telMs5u2x2/Yx0OlSPaSoTEdkdxClh7AV8HdjH3T9kZu8iJJHF\nsU5g9gww3d1fzdl2OfCyu19hZhcA4919YYF9fdSoerZtm0RYSryTMLX50aTT61m37pmKu3tXLy0R\nKbdy9pK6CVgGvD16/kfgc4M4hxU4z8nAkuj7JcApxXYeM+YA4Blyl2mF50mnWyuy55N6aYnI7ipO\nwtjD3e8gVCnh7lsZ3Ip7DtxnZivM7NPRtr3cfX10vBeBPYvt3NOzlpBz2gi9eduA0Wzduq4iez5p\nDXAR2V3FacPYaGZvIxpBZ2ZHEdok4jrG3V8ws2bgXjN7kvzReBR4vsPRR09j+fIO4C7CtCAzgT35\nl3+ZB8CKFSsqqmE520tr/vxZeQ3ylRKfiOx+2traaGtrS/w8cdowpgH/CRwK/DdhUMRH3f2Jfncs\nfKyLgTeATwMz3X29me0NLHf3yQVeX3R68yuvvIzzz19YsQ3L6iUlIuVStvUwopOPJjQeGPCku/fE\nOrjZGKDG3d8ws3rgXuCrwAeAV9z98oEavd2dc845j6uv/h6wL7COefP+nqVL74zdsKyLt4iMJGVN\nGLt8cLP9gR8RqpxGA7e4+2XRtOh3APsBawjdal8rsH9OCeNOoB7YSG3tyaTTE9mw4dEdr21qmsb9\n91/PjBkz8o6hLq4iMtJUZcIYKjPzZcuWceqpX2Ljxt5utQ0Nx9PTs4633voF/ZUw1MVVREaicnar\nLauTT57Dxo2rye1W+9ZbnVx11RUDTv+hLq4iIqUTp9HbgI8DB7j718zsncDe7t6eeHBmDssJwzZ+\nSbaUkE6/n3XrngLot21ioBKG2jZEZHdUzhLGtcDRwNzo+QbgmlIHUtyvCMM0eksJdXUH0NnZSXNz\nMzNmzCh6se9vIkItsiQiMjhxShiPuvs0M+tw96nRtsfd/bDEgzNzaABShAF7oZRQW3scHR2/YvLk\nnXriFtS3JKG2DRHZnZWzhNFjZqPoHbjXTDTqe3jsRVjDexYwDTia7dtrmT792Nilgr4lEbVtiIgM\nXpyE8R+ErrF7mtmlwEOEyQiHyQvAZGA18AXA6en5LzZtupNPfeofWbVq1aCPqOk7REQGr2jCiMZQ\n4O63EBaj+Abh6n2Ku/9weMKDUaOMMB3IB4EFwCjC0I2/5a239mbq1PcOuv1BiyyJiAxe0TYMM3vE\n3aeb2c/d/QPDHFc2Bs9k9mfTpheAtwEvA18ktLn3tj9ke00N9oKvXlIisjsa9oF7ZtYB/BD4LHBl\n35+7+3dKHUyBGBxuA84kNH6/Tpgod1/CLOtZk1i27FpOPPHEpEMSEal45Wj0/hjh6jwaaCzwGCZn\nAw8C64CHCT2m8tfzDjVlIiKSpDjdav/a3X82TPH0PbeHnlGP5Gw9iDBFSANh9b1OUqkeHn+8nTfe\neEPVSyIy4g17CcPM/j769l1m9vm+j1IHUtxqcksTtbXdfPObl1FX59TXb6SuzjnzzHlMn36sBuGJ\niCSovzaMM939+mgNi77c3b+WbGihhHHJJZfy9a9/O28xorlz5+xosG5oaGD69GM1CE9EJFJRs9Wa\n2efc/d9LHUyB87i799ubacWKFZxwwlm8/npvtVWxqc5FREaCSksYz7r7O0sdTIHz+EDxaZoPEZF8\nlTa9eckDGUh3dzcrVqygu7s7b7sG4YmIDI+qKGFkV82rqdmP7dvXFlw1T4PwRESCcgzc20A04WDf\nHwEZdx9d6mAKxOBdXV3su++BbNnyIEMd2S0iMhIMe5WUuze6e1OBR+NwJIusjo4OtmxpJndm2S1b\n9qCjo2O4QhAREapgidbgeTSyW0SkvHapDWO4ZKuk9tnnAHp6UuSO7H7uuWdUJSUiUkCl9ZIaNs3N\nzSxZ8v28kd1LlnxfyUJEZJhVfAkjG596QYmIxJNUCWPYGq+HKnd51dznIiIyPCq+Sipr6dLbaWk5\nRBMMioiUSVVUSWn6DxGR+EZsozeEaqh0upXcsRipVMuO6ikREUleVSSM1tZWtmzpJHcsRk/PGlpb\nW8sXlIjICDMsCcPMaszsUTO7O3o+3szuNbMnzWyZmY3tb39NMCgiUn7D0oZhZucD04Emdz/JzC4H\nXnb3K8zsAmC8uy8ssF/e9ObqWisiMrCKWg9jUCcw2xe4EbgU+HyUMFYDx7n7ejPbG2hz90MK7Dvg\nehgiIpKvmhu9rwS+SP7Mt3u5+3oAd38R2HMY4hARkSFINGGY2d8A6939MfpfdEnFCBGRCpf0SO9j\ngJPM7MNABmg0s5uBF81sr5wqqa5iB1i0aNGO72fOnMnMmTOTjVhEpMq0tbXR1taW+HmGbeCemR0H\n/HPUhnEFodH78sE0eouIyMCquQ2jkMuAE8zsSeAD0XMREalgVTE1iIiIxLe7lTBi6+7uZsWKFXR3\nd5c7FBGREa3iSxiZzATS6TA1yOLF1zJ37pxyhyUiUtGqduDeUJiZw+NohloRkfhGbJWUZqgVEakM\nVZAwNEOtiEglqPglWjOZWaRSLfT0rNEMtSIiZVTxbRhdXV2aoVZEZBBGbKN3JccnIlKJRnCjt4iI\nVAIlDBERiUUJQ0REYlHCEBGRWJQwREQkFiUMERGJRQlDRERiUcIQEZFYlDBERCQWJQwREYlFCUNE\nRGJRwhARkViUMEREJBYlDBERiUUJQ0REYlHCEBGRWJQwREQkFiUMERGJRQlDRERiUcIQEZFYEk0Y\nZlZrZr81sw4z+4OZfT3aPt7M7jWzJ81smZmNTTIOEREZukQThru/Bcxy96nAFOB4MzsGWAjc7+4H\nAw8AFyYZR7m0tbWVO4Qhqeb4qzl2UPzlVu3xJyXxKil3fzP6tjY636vAycCSaPsS4JSk4yiHav+j\nq+b4qzl2UPzlVu3xJyXxhGFmNWbWAbwItLn7SmAvd18P4O4vAnsmHYeIiAzN6KRP4O7bgalm1gQs\nM7OZgPd9WdJxiIjI0Jj78F2rzexfgU3AfGCmu683s72B5e4+ucDrlUhERHaBu1upj5loCcPM9gB6\n3P11M8sAJwBfBe4GPglcDpwB/KTQ/km8YRER2TWJljDM7D2ERm0jtJfc7O7fMrMJwB3AfsAa4HR