
Supercharge your coding 
workflow with ChatGPT and 
GitHub Copilot
#NICAR23

Jonathan Soma, js4571@columbia.edu, @dangerscarf, ledeprogram.com 
jonathansoma.com/supercharge-coding-ai-tools

http://ledeprogram.com
http://jonathansoma.com/supercharge-coding-ai-tools


Jonathan Soma, js4571@columbia.edu, @dangerscarf, ledeprogram.com

http://ledeprogram.com


Don't hold your questions until 
the end, just raise your hand.





There's always something new





We would like to scrape a 
website, but we just learned a 
little tiny bit of Python at NICAR





Help knowing where to start



There are many tools that you can use to scrape websites, 
including:

1. Beautiful Soup: A Python library for pulling data out of 
HTML and XML files.

2. Scrapy: An open-source and collaborative web crawling 
framework for Python.

3. ParseHub: A web scraping tool that allows you to extract 
data from dynamic websites (JavaScript, AJAX, etc.)

4. Octoparse: A web scraping tool that can be used to 
extract data from websites without coding.

5. WebHarvy: A visual web scraper that can be used to 
scrape data from websites without coding.

6. Cheerio: A fast, flexible, and lean implementation of core 
jQuery designed specifically for the server.

7. Selenium: a browser automation tool that can be used to 
scrape data from websites that use JavaScript to load 
content.

8. Puppeteer: a Node.js library that provides a high-level 
API to control headless Chrome or Chromium over the 
DevTools Protocol.

These are just a few examples of the many web scraping 
tools available. The choice of tool will depend on your 
specific needs and the type of website you are trying to 
scrape.

What are some tools I could use to scrape web sites?



Here are some popular web scraping tools that you can use 
with Python:

1. Beautiful Soup: A Python library for pulling data out of 
HTML and XML files. It allows you to parse the HTML 
and XML documents and find the data you need using 
selectors like CSS and XPath.

2. Scrapy: An open-source and collaborative web crawling 
framework for Python. It provides an integrated way to 
follow links and extract data from websites.

3. Selenium: A browser automation tool that can be used to 
scrape data from websites that use JavaScript to load 
content. Selenium can be used with Python using the 
Selenium Python bindings.

4. PyQuery: A Python library similar to jQuery that allows 
you to make jQuery queries on XML documents. It is a 

lightweight library that allows you to manipulate HTML 
and XML documents in a natural way.

5. Requests-HTML: A python library for parsing HTML and 
XML with an HTTP client. It is built on top of requests 
and allows you to interact with web pages in a simple 
and intuitive way.

6. lxml: A python library for processing XML and HTML. It is 
built on top of libxml2 and libxslt, and provides a simple 
and efficient way to extract data from web pages.

7. Mechanize: A python library for automating interaction 
with websites. It allows you to fill in forms, and simulate a 
browser's behavior.

These tools are widely used in Python web scraping, they all 
have their own advantages and disadvantages. The choice 
of tool will depend on your specific needs and the type of 
website you are trying to scrape.

What are some tools I could use to scrape web sites using Python?



Beautiful Soup is often considered one of the easiest 
tools to use for web scraping with Python. It is a Python 
library for pulling data out of HTML and XML files, and it 
allows you to parse the HTML and XML documents and 
find the data you need using selectors like CSS and 
XPath. It is designed to make it easy to navigate, search, 
and modify the parse tree.

It has a simple and intuitive API, and its documentation is 
well-organized and easy to follow, making it a great 
choice for beginners. It also has a large community of 
users, so there are plenty of resources available to help 
you with any questions or issues you may have.

Another tool that is easy to use for scraping web pages is 
requests-html. It is built on top of requests and allows 
you to interact with web pages in a simple and intuitive 

way, it has similar methods as BeautifulSoup for parsing 
pages, but is also compatible with JS rendered pages.

It's important to note that when scraping web pages, it's 
important to check the website's terms of use and to be 
respectful of the website's resources and servers. Some 
websites may block scraper or have CAPTCHAs to 
prevent scraping.

What is the easiest tool I could use to scrape web sites using Python?



Caveat? Benefit?: Prompt engineering



Caveat: Staying up to date



There are several popular CSS frameworks that are widely 
used in web development:

1. Bootstrap: Bootstrap is one of the most popular CSS 
frameworks. It is an open-source framework that provides 
a responsive grid system and pre-designed UI 
components such as buttons, forms, and navigation.

2. Foundation: Foundation is another popular CSS 
framework that provides a responsive grid system and 
pre-designed UI components. It also includes additional 
features such as flexbox, accessibility, and an advanced 
HTML/CSS/JS framework.

3. Bulma: Bulma is a lightweight CSS framework that 
focuses on providing a consistent and modern design. It 
includes a responsive grid system, pre-designed UI 
components, and support for Sass.

4. Tailwind CSS: Tailwind CSS is a utility-first CSS 
framework that provides low-level utility classes for 
controlling layout, spacing, and more. It is designed to be 
customizable and composable, and does not include pre-
designed UI components.

5. Materialize: Materialize is a CSS framework that is 
based on the Material Design guidelines created by 
Google. It provides a responsive grid system and pre-
designed UI components that are designed to look and 
feel like Material Design.

These are just a few examples of widely used CSS 
frameworks, and there are many other good options 
available as well. The best choice for you will depend on 
your specific needs and preferences.

What are some minimalist CSS frameworks to use for designing a web page?





My training data was current as of 2021, so my knowledge is current up until that point. I am 
not aware of any updates or changes that have occurred since then.

When is your information current to?



https://twitter.com/Kantrowitz/status/1613168223054188545



Beautiful Soup is often considered one of the easiest 
tools to use for web scraping with Python. It is a Python 
library for pulling data out of HTML and XML files, and it 
allows you to parse the HTML and XML documents and 
find the data you need using selectors like CSS and 
XPath. It is designed to make it easy to navigate, search, 
and modify the parse tree.

It has a simple and intuitive API, and its documentation is 
well-organized and easy to follow, making it a great 
choice for beginners. It also has a large community of 
users, so there are plenty of resources available to help 
you with any questions or issues you may have.

Another tool that is easy to use for scraping web pages is 
requests-html. It is built on top of requests and allows 
you to interact with web pages in a simple and intuitive 

way, it has similar methods as BeautifulSoup for parsing 
pages, but is also compatible with JS rendered pages.

It's important to note that when scraping web pages, it's 
important to check the website's terms of use and to be 
respectful of the website's resources and servers. Some 
websites may block scraper or have CAPTCHAs to 
prevent scraping.

What is the easiest tool I could use to scrape web sites using Python?



Help with examples and sample 
code



Source: https://diataxis.fr/



Here is a simple example of how you can use BeautifulSoup to 
scrape headlines from a news website:

In the above code snippet, we first send a request to the news 
website using the requests library. Then we parse the HTML 
content using BeautifulSoup's html.parser.

After that, we are using the find_all() method to find all the 
h2 tags in the HTML which represent the headlines in this 
case. Then we are using a for loop to iterate over the headlines 
and printing out the text of each headline using the text 
attribute.

It is important to note that the exact selectors and tags used to 
find the headlines will depend on the specific website and 
structure of the HTML.

Please keep in mind that some websites may block scraping or 
have CAPTCHAs to prevent scraping. It's important to be 
respectful of a website's resources and servers and check the 
website's terms of use before scraping.

Please write a very simple example of scraping with BeautifulSoup where you print 
out all of the headlines on a news website









Caveat: Nothing's perfect!



Caveat: Nothing's perfect does things 
exactly how I, Jonathan Soma, the person 
with the most opinions, wants



"normal" BeautifulSoup

CSS selectors

"get all the links"

links = [] 
for title in doc.find_all("h3",class_='title'): 
    link = title.find('a') 
    links.append(link)

links = doc.select("h3.title a")



Iteration and the value of context



Yes, you can use CSS selectors with BeautifulSoup to find 
elements on a webpage instead of the find_all() method. 
BeautifulSoup provides a select() method that allows you to 
use CSS selectors to find elements.

Here is an example of how you can use CSS selectors with 
BeautifulSoup to scrape headlines from a news website:

In the above code snippet, we are using the select() method 
to find all the h2 tags in the HTML which represent the headlines 
in this case, using the CSS selector h2. Then we are using a for 
loop to iterate over the headlines and printing out the text of each 
headline using the text attribute.

It's worth noting that you can use more complex selectors to 
select elements, you can use the select() method with 
selectors like .class to select elements by class and #id to 
select elements by id.