3\nfy2xQEREZMiGtUpKRESqV0WO9DazD5nZajP7o5ldUOZYFpvZejN7Imdb0YGHZnahmT1lZqvM7MSc\n7dPM7InoPf17zva0md0W7fNrM3tnCWPf18weiAZN/t7Mzq2y+Ac98LOS4s85R42ZPWpmd1db/GbW\naWaPR59BexXGP9bMfhjF8wczO7Ja4jezg6Lf+6PR19fN7Nyyxu/uFfUgJLGngRYgBTwGHFLGeI4F\nDgeeyNl2OfCl6PsLgMui798FdBDahlqj95Etxf0WmBF9fw/wwej7zwLXRt/PAW4rYex7A4dH3zcA\nTwKHVEv80THHRF9HAb8Bjqmm+KPjng/8L+Duavr7iY75DDC+z7Zqiv8m4FPR96OBsdUUf877qAGe\nJ1Tjly3+kr+xEvxijgJ+lvN8IXBBmWNqIT9hrCaMJYFwUV5dKFbgZ8CR0WtW5mz/GPDd6Pv/BxwZ\nfT8K6E7wffwYmF2N8QNjgPbon6Jq4gf2Be4DZtKbMKop/j8Db+uzrSriB5qAPxXYXhXx94n5ROCX\n5Y6/Equk9gHW5jxfF22rJHt64YGHfWN/Ltq2D+F9ZOW+px37uPs24DULnQJKysxaCSWl31B84GTF\nxW+DG/hZcfEDVwJfJH+sUTXF78B9ZrbCzD5dZfHvD7xkZjdG1To3mNmYKoo/1xzg1uj7ssVfiQmj\nGpWy50DJuxKbWQPwv4Hz3P0Nkh04WdL43X27h7nI9gXeZ8kP/CxZ/Gb2N8B6d39sgONWZPyRY9x9\nGvBh4J/M7H1Uye+fUDUzDbgmeg8bCXfh1RJ/OKBZCjgJ+GG0qWzxV2LCeA7IbXjZN9pWSdab2V4A\nFgYedkXbnyPUMWZlYy+2PW8fMxsFNLn7K6UK1MxGE5LFze6eHe9SNfFnuftfCHWvf1VF8R8DnGRm\nzwBLCZNv3gy8WCXx4+4vRF+7CVWaR1A9v/91wFp3/130/E5CAqmW+LP+GnjE3V+Knpct/kpMGCuA\nSWbWYmZpQn3b3WWOycjPvNmBh5A/8PBu4GNRz4P9gUlAe1RsfN3MjjAzA/6hzz5nRN+fRpi9t5R+\nQKi/vKra4jezPbI9QKx34GdHtcTv7he5+zvd/QDC3/ED7v4J4KfVEL+ZjYlKp5hZPaEe/fdUz+9/\nPbDWzA6KNn0A+EO1xJ9jLuGGI6t88SfRQFOCBp4PEXr0PAUsLHMstxJ6J7wFPAt8ChgP3B/FeC8w\nLuf1FxJ6J6wCTszZPp3wz/YUcFXO9lrCIManCO0LrSWM/RhgG6GnWQfwaPS7nVAl8b8nirkDeBz4\nQrS9KuLv816Oo7fRuyriJ7QBZP92fp/9X6yW+KPjH0a4CX0MuIvQS6qa4h8DdAONOdvKFr8G7omI\nSCyVWCUlIiIVSAlDRERiUcIQEZFYlDBERCQWJQwREYlFCUNERGJRwpCKZGZ7mtktZvZ0NI/Rw2Z2\ncvSz48zsNTN7xMI0+G3RNBzZfS82s3XR/EFPmNn/KHKOvzGzi4frPe0KM3so+tpiZnNjvH5PM7sn\n+chkJFLCkEr1Y8Jkg5PcfQZhpPS+OT9/0N2nu/shwHnA1WY2K+fn3/Ewf9DphNHuhXwBuG6ogUZT\nKiTC3Y+Nvt0f+LsYr+8CXjGzqUnFJCOXEoZUHDM7HnjL3b+X3ebua939mkKvd/fHga8BCwr8bDWw\n1cL68rnn2BdIeTTrZzSj6Xej0szqbIklmi33CgsLOT1mZp+Jth9nZg+a2U8I0030fQ8fikpAHWZ2\nX7Rthpn9Ktr+kJkdGG0/w8x+bGbLLSyK85Wc42yIvv0GcGxUajovKnE8aGa/ix5H5Zz+p8RILiKD\nNbrcAYgU8G7ClCCD8SihxJDHzI4EtnnvxG1ZxxQ4R4u7zzCzScByM5tImGfnNXc/Mprb7GEzuzd6\n/VTg3e7+bJ9z7gHcABzr7s+a2bjoR6uibdvN7AOEJPDR6Gczove9GVhhZv/H3R+ldybShcA/u/tJ\n0TnqgNnuviWKd2l0DAjrhnx+gN+XyKApYUjFM7OrCSsfvuXuRxZ7WZ/nnzezvwc2EKql+moBXuiz\n7Q4Ad3/azP5EWJ3wROA9ZnZa9Jom4ECghzCx27Ps7CjgF9mfuftr0fZxwH9FJQsn///vvuzrzOyu\n6P32lzTThGq4wwnzhR2Y87PnCSuuiZSUEoZUoj8Af5t94u4LzOxthEnkiplGuIPP+o67f2eA8/RN\nMt7nZx59Pcfd78vb0ew4wvoKcY8NcAlhxtpTzawFWF7k3IWe93U+8KK7T4naUDb1Off2AfYXGTS1\nYUjFcfcHgFozOzNnc32fl+24IJvZFODLwNWDOM0awtKVuU6zYCKhkflJYBlwtoV1RTCzAy2s2taf\n3xAWe2qJ9hkfbW+idx2CT/XZ5wQzG2dhGvdTgIeyby/6ugFozHn9WHpLSP9AWF4z6+3R+xMpKZUw\npFKdAvy7mX2JML3zRuBLOT8/1sweISSS9cACd28bxPEfBs7ts+1ZQv1/I3Bm1D7wfUL1zqPRWgJd\nUWxFuftLZvaPwI9y9vkg8E1giZl9Gfi/fXZrJ0y/vQ9hsauO7OGir08A2y0sV3sTcA1wl5n9A2Fd\n5tzSzhHALwf8DYgMkqY3lxHLzH4OfNzdXzSzG4GfuvtdZYjjDGC6u/dNYLt6vFuAb+UkHZGSUJWU\njGTfAs6Kvt8t7pzMrJmwoI6ShZScShgiIhKLShgiIhKLEoaIiMSihCEiIrEoYYiISCxKGCIiEosS\nhoiIxPL/AYaYIR84e0AgAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Draw a graph with pandas and keep what's returned\n", "ax = df.plot(kind='scatter', x='GDP_per_capita', y='life_expectancy')\n", "\n", "# Set the x scale because otherwise it goes into weird negative numbers\n", "ax.set_xlim((0, 70000))\n", "\n", "# Set the x-axis label\n", "ax.set_xlabel(\"GDP (per capita)\")\n", "\n", "# Set the y-axis label\n", "ax.set_ylabel(\"Life expectancy at birth\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specify axis labels with matplotlib\n", "\n", "Just to mix it up a bit, this time we're going to use `plt.subplots()` to create a figure first. When we pull the GDP and life expectancy out of the dataframes they just look like lists to the `matplotlib` plotter." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXpxfovRSQ1JY21KigCIIuwi4KCRSWFW29\nrPyAVKhFUNFKgXJTYlojCtoFXXTdX12gCNWF/a1Id12BVEgrrAWUIlouSpuGWmwql9KmLdjL5/fH\n90xmMplJziRzMjPN+/l4zCMzZ+ac85mZ9nzne/t8zd0RERHpzZBSByAiIpVBBYaIiMSiAkNERGJR\ngSEiIrGowBARkVhUYIiISCyJFxhmdomZ/S66fTHaNsHMHjCz58zsfjMbn3QcIiLSP4kWGGZ2JHAB\n8DfAMcCHzKwGuBpY7u6HAw8C1yQZh4iI9F/SNYx3AI+6+xvuvgdYCXwMmAHcHr3mduAjCcchIiL9\nlHSB8XvgA1ET1Cjgg8AUoMrd2wHcfRNwSMJxiIhIPw1L8uDu/qyZ3QA0Ax3AamBPrpcmGYeIiPRf\nogUGgLvfBtwGYGbXARuAdjOrcvd2M5sIbM61r5mpIBER6QN3t2IfcyBGSb0p+jsV+CjwI2AZMDt6\nyfnAvfn2d/eKvTU2NpY8hsEafyXHrvhLf6v0+JOSeA0D+E8zOxDYBVzs7lujZqq7zWwO0AacNQBx\niIhIPwxEk9RJOba9AkxP+twiIlI8mumdoNra2lKH0C+VHH8lxw6Kv9QqPf6kWJLtXf1lZl7O8YmI\nlCMzwyux01tERPYNKjBERCQWFRgiIhKLCgwREYlFBYaIiMSiAkNERGJRgSEiIrGowBARkVhUYIiI\nSCwqMEREJBYVGCIiEosKDBERiUUFhoiIxKICQ0REYlGBISIisajAEBGRWFRgiIhILCowREQkFhUY\nIiISiwoMERGJRQWGiIjEogJDRERiUYEhIiKxDCt1ACJ90draRkPDEjZu3MvkyUNoaprNtGnVpQ5L\nZJ9m7l7qGPIyMy/n+KQ0WlvbOO20m1m7diEwGthOTU0jzc1zVWiIAGaGu1uxj6smKak4DQ1LMgoL\ngNGsXbuQhoYlJYxKZN+XeIFhZteY2Roze8rMlprZfmY2wcweMLPnzOx+MxufdByy79i4cS/pwiJl\nNC++uJfW1jZmzVpIXV0js2YtpLW1rRQhiuyTEu3DMLNq4ELgCHf/q5ndBZwDvBNY7u7fNLOrgGuA\nq5OMRfYdkycPAbbTtdDYztixO7o1Va1apaYqkWJJtA/DzCYAvwL+FtgG/AT4Z+C7wMnu3m5mE4EW\ndz8ix/7qw5BuWlvbOPnk69iwoYpQSd7LyJF/YOTIrbzyyv8juyCpr1/EnXc29ut86mCXSpJUH0ai\nNQx3f9XM/gl4AdgBPODuy82syt3bo9dsMrNDkoxDKlNPF2qzkYRKaahJ7Nx5DTt3vpmemqr6ctHP\n1cGuWosMWu6e2A14C/A0cCAwlFDDqAdeyXrdy3n2d6k869at9/r6BV5b+xWvr1/g69at79Mxamou\nd+hwcIcOr6m5vPPY6e3e+Tx8LOf2mTPn5T1Wb7HmO1d9/YJifVwiRRddO4t+TU96HsbfAI+4+ysA\nZnYP8HdAe6qWETVJbc53gAULFnTer62tpba2NtGApX+K9Ys8/0ioRXk7vaEGaAS6Drd1H8batQu6\nHWvevAWsWeM9xtpTB7tIuWhpaaGlpSXx8yRdYDwHNJjZCOAN4FTgcaADmA3cAJwP3JvvAJkFhpSP\n7Caeiy6azuLFy2lu/i2bN99Brgt9If0IPV2ox43bQa5Ob3BgLnA9VVVtTJ9eQ1PTXObMuTXnsR59\ntJ329u/3GGu+DvZJk8pvRLr6Wgav7B/TCxcuTOQ8Sfdh/NbMfgj8BtgDrAYWA2OBu81sDtAGnJVk\nHNJ3uS5CQLdaxF13fZ7du68CivOLvKcLdUfHbqABaOo8f3jswMHU1Oykubmp82KZ71juHb3G2tQ0\nm1WrGrtNEmxqmlvQ+0ma+lpkQCTRzlWsG+rDKKl8/QgzZszP04ewILr1v82/pz6M2tqvOKyPzvWV\n6O96P+CAT+bsh8h1rKlTv+iTJ5+RFet6h2v9kEO6HifVz1FXF69Pphh9OIVSX4tkokL7MKSC5etH\n2Lbtc+TuQ9gLzCFXP0Khv8inTaumuXkuDQ2LePHFvUyaNISmpvBrOdQYdmTtsYOTTz4IgDlzbu3S\nJJN9rLFjd7B69U42brwxI9aXgO8ATWzePJqlS7v+Qo/bnFaqX/rqa5GBoAIjpsHYPpzvImTWQe4+\nhCFANal+hIMOWscZZ7y980LfV541Feeii6Zz1103sHv390hdlIcO/RyPPTaMP//5a53b7r13Lj/7\n2QWcdNKJXS76s2YtZMOGBdHr5gKLgCeBO+mpPyOOnjrr+zMXpDeV1NcyWOyT14wkqi3FulEmTVI9\nNY/sy/I1c+QapgrnOnwhah562uFSnzlzXp/P3bdhtdd22zZmzIe7fU+hScuzbrm2udfVfaWguHMf\nu/DjFGqw/hstV6X+PkioSUo/P2IYjMnuWlvb2LatgxEjLiJ0KLeRal666aZ5NDfPpb5+ESeccCVD\nhnwcuBa4GZgPfAv4OFu3juvz+Xv6zPMPq83+5zyajo6ju31P6V/jmfbm2Fb4L/Tcx07+l36q2a2+\nfhF1dY3U1y9Sh3cJ7avXDDVJxdDX9uFKrZLmaocfOXIup58+nptumtf5Hu68MyT4W7XqP8n8jxEK\njuuZNKnv/7x6+szzNb+Eiz5Z24Z3+54uumg69957Dh0dRwPDgbOYMqUdsy/xwgtfpz99L6UcVVVI\nX4ska1/tU1KBEenp4t6X9uFKHOaY+gyam9eyeXM1oSN4NDCanTtvZsyYRd1iz/cfY8SIdTQ1fb3P\nsfT0mee6KE+d+iX+8pdN7Ny5vXNb6NA+g9bW71NX19g5X2TOnHvo6Phx5+vGjJnLnXdewJQph+bs\nZC9ET531vanUHxj7ov5+F/tsn1IS7VzFujFAfRi9tTf2pT2y0oY55nqPcHk01DR/O3y+9zljxvyi\nx5P9nWQPdV2x4mEfM+bDDl+O+lKafdiw87scY8yYT0V9LOX1vZS6zVvSivFdlPr7JKE+jJIXCj0G\nN0AFRpyLe6Fj8UvV+Zkdb9y5ADNnzos6jdPzGtJzK/JfVJP8j1HoZ569z2GH5c4tlX5PA/+95FNp\nPzD2ZcX6Lvry77dYkiow1CRFvPbGQtuHS1klLbQ5rLW1jfvvfw1ID0kNzTlzSXUG52uHz9UEc9FF\nHy1K00pf2uQz96mra2T9+lyd47uytpW+qaAS2rwHS5NZsb6LfbJPKYlSqFg3yqiGUahSVkkLfT89\nDVOtqvpoQb+OSl0Vz5TvfYVmq9LHFyfWcqlhlNP3mrRy/y7iQE1SyUnqP0OpqqSFNofle/2IEecW\nHHM5/WfL972uWPFwyZoKCo21HGJzL6/vNWnl/l3EkVSBoSYpeh7Z0p9qeKmqpPmyueZrdsnXfHb6\n6ZMKbnIop6aVnr7Xk046ccDj6Ul/RlcNhHL6XpNW7t9FSSVRChXrxgDUMHrqHI7zS6O3zuWBTkS3\nbt16nzLlQodLu8Q9deoX8567mL+oBtMv0cFE32tloVRNUsDbgR8ADwAPpm5JBJPj3EX8CLvr7ULZ\n23+SJIbj9lc65sxsrtf2mqajWBlZ94XqvHSn77WylLLA+C3wOeB9wHtTtySCyXHuonx4+S5uvV1c\ne+sL6K1A6evFuz8GYjhvX+ZISOXT91o5kiow4vRh7Hb37xevEWxg9TTENLTLvkRIZZFKcf1vLFu2\nkZkzr2DcOOipL6C3dt3uxw/nv+++OcyceQVbt44q+vDEgRjO21tG1lIOJxwsQz9LYZ8cJiqFyVeS\nAAdGtwXAxcCbM7YdmETplSOGbiVnoX0CPdUCwnPXZtQCuv5qnjLlQp869Yt9brLqevzU8+u79S8U\ns2o/EE0HpZ6UmI+aTUQCBrpJCmgF1kV/s2/rkggmRwxdPoS+XBB6uritW7feR4w4N9qWP5V3vmp4\nb/GsWPGwwyeyjpk/lUaxOseTbjoo1w7Qco1LZKAlVWDkbZJy92kAZjbC3V/PfM7MRhSpglOQvixO\nM378VkJ67iHRbTZwcGcTzQEHbGHTpmuBp0kn20sZzYoVL3PmmQdwyy1zujVt9Db8bvHi5cChdG0i\nyt2Mdd99f+Svfz0qinE3K1dex4oVX847M7unZpekmw7KdZ3rUg/9VHOY7PN6K1GAJ+JsS+JGVg2j\n0KaQdevWd2tSgkt9ypQLfcWKh3M+l5lsL513qG9NG+m1pzNrIdlNVO4hGd7sbrHk6hwvl2aXcuwA\nLWUNo1y+FxH35GoYPV2sJxJGRD0DHAu8J7rVAs8mEUyOGLp8CMVKeZFq/smXDiN9PzNba2EXnnXr\n1kfJ777sMM9hvodRUnN91KjzulxYhgz5+5yxVFV9NPZ7UrNLZaVjEUlSUgVGT6Ok/p7QfnMo8E+A\nRdu3Al8qXh0nvkKbQvI1UWzbNoqtW/Ot2tbG0KGfYM+edxGS71V3PtdT00Zmc8S4cTtYvfo1Nmz4\nYWecIZnf2dTU3MKtt17E4sXpZqz77juQl1/OFcuY2O+pmM0ufWlaKYfmmFLO0C11c5jIQOipD+N2\nM7sDOMfdlw5gTHnFvSCkLl5PP/07eh5immvVtmomTvw1GzfuBm4lV79HtlxDd0O/SXoBIljIYYed\nR3Pzjd1SU8yceQXLlnWP5fjjq7qdK4lhs5kX+/Hjt7J69d4uK8/1tvBTOS0WVaqhn/vsgjkimXqr\nggC/TqJqE+dGjIl72cNsV6x4OKNZIv8Q1nz9GxMnnuOTJl2cs98jX9PGjBnz8zRvdV13oZC+lkmT\nLvaZM+f1MJP66ej4X/YxYz7sK1Y83Otnle/cXZtxcvWx9Ny0ouYY9WFIeaGEE/eWm9l84C4yVrd3\n91eSKMAKsXLlI5x55i10dNxM6pftvffOpaPjCsKv+yWEUUmzOOigkZxxxuFdaiQtLZcxb94CHn20\nHejghBOqcZ/MsmUL6LpGdROHH35V3hFLDzzwIrmbtzKbI/L/2pw2rZqWlss6a05jx+5g9epd3Hvv\nN8n1i/3WWz/KmWd+q/N9d3RsZ86cRpqbDy34F333kWdDcr6XnppW1ByjhHUySPRWolBG8zAyrVu3\nPmtdg8xf9vM8exLeyJGfivVrL26q71TN5pBDPunwkV470Av5tRk/5Uj/f9F3f7+FH1s1DJHyQkI1\njF4bWN19Wo7bW5IrwuJpaFhCR8fRdP1l2wYsiv6OJNQyAEazc+fNNDQs6Xac1tY2Zs1aSF1dI7Nm\nLcxIDZ5pO6+//pbO/VeufISjj17I0qXz2bz5h8DXCem2tne+PowLeI2qqvOor19UUHt+vJQjxflF\nn257T5lN6H9Jv5cwsGB23mM0Nc2mpqaxoH1EpPLkbZIys1Pc/UEz+1iu5939J8mF1btw0RxOuqOx\njeycTellRquB0SxfvpaVKx9h8eLlnaOZHntsI5s21ZCaMDdx4kb23/9i3njjXzKOcykwnp/9rJ2Z\nM6+guflJdu78KemL9juAa4APASdGcX2WmppbaG5u6iwo4o4k6q0DtZgdrN1Hnh3MlCkdHHvsArZt\nGxWraUXNMSKDRL6qB7Aw+ntbjtutSVR3csSQt8oVmkGezmh6yjevYkHG/bkOn8zq0D4/Ok7q8bk+\nZMgRHjrLz3H4W4dzs/aZ7V0n+KVuVzhc6yNGnOszZswveG2NuK8tdgdrOU7CE5G+I6EmKQvHToaZ\nvZ3QWe6EeRxvIbR33BFtrwbWA2e5+2s59vd88aWHcl4A3A08Hx02WyNwZfTXCLkUs4fSLoqeTz3+\nKLAbOCZ67dU59rkeaOqyrarqk0yf/u6cNYdZs0ITVvZx6utzpzVJ1UbSv9i7HrO350Vk8DIz3N16\nf2Vheh0lZWYHEa6m7ydc+B8GvuruL/e2r7v/gTBLHDMbAvwJuIdwBV7u7t80s6sI7TlXFxJ4uhkk\nXDRbW3ewfn2ueRVPAOcBbwX+TO+jmUYDhwNPAqMITV259llHulloO3Ah3/52PWef/fGc8Rba79Db\nfAKlmhaRgRan0fvfgb8AHwf+Mbp/Vx/ONR1Y6+4bgJnA7dH224GP9OF4TJtWTVPTbMaN28rWrTuA\nz9C14/liQoaTHwI3ECo03Tu0u34Mz0Tb7gO+1sM+VYSaybXAOcAcrrnmR3lj7d65HI6jiV0iUil6\nbZIys9+7+7uytv3O3Y8q6ERmtxAmAX7fzF519wkZz73i7gfm2CdvkxSEZpmTT76ODRvGEJqHwgJI\n4df/JEIWkxtJz8l4FXgN+C7pmsFnCSOa3hE9Pgf4MenaQBvwnej4qX0uAg4BxpGeCV7NuHHn8tpr\nuQuNXLOha2pKMxtaRPZtJWuSAh4ws7MJHQUQahn3F3ISMxsOzACuijZllwJ5S4UFCxZ03q+traW2\ntrbzcUPDEjZsqCLdxxAm2YWL+nmEJqXsFe+eIfRRHA2MJYxqmgccRxjd9Ha6Nh1VA5cAs4ARhNRa\n64HFZDd/7dnTnvcz0EgiEUlKS0sLLS0tiZ8nbw3DzLaR7qweDeyJnhoKdLj7uNgnMZsBXOzuZ0SP\nnwFq3b3dzCYCD7n7O3Ls12MNo66ukfAZLczx7LWEAmA3uTutMzu6HyHURGDo0Hb27Lm/2+snTjyL\n4cMns2HDTUCq87rrEN5jjulg9ep/7emjEBFJXFI1jLwN6O4+1t3HRX+HuPvw6DakkMIikmrnSVlG\naMcBOB+4t8DjAal+gb3k7mMYHp1iHbk7rXdlPD6R0M9xNHv2/IBhwz5PZl9ITU0j//u//8KKFV+m\nvn4RVVXtwAWkC51FwAUceeSbu5wle1Jga2tbX96miEh5SGKsbuaN0C70F2BsxrYDgeXAc8ADwAF5\n9u1xrPG6det9ypQLPTvBYNd1LPIlBvxwD/s87Ycd9rG88xLizINQMjoRKRUqcR5Gf/XWJAXhV/yl\nl36bVavaCOtHvER7+1uBCYQK1HTgP+naad1I6Me4D1gDvJtUx3VKXV0jDz6Yq6krfd6e5kEUOu9C\nRKRYStnpXdamTavmpz+9CQgX8draGwm5nVId3FcxfPh+mJ3JX/96DKGpag+hYjMM2Eno54i39kXm\neXu68CuDq4jsa+JM3LvD3T/Z27Zy0NCwJGPhnzbgFuDH7NqVqllcAewAbiJdoDxPulM8LHw0ZUoH\nTU1f7lcsWlBHRPY1ca5eR2Y+MLOhhLW+y0praxvNzWtJX6CX0L1jei5hwl3qNbcC/5rxOAzLPfbY\n8f0e7qoMriKyr+kpW+01hBltI81sa2oz8FfCJISSWbnyEc4//0ZefXU0EyZs5xvfOJdrr/0Vmzen\nZmWPJkzSu4Xu2Wt3R0dpA3IvfLRt26h+x6h5F5WpHNYmFylXcWZ6f8PdrxmgeLLP3a3Te+XKRzj1\n1B+we/f3SBcEnyGsf3EgoZnpBsI8jB/Sff7FLEI6q4Xkm6OhjunBSbPxZV8x4PMwUtz9GjObYGbv\nM7OTUrdiBxLX+effmFFYEP39v4ScUTcQpnt8i1B56l57CDkQtxPmb3yaUOtINxuNHDlXzUaDVPfl\nakezdu3CnAtviQxGcTq9P03IjXEoIYXrCcCvgFOSDS23l18eSe6JeEMy7t9MqEl073Q+9dQ3U1W1\niOXLf0d7+8GEfo1FhAJkL6ef3v/+C6lMGtkm0rM4nd6XEBIttbl7HSFd+ZZEo8qjtbWNnTs30nvG\n2TCTe9KkK8msPUyd+iUWL76CO+9s5Fe/uinqlD6Y1JoZNTU7uemmeUm/DSlTyigs0rM4fRiPu/tx\nZvYkcLy7v2Fma9z9yB53LEZwWX0YYTLcicCdQGYfRgOhXEvVDLZz6KFns3Lld7UIkcSmPgzZVyTV\nhxGnwLgH+BQhpesphOFHw939g8UOJse5OwuM1tY2Tjihgc2bf0g6WWBqNNRQYCmp/+TDhn2eX/zi\nQk466cTEYtNomn2TfkTIvqBkBUZWECcD44H73P2vxQ4mx/nc3TN++Y0k16imv/u7i3nxxQ62bBnN\nAQds5/bbL0u8sNAvUREpV2VRYAy0VIGRzsv0EqFmkZrNnZ6ZvWLFlwfsYq08USJSzgZ1Lqn06JXU\naKjro79DgEvYsOFgGhq6XqyTbDLSaBoRGYwqosDompdpHLkWTMq8WOdqMlq1qnhNRsoTJSKDUa9X\nODOba2YTentdkrrmZep96GPSE7CUJ0pEBqM4NYwq4HEze4KQre/+XhepKLLMvExr177K738/l46O\nmwl9Gv/GiBHr2LZtEq2tbUybVs3zz79KejJeKmV5ddGajJQnSkQGo14LDHe/1swagNMJw2u/a2Z3\nA7e4+9qkA8w2YsR4TjllODt2XMIjj+xl586bef310Sxbtp01axq59daPsmbNVuA6uiYdvKBbk1F/\n+jl6Ww9DRGRfE3uUlJm9m1BgnAE8REgR0uzuVyYWXLdhtek+iWHDLmL37k8RVtRL2c7kyeeyceOP\nyO5fGDPmHJ566ubOAkFDY0VkX1Wy5INmdomZ/Qb4JmHG3FHu/jnCmhgfL3ZAueTqk9i9ezHwz4Q0\n5XRuf/HF/cg1guld7zqiS0GgRHMiIoWJ04dxIPAxd8+8MuPue83sQ8mE1VW+YaxhDmEDUENqaVX3\n3eQawXTIIV1rUhoaKyJSmDjjQH8OvJJ6YGbjzOx4AHd/JqnAMuVLCgeHEda8mA98BziPkKW26wgm\n+AJmu7vsrURzIiKFiXN1/D7QkfG4I9o2YJqaZjNq1OfpWgg0ENazgNTSqiH54JOkU5Y3Eib5HcDW\nreO6HVNDY0VE4ovTJNUlZWzUFDXgE/723/9lduz4OPA3wNPATaSz00IoNMYyZMgz7N2bSlmeGiF1\nEZMm3d3leBoaKyJSmDjZan8CtJCuVVwM1Ln7R5INLT1Kavr0z/CLX4wGLgTuJtQi7qT78qvXM336\nq6xa9QIdHUcDw4GzqKm5RaOfRGTQKGV680MIw5FOARz4BTDP3TcXO5gc53Z3Z8SI03njjXtIFxBt\nhD6LJnIlIQSUolpEBq1Bna12v/0+xq5dP8l6to3QhzERaGfy5KH88pf/qoJBRAa9kmWrNbM3EdqC\nDst8vbvPKXYw+VRV7eJPf8oeKnswcAzwLUaMqOeXv/y6CgsRkQTFGSV1L2HCw3LgZxm3AbN06dUM\nHfo5uo6S+hLwBWA7p58+SYWFiEjC4vRhPOnux/T5BGbjgX8D3kXIBjgH+ANwF2GY03rgLHd/Lce+\nnQO0Vq58hPr669m4cSTuhxOaow5mypRLOfbY8WzdOopx43ZgtpvXXhunZVNFZNAqZaf314D/dff/\n6dMJzJYAK9z9tmg47mhC9eBld/+mmV0FTHD3q3Ps2y0xbuaay+PGbWX16r288ELXFfjgEuBg5YYS\nkUGpZLmkCFff/zaznWa21cy2mdnWOAc3s3HAB9z9NgB33x3VJGYCt0cvux0oeIiuO/z2ty9kFBaQ\nnsC3hErLDdXa2sasWQupq2tk1qyFtLa29b6TiMgAipPefGw/jj8NeMnMbgPeDfwamAdUuXt7dPxN\n0dDdXnXPMHstuXNMrSWMoireGhhJSnqFQBGRYog1Yztace9twIjUNndfGfP47wE+7+6/NrObgKsJ\n8zky5W0XW7BgQef9Rx5Zz9q13yNdSAwnV6LB0DVyM7nWwChH+TPnLtKaGyLSq5aWFlpaWpI/kbv3\neCP0Lv8OeJWwDsZO4MHe9ov2rQLWZTx+P/DfwDOEWgaEiRTP5NnfM9XWfsVDY1Tqtt7hcoeO6HFH\n9Hi9Q4ePGfNhX7duvZe77u8r3OrqvlLq0ESkAkXXzl6v0YXe4vZhHAe0uXsdcCywJWZh1A5sMLO3\nR5tOBdYAywj5yAHOJwzd7VXXDLNthL6KNxgy5MOEnFGLCIkHq8m1Bka5UuZcEakEcZqkXnf3180M\nM9vf3Z81s8MLOMcXgaVmNhxYR1i1byhwt5nNIVz5z+rtIK2tbXR0bGHEiLm8/voVwC1AaMbZu7cB\nuJLspqmamuz+jfLU1DSbVasau63+19Q0t8SRiYikxRlWew/hIj+PkE/qVWC4u38w8eByLtH6UhRK\nZvLB7rmlKm1IbeZwYeW/EpH+KItcUmZ2MmHW98/dfVexg8lxPnd3Zs1ayNKl8wmFQRtwKTAV2AC8\nFRgFTKeq6p945zuP0gVXRAa1UuaSusPdPwng7itS24BPFjuYfNau3UG6sLgZuI7QJPVDMifsnXBC\nNT/96cKBCktEZFCJ06t6ZOYDMxsKvDeZcHLbtOl5QqGwhNBvcTep/osgTNhzH/B1nUREBo28BYaZ\nXWNm24CjoxneW6PHm4k5qqlYqqqmEDq1dxEKh73kmrC3bduogQxLRGRQyVtguPs3PMzy/pa7j4tu\nY939IHe/ZgBjZOJEI+QrXEOoaeQehjp27I6BDEtEZFCJ0yT1WJRxFgAzO8DMEl+eNVNoajoe+DZh\nvsVZpNfshlQfhtnugQxLRGRQiVNgNHpG6nF330K4Wg+YrVtHEdKAHEyYmHc3sBuYBZxLmLB3CVu3\njhvIsEREBpU4vcS5CpUB611ubW1j/frfA18jlFMLSdcu5kb3q0lyZnRqjsTGjXu1zoaIDFpxJu7d\nSkgF8r1o0+eBA919drKhhXkYNTWXs3btBYRhtBcQahe7MHsc9yuA6SQ5US9XJtlKmxQoIoNLKRdQ\nGk1YlWg6IatsM3Cdu2f3OhedmTl0kJ6DsQTYxWGHPcPtt1/G4sXLE58Z3XXSYMp26uuVSVZEylPJ\nJu5FBcPVZjZ6IAqJ7l4i9FHsJbSOXciWLQ0sXrw8ViHR3+akjRtzD+GthHU2RESKKc5M778jrMk9\nBphqZu8GPuPuFycdXNA1RxQ0sGXLQSxdOr/XRYaKsTBROpNs1xqGMsmKyKDTW/5z4FFgCrA6Y9vv\nk8i1nuPcGWtdpG4dDvM779fXL8ibE76+fkHO/XvaJ9u6deu9pqbrmhs1NZdXxDobIjI4kdB6GLFG\nO7n7BrOt8NJ3AAATqElEQVQuzWF7ilpq9SjXEqyjOu/31DRUjOakadOqaW6eS0PDooz+EnV4i8jg\nE6fA2BA1S3m0psUlhBXzBkiuJViHdN7vqWmoWM1J06ZVq4NbRAa9OFfOzxKG0k4GXgSOiR4PkAay\nZ3SHxfpSiwzNzrtnU9Nsamq6zgjvbR8REcmtoPUwBpqZ+ZQpF7JhwwjgT8AIhg79E0cd9U6OPPLN\nBY2S0sJEIjJYlHIexlsIQ5VOIMzD+BVwqbuvK3YwOc7tK1Y8zJln3kJHx81o4pyISO+SKjDiNEn9\niDC9+s3AJOA/gB8XO5B8Fi9enlFYAIxm7dqFNDQsGagQRESEeAXGKHe/w913R7c7gRFJB5aSb6TT\n8uVraW1tG6gwREQGvTgFxs/N7GozO8zMqs3sSuB/zOxAMzsw6QBD4sHua1+0t1dz2mk3q9AQERkg\ncfowWnt42t39LcUNqcu5HZ4mJB5Mz9YOGWrnAgfnzOmk7LIiMpiVrNO7lEKB4WQmHgxTQG4kpDSH\nAw44jzPPrOksFJRdVkQGu5J1eptZk5kNzXg8zsxuK3YgPasm1Cq+BryLVGEB29mypYalS+d3Nk81\nNCzJKCxAneQiIsURpw9jGGGZ1qPN7DTgceA3yYaVz3ZC1trU/UbCJL50oaDssiIiyYiT3vwaM1tO\nSEL4KnCSuz+feGSdUqk9tgPXAKsZPfostm8/ktCPkapthEJB2WVFRJIRp0nqJOCfga8CLcDNZjYp\n4bgyXA/MA84DRgK17Ny5GTiLdGEBqUJB6UBERJIRZ5TUY8Bsd386evwx4OvufkTiwZk5PEwYJZWe\n6Q1fYP/9N/DGG/eSq2O71OlANEpLREqplKlBhrr7nqxtB7n7y7FOYLYeeI3Q+bDL3d9nZhOAuwhV\nhPXAWe7+Wo59HT5MmFjetYlpyJCZfOhDx7Jt26iyyhGlUVoiUmqlTA1ysJndYmb3RYG8E/hIAefY\