It's important to note that selectors and css classes used to find 
the headlines will depend on the specific website and structure of 
the HTML.

Please keep in mind that some websites may block scraping or 
have CAPTCHAs to prevent scraping. It's important to be 
respectful of a website's resources and servers and check the 
website's terms of use before scraping.

Can we do that using CSS selectors instead of .find_all?





Yes, you can remove whitespace from before and after the headline text using the strip() method 
in python.

Here is an example of how you can use the strip() method to remove whitespace from before 
and after the headlines:

In the above code snippet, we are using 
the strip() method to remove any whitespace from before and after the headline text. This 
method removes any leading or trailing whitespace characters (spaces, tabs, newlines, etc.) in the 
string.

You can also use the lstrip() or rstrip() method if you want to remove whitespace only from 
the left or right side of the string respectively.

It's important to note that some websites may have non-printable characters in their HTML, in such 
cases you can use the .replace() method or a regular expression to remove those characters.

Can we remove whitespace from before/after the headline?







The CSS selector for an a tag with the class of "media__link" immediately inside of an h3 tag with the 
class of "media__title" is h3.media__title > a.media__link.

This selector uses the child combinator > to match only a tags that are immediate children of h3 tags. 
The h3.media__title selector targets an h3 tag with the class of "media__title" and 
a.media__link targets an a tag with the class of "media__link".

You can also use the space combinator to select a tags that are descendants of h3 tags. For example 
h3.media__title a.media__link will select all the a tags with class of "media__link" that are 
inside of an h3 tag with class of "media__title".

It's important to note that the above selectors assume that the website's HTML structure follows the 
exact format as described, in some cases the website's structure may be different.

What is the CSS selector for an a tag with the class of "media__link" immediately 
inside of an h3 tag with the class of "media__title"?







You can use the get() method to access the href 
attribute of an a tag that is selected by BeautifulSoup. 
Here is an example of how you can print out the href 
attribute of an a tag:

In the above code snippet, we are using the select() 
method to find all the a tags with class of "media__link" 
and then using a for loop to iterate over the links, and 
using the get() method to access the href attribute of 
each link.

It's worth noting that if the href attribute is not present in 
the HTML, the get() method will return None so you 
should check the returned value of get() method before 
using it.

How do I print out the href for an element selected by BeautifulSoup? 





Caveat: Not everything is understandable...



Anti-caveat: AI accepts infinite follow-ups





requests.get() is used to make an HTTP GET request to a specified URL. The get() method is 
part of the requests library, which is a popular library for sending HTTP requests in Python.

An HTTP GET request is the most common type of request and is used to retrieve data from a server. 
The request contains a URL, which specifies the location of the resource to be retrieved. The server 
then responds with the requested resource, if it exists, and a status code indicating whether the 
request was successful.

The get() method takes one argument, which is the URL of the resource to be retrieved. It returns a 
response object, which contains the server's response to the request. The response object has 
various properties and methods, such as text, content, status_code, etc. that can be used to 
access and analyze the response.

You can also use the post() method to make a HTTP POST request, put() to make a HTTP PUT 
request and delete() to make a HTTP DELETE request etc.

It's important to note that the requests library is not part of the python standard library, so you need 
to install it before using it in your code using pip install requests.

Why is it requests.get?



The requests.get() function is used to retrieve information from a website. It is a function from a 
python library called requests. When you use this function, you provide the website's address, and 
the function sends a request to that website asking for information. The website then sends back a 
response which includes the information you asked for. The get() method is just one of the many 
HTTP requests that you can use to interact with a website. There are also post(), put(), 
delete(), etc.

It's important to note that requests is not part of the python standard library and you need to install it 
before using it in your code by running pip install requests in your command line.

Please keep in mind that some websites may block scraping or have CAPTCHAs to prevent scraping. 
It's important to be respectful of a website's resources and servers and check the website's terms of 
use before scraping.

Explain that in much less technical language



I have a dataframe with two columns, county 
and social spending. I am using the following 
R code to plot a horizontal bar graph of each 
country's social spending


library(ggplot2)


ggplot(df) +

    aes(x=`Social Spending`, y=Country) +

    geom_col()


how do i make it sort the bars by social 
spending

You can sort the bars in descending order of social spending by 
adding the "desc" argument to the "arrange" function within the 
ggplot call. Here's the modified code

The "coord_flip" function flips the x and y axes to create a 
horizontal bar chart. The "labs" function sets the x-axis label to 
"Social Spending". The "theme_bw" function sets the plot 
background to white, and the "theme" function centers the plot title. 
The "scale_x_continuous" function formats the x-axis labels as 
dollar amounts. The "scale_y_discrete" function reverses the order 
of the y-axis categories. Finally, the "geom_text" function adds 
dollar values as labels to the bars, and the "geom_col" function 



Yes, you can add the reorder function inside the aes 
call to sort the bars by the Social Spending 
column. Here's the modified code with this approach:

is there a way to do this that doesn't add as 
much codew

In this code, the reorder function sorts the Country 
variable by the SocialSpending variable, which is 
done inside the aes call. This creates a bar chart with 
bars sorted by social spending, without the need for 
additional geom_col or arrange calls. The labs 
function adds axis labels, and the theme_bw function 
sets a white background.



Translating your skills





Here is an example of how you can use Playwright to scrape 
headlines and hrefs from a news website, instead of using 
BeautifulSoup:

Translate the code below into using playwright instead of using BeautifulSoup:



Caveat: Very much not perfect





Fixing bugs



I apologize for the confusion.

You should use import playwright instead of from 
playwright import async_playwright in the first 
line of the code.

Here is the corrected code:

I'm getting the error "ImportError: cannot import name 'async_playwright' from 
'playwright'"





The error "RuntimeError: This event loop is already running" is 
raised because the event loop is already running and you can't 
create a new one.

You could fix this error by removing the line 
asyncio.get_event_loop().run_until_complete(mai
n()) from the code, because it is trying to run the event loop 
again, and the event loop is already running.

Here is the corrected code:

I'm getting the error "RuntimeError: This event loop is already running"





The error "UnboundLocalError: local variable 'playwright' 
referenced before assignment" is raised because the variable 
playwright is not defined before it is used.

You should define playwright variable before you use it.

Here is the corrected code:

I'm getting the error "UnboundLocalError: local variable 'playwright' referenced 
before assignment"



You are correct, my apologies for the confusion.

The correct import statement for the async_playwright function 
from the playwright library is from playwright.async_api 
import async_playwright.

Here is the corrected code:

This doesn't work, but online I found the code "from playwright.async_api import 
async_playwright"



The error "TypeError: object PlaywrightContextManager can't 
be used in 'await' expression" is raised because you are trying 
to use await on a non-awaited object, such as 
playwright.async_playwright().

You should first call async_playwright() function to get an 
awaitable object, and then use await on the returned object.

Here is the corrected code:

It's important to note that Playwright is a browser automation 
tool, so it runs slower than parsing HTML directly and it may not 
work with all the websites, some websites may block scraping 
or have CAPTCHAs to prevent scraping. It's important to be 
respectful of a website's resources and servers and check the 
website's terms of use before scraping.

I'm getting the error "TypeError: object PlaywrightContextManager can't be used in 
'await' expression"

PLEASE 
NO 

MORE



Caveat: It's remarkably confident even when it's 
wrong, and has infinite patience with itself and its 
errors. 

(and hopes that you do, too)



Caveat: The trap of the XY Problem





The actual answer
https://jonathansoma.com/everything/scraping/selenium-playwright-conversion/

https://jonathansoma.com/everything/scraping/loops-in-playwright/



Bonus time: we don't need to 
work in a chatbox











Caveat: GitHub Copilot only officially works 
in a few editors: Visual Studio, VS Code, 
Jetbrains, Neovim





Fortunately, VS Code can do 
anything!





But wait there's more!





LANGUAGE 
TRANSLATION!



READABILITY!



ROBUSTIFICATION!





We live in a crazy future



Jonathan Soma, js4571@columbia.edu, @dangerscarf, ledeprogram.com

http://ledeprogram.com


Supercharge your coding 
workflow with ChatGPT and 
GitHub Copilot
#NICAR23

Jonathan Soma, js4571@columbia.edu, @dangerscarf, ledeprogram.com 
jonathansoma.com/supercharge-coding-ai-tools

http://ledeprogram.com
http://jonathansoma.com/supercharge-coding-ai-tools