nC9S6+7Hu/r5o29XAcnc/HHiQ0DmRx9GEZVoXEjq5FwIvsXfvmxk7dgwPPriQO+9sLJuLsUZpici+\nKk6BsQS4n5BLCuAPhE6FuCzHeWYCt0f3b6fHAmg7IffhfEJhMT96PKosRz5plJaI7Kti1TDc/W6i\n8azuvpvCVtxzoNnMHjezT0fbqty9PTreJuCQ/Lsb6TW9if6Gx+U48ik9SiuTRmmJSOWLs+LedjM7\niHDhx8xOIPRJxHWiu//ZzN4EPGBmz6WOlSFvR8rQoc3s2TMuelQb3Uaz//4b2bZtKHV1jWXVsdzU\nNJtVqxq79WE0Nc0tcWQisq9qaWmhpaUl8fPE6fR+D2GI0ruA3wNvAv7R3Z8q+GRmjUAH8GlCv0a7\nmU0EHnL3d+R4vc+YMZ9lyxaQ3ek9atTZ7Njx75Rjx3KpR2mJyOBW0lxSZjYMOJzQPvScu++KdXCz\nUcAQd+8ws9HAA4SOiFOBV9z9BjO7Cpjg7lfn2N9XrHiYU0/9Abt3f49U4WB2Ee7XApllzHYlIhQR\nIbkCI06TVKrfYk0fjl8F3BOGxzIMWOruD5jZr4G7zWwOIbPgWfkOsHjxcnbvvgpYROhGGYL7gXQt\nLCBXx3KuIa6rVpVPTUREpJLEKjD6yt1bgWNybH8FmB7nGM3Na4FRWVuHESf9R/4hrt1rIiIi0rOy\nH7qzefMBdB9Wu4eRI+fQW/oPDXEVESmeXmsYZmZAPfAWd/+qmU0FJrr7Y4lHB4RmqOxhtd/gxBOv\noqpqUUbHcvdmpp4SEapvQ0SkMHFGSX2fcNU+xd3fEaX1eMDdj0s8ODOHc4AfdXuurq6RBx9c2OP+\n+dJ03HrrR5kz5x6l7xCRfVIpU4Mc7+6fB14HcPdXgf2KHUh+NeSaCNfa+vte1/OeNq2a5ua51Ncv\noq6ukfr6RTQ3z2Xx4uVK3yEiUqA4nd67ohX3UhP33kR6FaMB8GnSOaRS2Wo/y/r1X+O0027utVYw\nbVp1tw5u9W2IiBQuTg3jn4F7gEPM7DpCvvGvJxpVFwcTFkpaRCg4rgf+DNzN2rUjOOWUy3qtaWRT\n+g4RkcLl7cMws2nRsFjM7AjCZDsDfuHuzwxIcGYOl5Lu9E6tutcO3Nq5berUL9HSclns/gelIBeR\nfdmAz/Q2s9+4+3vN7BfufmqxTxxHKDA+BUwmVIb2Ar8CUgsnpWxnxowF3Hvvt2IfW+k7RGRfVYqZ\n3kPM7EvA283ssuwn3f3GYgeTW3aIB5Gr/+HRR9sLOmquvg0REcmvpwLjbMI6FcOAsQMTTi430bWA\naCDX3IqQ01BERJISZx7GP7j7zwconuxze/fM523AAuC7pPs1Gpg8+Rne9rb3aRKeiAx6pejDmOXu\nd5rZ5eRYr2IgmqRCgdFB9/W8z2Tv3g+Q6tcYMuRZ9u79KiEhoTqwRWRwK8XEvdRVegyhSSrzNqbY\ngeQzcuRcsnNGPfTQddTXD6OuDg477OmMwiKErUl4IiLFl7cPw93/b/S3W/4NMytkTe9+WbOmkYaG\n7jmjTjrpRCCkCFm/vvdU5yIi0j99TW9+GfDtYgaST2+jmXpKMCgiIsXT16tq0dvGetLa2sasWQup\nq2tk1qyFXWZ2NzXNpqamkd5SnYuISP/EWqK1205mL7j71ATiyT6Pr1u3ntraG3nhha+Tb2a3JuGJ\niKSVYpTUNnKMjiLULka6e6Kr9UUx+IwZ81m2bAH9ndktIjJYDPhMb3cv4WS9tFWr2inGzG4REemf\nCugZ7iBXZlnN7BYRGVhlX2D87d9Wk04HAqmZ3SecoD4KEZGB1KdO74GS6vQ++eTr2LChitTM7ilT\n2lmx4svq2BYRyWHAO73LgZm5u2sUlIhIAUq5pnfJTZtWTVPTbCZNGsLGjXtpaFhS8Cp7IiLSPxVT\nw9AKeSIi8QzqGkZDw5KMwgKUYFBEZOBVRIGxceNecs3FUIJBEZGBUxEFRjrBYCYlGBQRGUgDcsU1\nsyFm9oSZLYseTzCzB8zsOTO738zG97S/EgyKiJTegHR6m9mlwHuBce4+w8xuAF5292+a2VXABHe/\nOsd+nopPQ2tFROKp2HkYZnYocBtwHXBZVGA8C5zs7u1mNhFocfcjcuzr5TyKS0SkHFXyKKmbgCvo\nmvm2yt3bAdx9E3DIAMQhIiL9kGiBYWZnAu3u/iQ9L7qkaoSISJlLek2LE4EZZvZBYCQw1szuADaZ\nWVVGk9TmfAdYsGBB5/3a2lpqa2uTjVhEpMK0tLTQ0tKS+HkGbKa3mZ0MXB71YXyT0Ol9Q9xObxER\niaeS+zByuR44zcyeA06NHouISBmriFxSIiIS34Av0VouZs1ayMaNe5k8WXMvRERKqexrGGEpVmWo\nFRGJa1/rwyiAMtSKiJSDCigwMilDrYhIqVRYgaEMtSIipVIBV19lqBURKQdlP0qqvn5RRoZadXiL\niJRK2Y+SKuf4RETK0SAeJSUiIuVABYaIiMSiAkNERGJRgSEiIrGowBARkVhUYIiISCwqMEREJBYV\nGCIiEosKDBERiUUFhoiIxKICQ0REYlGBISIisajAEBGRWFRgiIhILCowREQkFhUYIiISiwoMERGJ\nRQWGiIjEogJDRERiUYEhIiKxJFpgmNn+Zvaoma02szVm9vVo+wQze8DMnjOz+81sfJJxiIhI/yVa\nYLj7G0Cdux8LHA2cYmYnAlcDy939cOBB4Jok4yiVlpaWUofQL5UcfyXHDoq/1Co9/qQk3iTl7jui\nu/tH53sVmAncHm2/HfhI0nGUQqX/o6vk+Cs5dlD8pVbp8Scl8QLDzIaY2WpgE9Di7k8DVe7eDuDu\nm4BDko5DRET6Z1jSJ3D3vcCxZjYOuN/MagHPflnScYiISP+Y+8Bdq82sAdgJXADUunu7mU0EHnL3\nd+R4vQoSEZE+cHcr9jETrWGY2cHALnd/zcxGAqcBC4FlwGzgBuB84N5c+yfxhkVEpG8SrWGY2VGE\nTm0j9Jfc4e6LzOxA4G5gCtAGnOXuWxILRERE+m1Am6RERKRyleVMbzM7w8yeNbM/mNlVJY7lFjNr\nN7OnMrblnXhoZteY2R/N7BkzOz1j+3vM7KnoPX07Y/t+Zvbv0T6/MrOpRYz9UDN7MJo0+Tsz+2KF\nxV/wxM9yij/jHEPM7AkzW1Zp8ZvZejP7bfQdPFaB8Y83s/+I4lljZsdXSvxm9vboc38i+vuamX2x\npPG7e1ndCIXY80A1MBx4EjiihPG8HzgGeCpj2w3AldH9q4Dro/vvBFYT+oYOi95Hqhb3KHBcdP9/\ngL+P7n8O+Jfo/v8B/r2IsU8EjonujwGeA46olPijY46K/g4FVgEnVlL80XEvBe4EllXSv5/omOuA\nCVnbKin+JcCnovvDgPGVFH/G+xgCvEhoxi9Z/EV/Y0X4YE4Afp7x+GrgqhLHVE3XAuNZwlwSCBfl\nZ3PFCvwcOD56zdMZ288Gvh/dvw84Pro/FPhLgu/jp8D0SowfGAU8Fv2nqJj4gUOBZqCWdIFRSfG3\nAgdlbauI+IFxwNoc2ysi/qyYTwd+Wer4y7FJajKwIePxn6Jt5eQQzz3xMDv2jdG2yYT3kZL5njr3\ncfc9wBYLgwKKyswOI9SUVpF/4mTZxW+FTfwsu/iBm4Ar6DrXqJLid6DZzB43s09XWPzTgJfM7Lao\nWWexmY2qoPgz/R/gR9H9ksVfjgVGJSrmyIGiDyU2szHA/wMucfcOkp04WdT43X2vh1xkhwIfsOQn\nfhYtfjM7E2h39yd7OW5Zxh850d3fA3wQ+LyZfYAK+fwJTTPvAb4XvYfthF/hlRJ/OKDZcGAG8B/R\nppLFX44FxkYgs+Pl0GhbOWk3syoACxMPN0fbNxLaGFNSsefb3mUfMxsKjHP3V4oVqJkNIxQWd7h7\nar5LxcSf4u5bCW2vf1NB8Z8IzDCzdcCPCck37wA2VUj8uPufo79/ITRpvo/K+fz/BGxw919Hj/+T\nUIBUSvwp/wD8xt1fih6XLP5yLDAeB95qZtVmth+hvW1ZiWMyupa8qYmH0HXi4TLg7GjkwTTgrcBj\nUbXxNTN7n5kZcF7WPudH9z9ByN5bTLcS2i+/U2nxm9nBqREglp74ubpS4nf3L7n7VHd/C+Hf8YPu\n/kngvyohfjMbFdVOMbPRhHb031E5n387sMHM3h5tOhVYUynxZziH8IMjpXTxJ9FBU4QOnjMII3r+\nCFxd4lh+RBid8AbwAvApYAKwPIrxAeCAjNdfQxid8Axwesb29xL+s/0R+E7G9v0Jkxj/SOhfOKyI\nsZ8I7CGMNFsNPBF9tgdWSPxHRTGvBn4LzI+2V0T8We/lZNKd3hURP6EPIPVv53ep/4uVEn90/HcT\nfoQ+CfyEMEqqkuIfBfwFGJuxrWTxa+KeiIjEUo5NUiIiUoZUYIiISCwqMEREJBYVGCIiEosKDBER\niUUFhoiIxKICQ8qSmR1iZkvN7Pkoj9EjZjYzeu5kM9tiZr+xkAa/JUrDkdq30cz+FOUPesrMPpzn\nHGeaWeNAvae+MLOHo7/VZnZOjNcfYmb/k3xkMhipwJBy9VNCssG3uvtxhJnSh2Y8v9Ld3+vuRwCX\nAN81s7qM52/0kD/oLMJs91zmA//a30CjlAqJcPf3R3enAefGeP1m4BUzOzapmGTwUoEhZcfMTgHe\ncPcfpLa5+wZ3/16u17v7b4GvAl/I8dyzwG4L68tnnuNQYLhHWT+jjKbfj2ozz6ZqLFG23G9aWMjp\nSTO7MNp+spmtNLN7Cekmst/DGVENaLWZNUfbjjOz/422P2xmb4u2n29mPzWzhywsivOVjONsi+5+\nA3h/VGu6JKpxrDSzX0e3EzJO/1/EKFxECjWs1AGI5HAkISVIIZ4g1Bi6MLPjgT2eTtyWcmKOc1S7\n+3Fm9lbgITOrIeTZ2eLux0e5zR4xswei1x8LHOnuL2Sd82BgMfB+d3/BzA6Innom2rbXzE4lFAL/\nGD13XPS+XwceN7P/dvcnSGcivRq43N1nROcYAUx3979G8f44OgaEdUMu6+XzEimYCgwpe2b2XcLK\nh2+4+/H5Xpb1+DIzmwVsIzRLZasG/py17W4Ad3/ezNYSVic8HTjKzD4RvWYc8DZgFyGx2wt0dwKw\nIvWcu2+Jth8A/DCqWThd//81p15nZj+J3m9PheZ+hGa4Ywj5wt6W8dyLhBXXRIpKBYaUozXAx1MP\n3P0LZnYQIYlcPu8h/IJPudHdb+zlPNmFjGc959Hfue7e3GVHs5MJ6yvEPTZAEyFj7cfMrBp4KM+5\ncz3Odimwyd2PjvpQdmade28v+4sUTH0YUnbc/UFgfzP7TMbm0Vkv67wgm9nRwLXAdws4TRth6cpM\nn7CghtDJ/BxwP3CxhXVFMLO3WVi1rSerCIs9VUf7TIi2jyO9DsGnsvY5zcwOsJDG/SPAw6m3F/3d\nBozNeP140jWk8wjLa6a8OXp/IkWlGoaUq48A3zazKwnpnbcDV2Y8/34z+w2hIGkHvuDuLQUc/xHg\ni1nbXiC0/48FPhP1D/wboXnniWgtgc1RbHm5+0tmdhFwT8Y+fw98C7jdzK4Ffpa122OE9NuTCYtd\nrU4dLvr7FLDXwnK1S4DvAT8xs/MI6zJn1nbeB/yy109ApEBKby6Dlpn9Aqh3901mdhvwX+7+kxLE\ncT7wXnfPLsD6erylwKKMQkekKNQkJYPZIuCz0f194peTmb2JsKCOCgspOtUwREQkFtUwREQkFhUY\nIiISiwoMERGJRQWGiIjEogJDRERiUYEhIiKx/H9gPbfG/5SzeAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize a new figure\n", "fig, ax = plt.subplots()\n", "\n", "# Draw the graph\n", "ax.plot(df['GDP_per_capita'], df['life_expectancy'], linestyle='', marker='o')\n", "\n", "# Set the label for the x-axis\n", "ax.set_xlabel(\"GDP (per capita)\")\n", "\n", "# Set the label for the y-axis\n", "ax.set_ylabel(\"Life expectancy at birth\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }